Supporting Information

RhodiumCatalyzedAsymmetricCyclization/AdditionReactions of 1, 6-Enynes andOxa/Azabenzonorbornadienes

Yongyun Zhou^{*,†}, Lu Yu,[†] Jingchao Chen,[†] Jianbin Xu,[†] Zhenxiu He,[†] Guoli Shen,[†] and Baomin Fan^{*,†,‡}

[†]YMU-HKBU Joint Laboratory of Traditional Natural Medicine, Yunnan Minzu University, Kunming, Yunnan, People's Republic of China

[‡]Key Laboratory of Chemistry in Ethnic Medicinal Resources, Yunnan Minzu University, Kunming, Yunnan 650500,People's Republic of China

Table of Contents

A: General method	S2
B: Typical procedure for the Cyclization/Addition Reactions	S2
C: Characterization data of products	\$3
D: NMR Spectra of Products	S10
E: HPLC Spectra of Products	S29
F: Crystal structure data	S46

A: General method

The reactions and manipulations were performed under an atmosphere of argon by using standard Schlenk techniques and Drybox (Mikrouna, Supper 1220/750). Anhydrous toluene, DME (Dimethoxyethane), THF (Tetrahydrofuran), MTBE (Methyl *tert*-butyl ether) and 1,4- dioxane were distilled from sodium benzophenone ketyl prior to use. Anhydrous DCE (1, 2-Dichloroethane) were distilled from calcium hydride and stored under argon. ¹H NMR and ¹³C NMR spectra were recorded on Bruker-Avance 400 MHz spectrometer. CDCl₃ was used as solvent. Chemical shifts (δ) were reported in ppm with tetramethylsilane as internal standard, and *J* values were given in Hz. The enantioselective excesses were determined by Agilent 1260 Series HPLC using Daicel AS-H, AD-H or OD-H chiral columns eluted with a mixture of isopropyl alcohol and hexane. Melting points were measured on X-4 melting point apparatus and uncorrected. High resolution mass spectra (HRMS) were performed on a VG Autospec-3000 spectrometer. Column chromatography was performed with silica gel (200-300 mesh).

B: Typical procedure for the Cyclization/Addition Reactions

Rh(COD)₂BF₄ (20.5 mg, 0.05 mmol), (*R*)-An-SDP (37.0 mg, 0.065 mmol) and 5.0 mL DCE were added to a Schlenk tube under argon atmosphere. The resulting solution was stirred at room temperature for 30 min, then a solution of 1,6-enynes **1a** (250 mg, 1.0 mmol) and azabenzonorbornadienes **2a** (365 mg, 1.5 mmol) in DCE (5.0 mL) was added, the resulting mixture was stirred at 40 $\,^{\circ}$ C under argon atmosphere with TLC monitoring until the complete consumption of **1a**. The solvent was removed by reduced pressure and the residue was purified by silica gel column chromatography to provide the desired product **3aa** (415 mg, 84% yield). The enantioselective excess of the product was determined to be 99% by chiral HPLC.

C: Characterization data of products

(1*R*,2*S*,4*S*)-*tert*-butyl 2-((*E*)-(4-methylene-1-tosylpyrrolidin-3-ylidene)methyl)-1,2,3,4tetrahydro-1,4-epiminonaphthalene-9-carboxylate (3aa)

White solid, purified by silica gel column chromatography (ethyl acetate/hexane, 1/5), 83mg, 84% yield, mp 71-73°C, 99% *ee*. $[\alpha]_D^{20} = -10.0$ (c = 1.4, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, *J* = 8.1 Hz, 2H), 7.29 – 7.05 (m, 6H), 5.61 (d, *J* = 9.0 Hz, 1H), 5.07 – 5.00 (m, 3H), 4.74 (s, 1H), 3.87 (s, 4H), 2.59 (td, *J* = 8.6, 3.8 Hz, 1H), 2.58 (s, 3H), 1.73 – 1.62 (m, 2H), 1.28 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 143.8, 140.4, 132.2, 132.1, 130.5, 129.7, 128.0, 126.6, 126.5, 110.6, 80.3, 54.5, 54.4, 28.2, 21.6. HRMS calcd for C28H32N2O4S [M]+: 492.2083. Found: 492.2057. The *ee* of **3aa** was determined by HPLC analysis using Daicel Chiralcel AS-H column (25 cm × 0.46 cm ID), conditions: n-hexane/i-PrOH = 90/10, 0.8 mL/min, 215 nm; t_{major} = 52.6 min, t_{minor} = 70.7 min.

