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Figure S1. Spectral irradiance from the solar simulator equipped with a Daylight-Q 

optical filter. 

 

 

 

 

 

 

Figure S2. Molecular structures of probe compounds used in this study. 
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Figure S3. (A) Photosensitized oxidation of 2,4,6-trimethylphenol (TMP, 5 µM) by  

CBBP in the absence and presence of Cu(II) under simulated sunlight irradiation. (B) 

Inhibition factor (IF) of Cu(II) for the 
3
CBBP*-induced oxidation of TMP. Conditions: 

CBBP = 45 µM, pH = 5.0, DO (dissolved oxygen) = 226 μM.  
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Figure S4. Effect of addition of nanomolar Cu(II) on the steady-state concentrations 

of 
1
O2 generated and degradation rate of sorbic acid on photolysis of 10 mg C/L 

Suwannee River NOM solutions. Conditions: FFA = 30 µM or sorbic acid= 5 µM, pH 

= 5.0, DO (dissolved oxygen) = 226 μM.  
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Figure S5. Absorbance spectra for Suwannee River NOM (10 mgC/L) solutions in 

the absence and presence of Cu(II) at pH =5.0. 
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Figure S6. 3D-Fluorescence spectra for Suwannee River NOM (10mg C/L) solutions 

in the presence of Cu(II) at pH =5.0 (a) 0 nM, (b) 500 nM, (c) 1 μM, (d) 5 μM, (e) 10 

μM Cu(II), (f) 20 μM and (g) 50 μM. 
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Figure S7. 2,4,6-trimethylphenol (TMP, 5 µM) degradation in non-irradiated 10 mg 

C/L Suwannee River NOM solutions containing 1 µM Cu(II) at pH =5.0.  
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Figure S8. Effect of TMP on H2O2 concentration generated on photolysis of 10 mg 

C/L Suwannee River NOM solutions in the (a) absence and (b) presence of 400 nM 

Cu(II). Points represent experimentally measured values and lines represent the model 

predicted concentrations.  
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Figure S9. Effect of H2O2 addition on the steady-state concentrations of Cu(I) 

generated under irradiation of Cu(II) in 10 mgC/L SRNOM solution. Conditions: 

initial Cu(II) concentration = 400 nM, pH = 5.0, DO (dissolved oxygen) = 226 μM.  
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Figure S10. Effect of DTPA addition on the inhibition factor (IF) of Cu(II) for the 

triplet-induced oxidation of TMP in SRNOM and CBBP systems. Conditions: 

SRNOM = 10 mg C/L or CBBP = 45 µM, pH = 5.0, DTPA = 5 µM, DO (dissolved 

oxygen) = 226 μM. 
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Figure S11. Effect of various treatments on the pseudo-first-order rate constants of 

TMP (5 µM) in 10 mg C/L SRNOM solutions in the absence and presence of 50 nM 

Cu(II). No amendments = 10 mg C/L SRNOM at pH = 5.0, DO (dissolved oxygen) = 

226 μM. O2-sparged=10 mg C/L SRNOM at pH = 5.0, DO = 820 μM. High pH= 10 

mg C/L SRNOM at pH = 9.0, DO = 226 μM 
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Text S1. Measurement of high energy 
3
NOM* probed by sorbate 

The formation rates (FT), loss rate constants (k′s) and steady-state concentrations 

([
3
NOM*]ss) of high energy 

3
NOM* can be calculated from the photosensitized 

isomerization of sorbic acid (trans,trans-hexadienoic acid, t,t-HDA). SRNOM 

solutions containing sorbic acid at five different concentrations (100 μM, 250 μM, 

500 μM, 750 μM and 1000 μM) were irradiated for 40 min and was analyzed using 

HPLC. A Window-Q optical filter was used to cut off light below 315 nm to minimize 

the self-photoisomerization of t,t-HDA. Figure S12 shows the HPLC chromatogram 

of the irradiated sorbic acid with its four isomers (c,t-HDA, c,c-HDA, t,t-HDA and 

t,c-HDA) in SRNOM solution.  

 

The overall photoisomerization rate of sorbic acid (Rp) was calculated as the sum 

of c,t-HDA, c,c-HDA, t,c-HDA formation rates and t,t-HDA reformation rate 

subtraction of the minor self-isomerization rate of HDA (S1), which was shown in 

Figure S13. 