(1*R*,2*S*,4*S*)-*tert*-butyl 2-((*E*)-(4-methylene-1-((4-nitrophenyl)sulfonyl)pyrrolidin-3-ylidene) methyl)-1,2,3,4-tetrahydro-1,4-epiminonaphthalene-9-carboxylate (3ba)

White solid, purified by silica gel column chromatography (ethyl acetate/hexane, 1/5), 49 mg, 76% yield, mp 87-88°C, 99% *ee*. $[\alpha]_D^{20} = -18.3$ (c = 1.2, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 8.40 (d, *J* = 8.5 Hz, 2H), 8.03 (d, *J* = 8.7 Hz, 2H), 7.27 – 7.18 (m, 2H), 7.14 (dd, *J* = 5.9, 2.3 Hz, 2H), 5.72 (d, *J* = 9.1 Hz, 1H), 5.12 (d, *J* = 5.2 Hz, 3H), 4.82 (s, 1H), 4.03 (s, 4H), 2.65 (td, *J* = 8.6, 3.7 Hz, 1H), 1.89 – 1.58 (m, 2H), 1.35 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 150.2, 141.8, 139.6, 131.34, 131.2, 128.9, 126.8, 126.7, 124.4, 111.2, 80.4, 54.3, 54.2, 28.2. HRMS calcd for C27H29N3O6S [M]+: 523.1777. Found: 523.1773. The *ee* of **3ba** was determined by HPLC analysis using Daicel Chiralcel AD-H column (25 cm × 0.46 cm ID), conditions: n-hexane/i-PrOH = 80/20, 1 mL/min, 254 nm; t_{major} = 18.2 min.

(1*R*,2*S*,4*S*)-*tert*-butyl 2-((*E*)-(4-methylene-1-(phenylsulfonyl)pyrrolidin-3-ylidene)methyl) -1,2,3,4-tetrahydro-1,4-epiminonaphthalene-9-carboxylate (3ca)

White solid, purified by silica gel column chromatography (ethyl acetate/hexane, 1/5), 77 mg, 81% yield, mp 68 - 70 °C, 98% *ee*. $[\alpha]_D^{20}$ = -5.7 (c = 13.6, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, *J* = 8.0 Hz, 2H), 7.62 (t, *J* = 7.2 Hz, 1H), 7.55 (t, *J* = 7.6 Hz, 2H), 7.24 (d, *J* = 14.8 Hz, 2H), 7.13 (t, *J* = 4.0 Hz, 2H), 5.67 (d, *J* = 8.8 Hz, 1H), 5.13 (s, 1H), 5.07 (d, *J* = 6.0 Hz, 2H), 4.80 (s, 1H), 3.96 (s, 4H), 2.64 (s, 1H), 1.79 (d, *J* = 12.0 Hz, 1H), 1.74 – 1.69 (m, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 140.3, 135.5, 133.0, 132.1, 130.6, 129.1, 127.9, 126.7, 126.6, 110.7, 80.3, 54.5,

54.4, 28.2. HRMS calcd for $C_{27}H_{30}N_2O_4S$ [M]⁺: 478.1926. Found: 478.1913. The *ee* of **3ca** was determined by HPLC analysis using Daicel Chiralcel AD-H column (25 cm × 0.46 cm ID), conditions: n-hexane/i-PrOH = 80/20, 1 mL/min, 254 nm; t_{major} = 9.9 min, t_{minor} = 15.1 min.

(1*R*,2*S*,4*S*)-*tert*-butyl 2-((*E*)-(1-(tert-butoxycarbonyl)-4-methylenepyrrolidin-3-ylidene) methyl)-1,2,3,4-tetrahydro-1,4-epiminonaphthalene-9-carboxylate (3da)

Colorless oil, purified by silica gel column chromatography (ethyl acetate/hexane, 1/5), 65 mg, 74% yield, 98% *ee*. $[\alpha]_D^{20}$ = -3.00 (c = 6.0, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.21 (d, *J* = 4.0 Hz, 2H), 7.15 (d, *J* = 3.2 Hz, 2H), 5.72 (s, 1H), 5.12 (s, 3H), 4.89 (s, 1H), 4.12 (d, *J* = 7.2 Hz, 4H), 2.77 (s, 1H), 1.86 (d, *J* = 2.8 Hz, 1H), 1.78 (t, *J* = 20.0 Hz, 2H), 1.47 (s, 9H), 1.36 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 154.2, 145.5, 126.7, 126.5, 110.2, 80.2, 79.6, 52.9, 52.6, 28.5, 28.2. HRMS calcd for C₂₆H₃₄N₂O₄ [M]⁺: 438.2519. Found: 438.2527. The *ee* of **3da** was determined by HPLC analysis using Daicel Chiralcel AD-H column (25 cm × 0.46 cm ID), conditions: n-hexane/i-PrOH = 90/10, 1 mL/min, 254 nm; t_{maior} = 6.1 min, t_{minor} = 8.4 min.

(Z)-diethyl 3-(((1*R*,2*S*,4*S*)-9-(*tert*-butoxycarbonyl)-1,2,3,4-tetrahydro-1,4-

epiminonaphthalen-2-yl)methylene)-4-methylenecyclopentane-1,1-dicarboxylate (3ea)

Colorless oil, purified by silica gel column chromatography (ethyl acetate/hexane, 1/10), 57 mg, 59% yield, 97% *ee*, $[\alpha]_D^{20} = -6.0$ (c = 1.1, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.27 – 7.25 (m, 2H), 7.16 – 7.13 (m, 2H), 5.69 – 5.67 (m, 1H), 5.16 – 5.05 (m, 3H), 4.86 (s, 1H), 4.24 – 4.15 (m, 4H), 3.05 (s, 4H), 2.78 – 2.73 (m, 1H), 1.89 – 1.73 (m, 2H), 1.37 (s, 9H), 1.28 – 1.22 (m, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 171.3, 145.5, 144.0, 135.5, 130.0, 126.5, 126.4, 110.6, 80.1, 61.6, 61.5, 57.3, 42.7, 42.4, 28.2, 14.0, 14.0. HRMS calcd for C₂₈H₃₅NO₆ [M]⁺: 481.2464. Found: 481.2462. The *ee* of **3ea** was determined by HPLC analysis using Daicel Chiralcel AD-H column (25 cm × 0.46 cm ID), conditions: n-hexane/i-PrOH = 95/5, 1 mL/min, 254 nm; t_{major} = 10.3 min, t_{minor} = 12.5 min.

(Z)-dimethyl 3-(((1*R*,2*S*,4*S*)-9-(*tert*-butoxycarbonyl)-1,2,3,4-tetrahydro-1,4epiminonaphthalen-2-yl)methylene)-4-methylenecyclopentane-1,1-dicarboxylate (3fa)

Colorless oil, purified by silica gel column chromatography (ethyl acetate/hexane, 1/10), 61 mg, 67% yield, 97% *ee*. $[\alpha]_D^{20} = -3.7$ (c = 10.6, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.19 (d, J = 8.4 Hz, 2H), 7.07 (dd, J = 5.0, 3.2 Hz, 2H), 5.62 (s, 1H), 5.03 (dd, J = 27.7, 16.5 Hz, 3H), 4.80 (s, 1H), 3.69 (s, 3H), 3.65 (s, 3H), 3.09 – 2.78 (m, 4H), 2.75 – 2.60 (m, 1H), 1.82 – 1.67 (m, 2H), 1.30 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 171.7, 145.5, 143.9, 135.3, 130.2, 126.5, 126.4,

110.7, 80.1, 57.3, 52.9, 52.8, 42.9, 42.5, 28.2. HRMS calcd for $C_{26}H_{31}NO_6 [M]^+$: 453.2151. Found: 453.2150. The *ee* of **3fa** was determined by HPLC analysis using Daicel Chiralcel AD-H column (25 cm × 0.46 cm ID), conditions: n-hexane/i-PrOH = 96/4, 1 mL/min, 254 nm; $t_{major} = 14.2$ min, $t_{minor} = 17.5$ min.

(1*R*,2*S*,4*S*)-*tert*-butyl 2-((*E*)-(4-methylenedihydrofuran-3(2H)-ylidene)methyl)-1,2,3,4tetrahydro-1,4-epiminonaphthalene-9-carboxylate (3ga)

Colorless oil, purified by silica gel column chromatography (ethyl acetate/hexane, 1/10), 26 mg, 38% yield, 98% *ee*, $[\alpha]_D^{20} = 6.8$ (c = 1.0, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.27 – 7.26 (m, 2H), 7.18 – 7.15 (m, 2H), 5.72 (d, *J* = 7.4 Hz, 1H), 5.17 – 5.11 (m, 3H), 4.92 (s, 1H), 4.50 – 4.42 (m, 4H), 2.84 – 2.79 (m, 1H), 1.93 – 1.88 (m, 1H), 1.84 – 1.79 (m, 1H), 1.37 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 145.5, 143.9, 135.2, 127.8, 126.7, 126.6, 107.5, 80.3, 74.4, 74.2, 28.3. HRMS calcd for C₂₁H₂₅NO₃[M]⁺: 339.1834. Found: 339.1840. The *ee* of **3ga** was determined by HPLC analysis using Daicel Chiralcel AD-H column (25 cm × 0.46 cm ID), conditions: n-hexane/i-PrOH = 95/5, 1 mL/min, 254 nm; t_{major} = 7.6 min, t_{minor} = 8.3 min.