 Rp=Rc,t-HDA+Rc,c-HDA+Rt,t-HDA+Rt,c-HDA−RHDA,blank         (S1) 

Formation rates of c,t-HDA, c,c-HDA, and t,c-HDA were directly determined 

while the t,t-HDA reformation rate (Rt,t-HDA) was calculated based on the measured 

t,t-HDA decay rates and c,t-HDA formation rates using the following equation : 
1-3
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HDA*]-t[t,k
dt

HDA]-td[c,
R tc,HDA-tc,              (S2) 

dt

HDA]-td[c,

k

k
HDA*]-t[t,kR

tc,

tt,

tt,HDA-tt,             (S3) 

HDA]-t[t,k'HDA*]-t[t,k
dt

HDA]-td[t,
tt, -         (S4) 

Combining S2-S4 one obtained S5 

HDA]-t[t,k'
dt

HDA]-td[c,

R

R

dt

HDA]-td[t,

HDA-tC,

HDA-tt,
        (S5) 

This equation is of the form:  y=c1x1+c2x2 

The ratio of t,t-HDA reformation rate (Rt,t-HDA) to c,t-HDA formation rate 

(Rt,t-HDA) was derived by a binary linear regression of the equation S5 based on all the 

sorbate photolysis experiments (n = 20). This value was determined to be 3.14 ±0.14, 

comparing well to previous results.
1-3

 

At steady state, the relationship between the formation rate of 
3
NOM* (FT), Rp 

and the loss rate constant by scavengers (other than t,t-HDA) (k′s) can be linearly 

expressed as: 

HDA-tt,T

S

TP kF

k'

F

HDA]-t[t,

R

HDA]-t[t,
             (S6) 

where [t,t-HDA] is the initial concentration of t,t-HDA, kt,t-HDA is the estimated 

second-order rate constant (= 6.2×10
8 

M
-1 

s
-1 4

) for reaction between t,t-HDA and 

triplet states of SRNOM. FT and k’s can be calculated from the slope and intercept, 

respectively, of the above linear fit. Thus, the steady-state triplet concentration, 

[
3
NOM*]ss, can be obtained from S7.  
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Figure S12. HPLC chromatograms of the photo-production of c,t-HDA (RT=14.77 

min), c,c-HDA (RT=16.17 min), t,t-HDA (RT=17.37 min), and t,c-HDA (RT=19.38 

min) on irradiation of 100 μM t,t-HDA for 40 min at pH = 5.0 in 10 mg C/L SRNOM. 
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Figure S13. Pseudo-first order rate constant and overall photoisomerization rate of 

sorbic acid (100−1000 µM) in the absence and presence of Cu(II) upon irradiation by 

simulated sunlight. Conditions: SRNOM = 10 mg C/L, pH =5.0, DO (dissolved 

oxygen) = 226 μM.  
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Table S1. Measured formation rates, loss rate constants and steady-state 

concentrations of high energy 
3
NOM* in the absence and presence of Cu(II). 

Conditions: SRNOM=10 mg C/L, pH =5.0 

 

  Cu(II) dose  

     (µM) 

      FT   

(10
-8

 M.s
-1

) 

k′   

(10
5
 s

-1
) 

  [
3
NOM*]ss  

(10
-13

 M) 

     R
2
 

      0 5.95±0.02 2.91±0.23 2.05±0.15 0.982 

      5 5.84±0.11 3.10±0.10 1.89±0.03      0.989 

      10 

      20 

      30 

5.45±0.10 

4.79±0.15 

4.42±0.27 

3.13±0.35 

3.05±0.15 

3.95±0.05   

1.76±0.19 

1.57±0.03 

1.12±0.08 

     0.980 

     0.970 

     0.991 

      40 

      50 

4.71±0.18 

3.69±0.06 

4.43±0.07 

4.20±0.26 

1.06±0.02 

0.88±0.07 

     0.974 

0.973 
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Text S2. Quantification of the quenching rate constant of 
3
SRNOM* by Cu 

The formation rate of singlet oxygen (
1
O2) in the absence of Cu(II), 

2
1 O

R , is 

obtained using the following equation: 

2

1
2

2

O 2

tripletO
d O 2

 [O ]
R R

 [O ]

k

k k



                    (S8) 

where tripletR  is the formation rate of 
3
NOM*, 

2Ok  is the quenching rate constant for 

3
NOM* by O2, and dk represents the physical quenching for 

3
NOM* by all other 

entities except O2. Meanwhile, based on the FFA probe method, 
2

1 O
R also can be 

calculated as: 

1 1
2 2

1

s 2 ssO O ,FFA
R ( [FFA] ) [ O ]k k              (S9) 

where ks represents the relaxation rate constant of 
1
O2 in water.  