(1*R*,2*S*,4*S*)-2-((*E*)-(4-methylene-1-tosylpyrrolidin-3-ylidene)methyl)-9-tosyl-1,2,3,4-tetrahydr o-1,4-epiminonaphthalene (3ab)

Light yellow solid, purified by silica gel column chromatography (ethyl acetate/hexane, 1/5), 48 mg, 44% yield, mp 87 - 89°C, 99% *ee*. $[\alpha]_D^{20} = -6.8$ (c = 9.1, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.65 (d, *J* = 8.0 Hz, 2H), 7.39 (d, *J* = 8.0 Hz, 2H), 7.19 -7.17 (m, 2H), 6.80 (d, *J* = 8.0 Hz, 2H), 6.76 (s, 4H), 5.75 (d, *J* = 9.1 Hz, 1H), 4.97 (d, *J* = 3.2 Hz, 2H), 4.89 (m, 1H), 4.59 (m, 1H), 3.87 - 3.86 (m, 4H), 2.57 - 2.52 (m, 1H), 2.38 (s, 3H), 2.15 (s, 3H), 1.90 - 1.85 (m, 1H), 1.66 - 1.61 (m, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 143.9, 143.4, 142.9, 141.8, 140.5, 134.5, 132.6, 132.2, 129.8, 129.7, 128.9, 128.0, 127.9, 126.7, 126.6, 120.1, 120.0, 110.5, 68.8, 63.6, 54.5, 54.3, 40.3, 37.2, 21.6, 21.3. HRMS calcd for C₃₀H₃₀N₂O₄S₂ [M]⁺: 546.1647. Found: 546.1632. The *ee* of **3ab** was determined by HPLC analysis using Daicel Chiralcel AD-H column (25 cm × 0.46 cm ID), conditions: n-hexane/i-PrOH = 60/40, 1 mL/min, 254 nm; t_{maior} = 14.6 min, t_{minor} = 26.1 min.

(1*R*,2*S*,4*S*)-*tert*-butyl 6,7-dimethyl-2-((*E*)-(4-methylene-1-tosylpyrrolidin-3-ylidene)methyl)-1,2,3,4-tetrahydro-1,4-epiminonaphthalene-9-carboxylate (3ac)

Colorless oil, purified by silica gel column chromatography (ethyl acetate/hexane, 1/10), 84 mg, 80% yield, 98% *ee*, $[\alpha]_D^{20}$ = -8.1 (c = 1.8, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, *J* = 8.0 Hz, 2H), 7.36 (d, *J* = 7.6 Hz, 2H), 7.02 (d, *J* = 6.4 Hz, 2H), 5.68 (d, *J* = 8.8 Hz, 1H), 5.32 (s, 3H),

4.76 (s, 1H), 3.94 (s, 4H), 2.64 (s, 1H), 2.47 (s, 3H), 2.24 (s, 6H),1.79 (d, J = 11.6 Hz, 1H), 1.72(d, J = 8.4 Hz, 1H) 1.38 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 143.8, 140.4, 134.7, 134.5, 132.4, 131.9, 130.9, 129.7, 128.0, 110.6, 80.2, 54.6, 54.4, 28.3, 21.6, 19.9. HRMS calcd for C₃₀H₃₆N₂O₄S [M]⁺: 520.2396. Found: 520.2427. The *ee* of **3ac** was determined by HPLC analysis using Daicel Chiralcel AD-H column (25 cm ×0.46 cm ID), conditions: n-hexane/i-PrOH = 85/15, 1 mL/min, 254 nm; t_{major} = 14.2 min, t_{minor} = 17.0 min.

(1*R*,2*S*,4*S*)-*tert*-butyl 6,7-dimethoxy-2-((*E*)-(4-methylene-1-tosylpyrrolidin-3-ylidene) methyl)-1,2,3,4-tetrahydro-1,4-epiminonaphthalene-9-carboxylate (3ad)

White solid, purified by silica gel column chromatography (ethyl acetate/hexane, 1/5), 82 mg, 74% yield, mp 57 - 59°C, 99% *ee*, $[\alpha]_D^{20} = -25.8$ (c = 1.7, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, *J* = 8.0 Hz, 2H), 7.36 (d, *J* = 8.0 Hz, 2H), 6.86 (d, *J* = 7.6 Hz, 2H), 5.69 (d, *J* = 7.6 Hz, 1H), 5.08 (d, *J* = 7.6 Hz, 3H), 4.77(s, 1H), 3.92 - 3.87 (m, 10H), 2.62 (s, 1H), 2.46 (s, 3H), 1.77 - 1.68 (m, 2H), 1.38 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 147.9, 147.7, 143.8, 140.5, 132.3, 131.9, 130.7, 129.7, 128.0, 110.4, 80.4, 56.2, 54.5, 54.3, 28.2, 21.6. HRMS calcd for C₃₀H₃₆N₂O₆S [M]⁺: 552.2294. Found: 552.2301. The *ee* of **3ad** was determined by HPLC analysis using Daicel Chiralcel AD-H column (25 cm × 0.46 cm ID), conditions: n-hexane/i-PrOH = 70/30, 1 mL/min, 254 nm; t_{major} = 13.8 min, t_{minor} = 16.2 min.

(5*R*,6*S*,8*S*)-*tert*-butyl 6-((*E*)-(4-methylene-1-tosylpyrrolidin-3-ylidene)methyl)-5,6,7,8tetrahydro-5,8-epiminonaphtho[2,3-*d*][1,3]dioxole-10-carboxylate (3ae)

White solid, purified by silica gel column chromatography (ethyl acetate/hexane, 1/5), 86 mg, 80% yield, mp 76 - 79°C, 98% *ee*, $[\alpha]_D^{20} = -17.0$ (c = 0.90, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, *J* = 8.0 Hz, 2H), 7.36 (d, *J* = 7.6 Hz, 2H), 6.77 (d, *J* = 7.2 Hz, 2H), 5.95 (s, 2H), 5.65 (d, *J* = 8.8 Hz, 2H), 5.08 (d, *J* = 13.2 Hz, 3H), 4.72(s, 1H), 3.94 (s, 4H), 2.61 (s, 1H), 2.44 (s, 3H), 1.76 - 1.64 (m, 2H), 1.38 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 146.3, 146.1, 143.8, 140.5, 132.3, 132.1, 130.5, 129.7, 128.0, 110.5, 101.1, 80.4, 54.5, 54.3, 28.2, 21.6. HRMS calcd for C₂₉H₃₂N₂O₆S [M]+: 536.1981. Found: 536.2014. The *ee* of **3ae** was determined by HPLC analysis using Daicel Chiralcel AD-H column (25 cm × 0.46 cm ID), conditions: n-hexane/i-PrOH = 70/30, 1 mL/min, 254 nm; t_{major} = 11.2 min, t_{minor} = 17.1 min.

(6*R*,7*S*,9*S*)-*tert*-butyl 7-((*E*)-(4-methylene-1-tosylpyrrolidin-3-ylidene)methyl)-2,3,6,7,8,9hexahydro-6,9-epiminonaphtho[2,3-*b*][1,4]dioxine-11-carboxylate (3af)

White solid, purified by silica gel column chromatography (ethyl acetate/hexane, 1/5), 79 mg,

72% yield, mp 99 - 101°C, 98% *ee*, $[\alpha]_D^{20} = -14.0$ (c = 1.8, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, *J* = 8.0 Hz, 2H), 7.36 (d, *J* = 8.0 Hz, 2H), 6.76 (d, *J* = 6.0 Hz, 2H), 5.65 (d, *J* = 8.8 Hz, 1H), 5.09 (d, *J* = 6.4 Hz, 3H), 4.71 (s, 1H), 4.23 (s, 4H), 3.94 (s, 4H), 2.62 (s, 1H), 2.46 (s, 3H), 1.75 - 1.69 (m, 2H), 1.38 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 143.8, 141.9, 141.7, 140.4, 132.3, 132.0, 130.7, 129.7, 128.0, 110.5, 80.3, 64.2, 54.5, 54.3, 28.2, 21.5. HRMS calcd for $C_{30}H_{34}N_2O_6S$ [M]+: 550.2138. Found: 550.2153. The *ee* of **3af** was determined by HPLC analysis using Daicel Chiralcel AD-H column (25 cm × 0.46 cm ID), conditions: n-hexane/i-PrOH = 70/30, 1 mL/min, 254 nm; $t_{major} = 12.5$ min, $t_{minor} = 18.9$ min.

(1*R*,2*S*,4*S*)-*tert*-butyl 6,7-dibromo-2-((*E*)-(4-methylene-1-tosylpyrrolidin-3-ylidene)methyl)-1,2,3,4-tetrahydro-1,4-epiminonaphthalene-9-carboxylate (3ag)

White solid, purified by silica gel column chromatography (ethyl acetate/hexane, 1/15), 115 mg, 89% yield, mp 95 - 97°C, 99% *ee*, $[\alpha]_D^{20} = -12.3$ (c = 1.5, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.70 (d, *J* = 8.0 Hz, 2H), 7.49 (d, *J* = 9.6 Hz, 2H), 7.34 (d, *J* = 8.0 Hz, 2H), 5.62 (d, *J* = 8.8 Hz, 1H), 5.10 - 5.06 (m, 2H), 5.01 - 4.96 (m, 1H), 4.75 (s, 1H), 3.92 (s, 4H), 2.64 - 2.61 (m, 1H), 2.44 (s, 3H), 1.82 - 1.68 (m, 2H), 1.36 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 143.9, 140.4, 132.7, 132.3, 129.8, 129.5, 128.0, 122.8, 122.6, 110.8, 81.0, 54.5, 54.3, 28.2, 21.6. HRMS calcd for C₂₈H₃₀Br₂N₂O₄S [M]⁺: 648.0293. Found: 648.0280. The *ee* of **3ag** was determined by HPLC analysis using Daicel Chiralcel AD-H column (25 cm × 0.46 cm ID), conditions: n-hexane/i-PrOH = 90/10, 1 mL/min, 254 nm; t_{major} = 28.6 min, t_{minor} = 34.6 min.