The formation rate of 
3
NOM* that can produce 

1
O2, is assumed not to be affected 

by the presence of Cu(II) due to its much lower triplet energy required than that can 

sensitized isomerization of sorbate. Thus, the formation rate of 
1
O2 in the presence of 

Cu, Cu
O

)(R
2

1 can be written as: 

2

1
2

2

O 2
Cu tripletO

d O 2 Cu tot

 [O ]
(R ) R

 [O ]  [Cu]

k

k k k


 
       (S10) 

1 1
2 2

1
Cu s 2 ss  CuO O ,FFA

(R ) ( [FFA] ) [ O ]k k           (S11) 

where kCu is the quenching rate constant for 
3
NOM* by Cu, and Cu  ss2

1 ]O[ is the 

steady-state concentration of 
1
O2 in the presence of Cu. Thus, combined with Eq 9 and 

11 : 

1
2 2

1
22

1 Cu
O d O 22 ss  Cu

1

2 ss  d O 2 Cu totO

(R )  [O ][ O ]

[ O ] R  [O ]  [Cu]

k k

k k k


 

 
  (S12) 
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Figure S14. Photodegradation of FFA (30 µM) in the absence and presence of Cu(II) 

under simulated sunlight. Conditions: SRNOM = 10 mg C/L, pH = 5.0, DO (dissolved 

oxygen) = 226 μM.  

 

 

 

 

Table S2. Steady-state concentrations of singlet oxygen in the absence and presence 

of micomolar Cu(II) under simulated sunlight. Conditions: SRNOM=10 mg C/L, pH 

=5.0 

 

   Cu(II) dose  

     (µM) 

      [
1
O2]ss  

(10
-13

 M) 

        R
2
 

        0 5.56 ± 0.09       0.999 

        1          4.77 ± 0.30       0.992 

        5 4.19 ± 0.11       0.998 

        10 

        20 

        40 

3.57 ± 0.13 

3.22 ± 0.06 

2.72 ± 0.23 

      0.998 

      0.998 

      0.996 
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Text S3. Details of the kinetic model 

Based on the analysis presented in the manuscript, the main features of the 

kinetic model (see Table 1 in the main paper) are discussed in detail below. 

S3.1 Generation of triplet NOM and instantaneous establishment of steady-state 

singlet oxygen concentration 

Reaction 1 represents the formation of 
3
NOM* on absorption of photon by 

SRNOM. The rate constant for reaction 1 is determined by the measured H2O2 

generation rates and TMP photooxidation rates in irradiated SRNOM solution based 

on a bulk carbon concentration of 40.83 mmol.g
-1

 SRNOM as reported earlier. 
6
 

3
NOM* is quenched by oxygen resulting in the formation of 

1
O2 (reaction 2). The 

1
O2 

formed in reaction 2 reaches a steady-state almost instantaneously due to its rapid 

relaxation of the excited singlet state in solution (Reaction 3). The rate constant for 

quenching of 
3
NOM* by oxygen was assumed to be 1.0×10

9 
M

-1 
s

-1
 from Mcneill’s 

latest results.
7
 A value of 2.4 × 10

5
 s

-1
 was used as the rate constant for the relaxation 

reaction (Reaction 3), assuming that relaxation of 
1
O2 mainly occurs via its interaction 

with water.
8
  

S3.2 Superoxide formation during irradiation  

Superoxide formation during irradiation was modeled using Reactions 4 and 5. 

Reaction 4 shows formation of O2-reducing radical (  



Q
) on photoexcitation of Q. 

Reaction 4 is an apparent reaction incorporating excitation of Q, relaxation of the 

excited molecule back to ground state, and reduction of the excited state by electron 

donor. The rate of   



Q
 formation is expected to be limited by the photoexcitation 
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step because intramolecular electron transfer typically occurs very rapidly (often 

above the diffusion controlled limit). The apparent rate constant for reduction of Q to 

  



Q
 was determined based on best-fit to the measured H2O2 concentration in 

irradiated SRNOM solution (Figure S7), assuming that the initial concentration of Q 

is the same as the concentration of electron accepting moieties in SRNOM as reported 

earlier.
9
 It was assumed that the reaction of   



Q
 with O2 (Reaction 5) occurs at a 

diffusion controlled rate (i.e. with a rate constant of ~1×10
9
 M

-1
s

-1
). 