(*E*)-3-methylene-4-(((1*R*,2*S*,4*S*)-1,2,3,4-tetrahydro-1,4-epoxynaphthalen-2-yl)methylene)-1-to sylpyrrolidine (3ah)

White solid, purified by silica gel column chromatography (ethyl acetate/hexane, 1/4), 61 mg, 78% yield, mp 64 - 67°C, 93% *ee*. $[\alpha]_D^{20}$ = 4.9 (c = 1.2, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.74 - 7.69 (m, 2H), 7.37 - 7.31 (m, 2H), 7.26 - 7.20 (m, 2H), 7.19 - 7.15 (m, 2H), 5.68 (d, *J* = 9.3 Hz, 1H), 5.44 (d, *J* = 4.7 Hz, 1H), 5.14 - 5.07 (m, 2H), 5.02 (s, 1H), 4.01 - 3.91 (m, 4H), 2.78 - 2.70 (m, 1H), 2.44 (s, 3H), 1.85 - 1.72 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 145.9, 144.5, 143.8, 140.6, 132.5, 132.1, 131.1, 129.7, 128.0, 126.9, 126.7, 119.0, 118.8, 110.5, 84.3, 79.3, 54.6, 54.4, 39.8, 36.4, 21.5. HRMS calcd for C₂₃H₂₃NO₃S [M]⁺: 393.1399. Found: 393.1402. The *ee* of **3ah** was determined by HPLC analysis using Daicel Chiralcel OD-H column (25 cm × 0.46 cm ID), conditions: n-hexane/i-PrOH = 70/30, 1 mL/min, 254 nm; t_{minor} = 14.7 min, t_{major} = 17.7 min.

(*E*)-3-(((1*R*,2*S*,4*S*)-5,8-dimethoxy-1,2,3,4-tetrahydro-1,4-epoxynaphthalen-2-yl)methylene)-4methylene-1-tosylpyrrolidine (3ai)

White solid, purified by silica gel column chromatography (ethyl acetate/hexane, 1/4), 79 mg, 87% yield, mp 71 - 73 °C, 96% *ee*. $[\alpha]_D^{22} = 11.5$ (c = 1.6, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, *J* = 8.1 Hz, 2H), 7.27 (d, *J* = 8.1 Hz, 2H), 6.58 (s, 2H), 5.58 – 5.52 (m, 2H), 5.20 (s, 1H), 5.07 (d, *J* = 23.7 Hz, 1H), 3.93 – 3.70 (m, 4H), 3.71 (d, *J* = 4.5 Hz, 3H), 2.77 – 2.69 – 2.63 (m, 1H), 2.37 (s, 3H), 1.78 – 1.63 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 146.5, 146.5, 143.8, 140.3, 135.0, 133.7, 132.4, 132.2, 131.1, 129.7, 128.0, 111.2, 111.1, 110.8, 82.3, 56.0, 55.8, 54.6, 54.4, 39.4, 36.2, 21.5. HRMS calcd for C₂₅H₂₇NO₅S [M]⁺: 453.1610. Found: 453.1603. The *ee* of **3ai** was determined by HPLC analysis using Daicel Chiralcel AD-H column (25 cm × 0.46 cm ID), conditions: n-hexane/i-PrOH = 80/20, 1 mL/min, 254 nm; t_{major} = 41.0 min, t_{minor} = 43.6 min.

(*E*)-3-methylene-4-(((1*R*,2*S*,4*S*)-1,2,3,4-tetrahydro-1,4-epoxytriphenylen-2-yl)methylene)-1-to sylpyrrolidine (3aj)

White solid, purified by silica gel column chromatography (ethyl acetate/hexane, 1/5), 81 mg, 82% yield, mp 119 - 120°C, 82% *ee*. $[\alpha]_D^{21} = +10.3$ (c = 1.6, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 8.68 – 8.66 (m, 2H), 7.85 – 7.78 (m, 2H), 7.68 – 7.66 (m, 2H), 7.62 – 7.57 (m, 4H), 7.30 – 7.28 (m, 2H), 5.98 (d, *J* = 4.4 Hz, 1H), 5.74 (d, *J* = 9.6 Hz, 1H), 5.55 (s, 1H), 4.99 (s, 1H), 4.92 (s, 1H), 3.98 – 3.83 (m, 4H), 2.74 – 2.70 (m, 1H), 2.38 (s, 3H), 1.96 – 1.73 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 144.0, 141.4, 140.7, 139.5, 132.7, 132.3, 131.2, 130.3, 130.3, 129.9, 128.2, 127.9, 127.2, 126.6, 126.5, 125.7, 125.7, 124.3, 124.1, 123.8, 123.8, 110.9, 84.0, 78.9, 54.8, 54.7, 40.1, 36.5, 21.7. HRMS calcd for C₃₁H₂₇NO₃S [M]⁺: 493.1712. Found: 493.1702. The *ee* of **3aj** was determined by HPLC analysis using Daicel Chiralcel AD-H column (25 cm × 0.46 cm ID), conditions: n-hexane/i-PrOH = 60/40, 1 mL/min, 254 nm; t_{minor} = 45.5 min, t_{major} = 54.5 min.

(*E*)-3-(((6*R*,7*S*,9*S*)-2,3,6,7,8,9-hexahydro-6,9-epoxynaphtho[2,3-*b*][1,4]dioxin-7-yl)methylene) -4-methylene-1-tosylpyrrolidine (3ak)

White solid, purified by silica gel column chromatography (ethyl acetate/hexane, 1/5), 61 mg, 68% yield, mp 104 - 105 °C, 87% *ee*. $[\alpha]_D^{21}$ = -6.1 (c = 0.7, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.73 – 7.71 (m, 2H), 7.36 – 7.34 (m, 2H), 6.77 – 6.75 (m, 2H), 5.65 (d, *J* = 9.2 Hz, 1H), 5.36 (d, *J* = 4.4 Hz, 1H), 5.13 – 5.11 (m, 2H), 4.93 (s, 1H), 4.22 (s, 4H), 3.97 – 3.94 (m, 4H), 2.73 – 2.68 (m, 1H), 2.45 (s, 3H), 1.82 – 1.69 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 143.9, 142.1, 142.0, 140.6, 138.9, 137.5, 132.4, 131.9, 131.3, 129.7, 128.0, 110.6, 109.0, 108.7, 84.2, 79.2, 64.3, 54.6, 54.4, 40.4, 37.0, 21.6. HRMS calcd for C₂₅H₂₅NO₅S [M]⁺: 451.1453. Found: 451.1475. The *ee* of

3ak was determined by HPLC analysis using Daicel Chiralcel AD-H column (25 cm \times 0.46 cm ID), conditions: n-hexane/i-PrOH = 60/40, 1 mL/min, 254 nm; t_{major} = 37.4 min, t_{minor} = 52.2 min.

2D-NMR of 3ah:

HMQC

H-H COSY

E: HPLC Spectra of Products

RetTime	Туре	Width	Area	Height	Area
[min]		[min]	[mAU*s]	[mAU]	8
-	-				
10.343 H	вв	0.2961	2759.11328	142.97041	98.5812
12.533 I	MM	0.4584	39.71064	1.44379	1.4188
	RetTime [min] 	RetTime Type [min] 	RetTime Type Width [min] [min] 10.343 BB 0.2961 12.533 MM 0.4584	RetTime Type Width Area [min] [min] [mAU*s] 10.343 BB 0.2961 2759.11328 12.533 MM 0.4584 39.71064	RetTime Type Width Area Height [min] [min] [mAU*s] [mAU] 10.343 BB 0.2961 2759.11328 142.97041 12.533 MM 0.4584 39.71064 1.44379

Peak	RetTim	е Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
-		-				
1	14.218	ΒВ	0.4695	4853.78027	158.84305	99.3276
2	17.073	MM	0.7924	32.85547	6.91095e-1	0.6724

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	13.858	BB	0.5563	1755.54150	48.72659	99.5324
2	17.272	MM	0.6912	8.24777	1.98887e-1	0.4676

Peak	RetTime Type	Width	Area	Height	Area
#	[min]	[min]	[mAU*s]	[mAU]	8
	-				
1	11.200 вв	0.3984	5794.44678	221.37781	99.3139
2	17.167 MM	0.6461	40.03141	1.03260	0.6861

Peak	RetTime	e Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	12.561	вв	0.4299	2803.77954	100.06040	99.4316
2	18.915	MM	0.6045	16.02683	4.41880e-1	0.5684

F: Crystal structure data

CCDC 1813368

Crystal data for cu_qxjb_0m: C₂₈H₃₀Br₂N₂O₄S, M = 650.42, a = 9.5643(2) Å, b = 10.6107(3) Å, c = 27.3279(7) Å, a = 90 °, $\beta = 90$ °, $\gamma = 90$ °, V = 2773.34(12) Å³, T = 100(2) K, space group *P*212121, Z = 4, μ (CuK α) = 4.712 mm⁻¹, 16557 reflections measured, 5044 independent reflections ($R_{int} = 0.0436$). The final R_I values were 0.0317 ($I > 2\sigma(I)$). The final $wR(F^2)$ values were 0.0827 ($I > 2\sigma(I)$). The final R_I values were 0.0317 (all data). The final $wR(F^2)$ values were 0.0827 (all data). The final $wR(F^2)$ values were 0.0827 (all data). The final $wR(F^2)$ values were 0.097(8).

View of a molecule of qxjb with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

View of the pack drawing of qxjb. Hydrogen-bonds are shown as dashed lines.

Table 1. Crystal data and structure refinement for cu_qxjb_0m.