S3.3 Uncatalyzed disproportionation of superoxide 

As described in reaction 6 (Table 1), 2 2H O  is formed as a result of uncatalyzed 

disproportionation of superoxide with the rate constant reported earlier by Bielski and 

coworkers.
10

  

S3.4 Oxidative superoxide sink 

Superoxide also decays due to interaction with organic radical generated on 

irradiation of SRNOM (see reactions 7-9 in Table 1). The rate constant for reactions 8 

and 9 used here are the same as that reported in our previous study.
11

 Since, the rate 

constant for generation of organic radicals varies with the light intensity, the value 

used here is different than the value reported in our earlier work
11

 due to difference in 

the light source used; however we have assumed that the ratio of superoxide 

generation rate and organic radical generation rate used here is the same as that 

reported in our earlier work.
11

  

S3.5 LMCT mediated Cu(II) reduction 

Reactions 10 represent the LMCT-mediated reduction of SRNOM complexed 
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Cu(II) occurring under irradiated conditions. The rate constants for this reaction was 

obtained based on the best-fit to the measured steady-state Cu(I) concentration 

(Figure 2 in the main paper).  

S3.6 Superoxide mediated Cu(II) reduction and Cu(I) oxidation 

Superoxide-mediated Cu(II) reduction is reported to occur in earlier studies.
12, 13

 

However, this reaction was not important under the experimental conditions 

investigated here since addition of superoxide dismutase (an enzyme which catalyses 

the decay of superoxide) increased Cu(I) formation in irradiated SRNOM solution 

containing Cu(II) (Figure S14). This observation further supports that superoxide acts 

as Cu(I) oxidant rather than Cu(II) reductant. The rate constant for 

superoxide-mediated Cu(II) reduction (reaction 11, Table 1) and the rate constant for 

superoxide-mediated Cu(I) oxidation (reaction 12, Table 1) was determined based on 

best-fit to measured impact of SOD addition on Cu(I) formation.  
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Figure S15. Effect of SOD addition on the steady-state concentrations of Cu(I) 

generated under irradiation of Cu(II) in 10 mgC/L SRNOM solution. Conditions: 

initial Cu(II) concentration = 400 nM, pH = 5.0, DO (dissolved oxygen) = 226 μM.  
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S3.7 Cu(I) oxidation by oxygen 

Reaction 13 represents oxidation of Cu(I) by oxygen. The rate constant for this 

reaction is determined based on the best fit to measured Cu(I) oxidation rate in 

deoxygenated SRNOM solution in dark. (Figure S15).  

 

Figure S16. Cu(I) oxidation in non-irradiated 10 mgC/L SRNOM solution under 

deoxygenated condition. Conditions: initial Cu(I) concentration = 100 nM, pH = 5.0, 

DO (dissolved oxygen)= 7.5 μM.  

 

S3.8 Oxidation of TMP by 
3
NOM* 

Reactions 14 and 15 represent the 
3
NOM* oxidation of TMP with the rate 

constant for these reactions determined based on best-fit to the measured TMP 

degradation rates (Figure 1) and the impact of TMP addition on H2O2 generation rates 

in irradiated SRNOM solution (Figure S7). 

 

S3.9 Reformation of TMP by Cu(I)- TMP
•
(-H) interaction 

As discussed in the main manuscript, Cu decreases the photooxidation rate of 

TMP due to the interaction of the radical intermediate (TMP
•
(-H)) with 

photo-generated Cu(I) (Reaction 16). The rate constant for this reaction is determined 
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based on the best-fit to the measured TMP oxidation rates (Figure 1). 

S3.10 Additional H2O2 source in the presence of TMP 

As discussed in the main paper, the generation rate of H2O2 increases in 

irradiated SRNOM solution with TMP addition. This is due to the increased 

generation of oxygen reducing radicals by TMP addition.
14

 To simplify the model, we 

have assumed that these oxygen reducing radicals are different from that generated in 

the absence of TMP. We have further assumed that the reduced NOM radical, formed 

by the interaction of TMP with 
3
NOM* (reaction 14), is responsible for H2O2 

generation via oxygen reduction (reaction 17). The rate constant for reaction 17 is 

assumed to be diffusion-limited. Reaction 18 represents relaxation of NOM
 to 

form a non-reactive product (NRP) with the rate constant for this reaction determined 

based on the best-fit to measured H2O2 concentration in the presence of TMP (Figure 

S7). 
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