Identification code	cu_qxjb_0m	
Empirical formula	C28 H30 Br2 N2 O4 S	
Formula weight	650.42	
Temperature	100(2) K	
Wavelength	1.54178 Å	
Crystal system	Orthorhombic	
Space group	P212121	
Unit cell dimensions	a = 9.5643(2) Å	$\alpha = 90$ °.
	b = 10.6107(3) Å	$\beta = 90$ °.
	c = 27.3279(7) Å	$\gamma = 90$ °.
Volume	2773.34(12) Å ³	
Z	4	
Density (calculated)	1.558 Mg/m ³	
Absorption coefficient	4.712 mm ⁻¹	
F(000)	1320	
Crystal size	$0.840 \text{ x} \ 0.320 \text{ x} \ 0.130 \text{ mm}^3$	
Theta range for data collection	3.234 to 70.168 °.	
Index ranges	-11<=h<=11, -12<=k<=12, -30<=l<=33	
Reflections collected	16557	
Independent reflections	5044 [R(int) = 0.0436]	

Completeness to theta = 67.679°	99.8 %
Absorption correction	Semi-empirical from equivalents
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	5044 / 0 / 338
Goodness-of-fit on F ²	1.116
Final R indices [I>2sigma(I)]	R1 = 0.0317, wR2 = 0.0827
R indices (all data)	R1 = 0.0317, wR2 = 0.0827
Absolute structure parameter	0.097(8)
Extinction coefficient	n/a
Largest diff. peak and hole	0.391 and -0.917 e.Å ⁻³

Table 2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10^3)

	х	у	Z	U(eq)
Br(1)	7702(1)	4623(1)	7100(1)	21(1)
Br(2)	7871(1)	6020(1)	5992(1)	20(1)
S (1)	7662(1)	-2815(1)	3369(1)	13(1)
O(1)	2794(3)	1462(3)	6174(1)	14(1)
O(2)	2697(3)	2196(3)	5391(1)	18(1)
O(3)	6340(3)	-3447(3)	3326(1)	18(1)
O(4)	8952(4)	-3469(3)	3276(1)	20(1)
N(1)	4512(4)	968(3)	5653(1)	13(1)
N(2)	7748(4)	-2312(3)	3932(1)	14(1)
C(1)	1431(5)	1702(4)	6866(2)	23(1)
C(2)	1441(5)	2019(4)	6324(1)	16(1)
C(3)	3274(4)	1613(4)	5716(1)	14(1)
C(4)	5601(4)	1583(3)	5342(1)	11(1)
C(5)	6662(4)	481(4)	5297(1)	14(1)
C(6)	6213(4)	-392(4)	4890(1)	14(1)
C(7)	7051(5)	-1052(4)	4597(1)	14(1)
C(8)	6483(4)	-1746(4)	4149(1)	14(1)
C(9)	7631(5)	-1493(3)	2975(1)	14(1)
C(10)	8889(4)	-926(4)	2837(2)	16(1)
C(11)	8862(5)	94(4)	2518(2)	18(1)
C(12)	7596(5)	553(3)	2334(1)	16(1)
C(13)	7563(5)	1648(4)	1980(1)	21(1)
C(14)	9008(4)	-1620(4)	4096(2)	16(1)
C(15)	8587(5)	-1194(4)	4604(1)	15(1)
C(16)	259(5)	1360(4)	6055(2)	24(1)
C(17)	1453(6)	3438(4)	6253(2)	25(1)
C(18)	5444(4)	682(4)	6080(1)	12(1)
C(19)	6094(4)	1965(4)	6166(1)	13(1)
C(20)	6569(5)	2579(4)	6580(1)	15(1)
C(21)	7111(5)	3784(4)	6525(1)	15(1)
C(22)	7205(4)	4353(3)	6068(1)	15(1)
C(23)	6762(4)	3713(4)	5644(1)	14(1)

for cu_qxjb_0m. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(24)	6198(4)	2532(4)	5700(1)	12(1)
C(25)	6548(4)	-134(4)	5816(1)	15(1)
C(26)	9457(5)	-1066(4)	4973(2)	21(1)
C(27)	6369(4)	-1044(4)	2803(1)	16(1)
C(28)	6363(5)	-18(4)	2481(2)	17(1)

Br(1)-C(21)	1.892(4)
Br(2)-C(22)	1.892(4)
S(1)-O(3)	1.436(3)
S(1)-O(4)	1.438(3)
S(1)-N(2)	1.632(3)
S(1)-C(9)	1.768(4)
O(1)-C(3)	1.342(4)
O(1)-C(2)	1.480(5)
O(2)-C(3)	1.216(5)
N(1)-C(3)	1.378(5)
N(1)-C(4)	1.495(5)
N(1)-C(18)	1.500(5)
N(2)-C(8)	1.475(5)
N(2)-C(14)	1.480(5)
C(1)-C(2)	1.521(5)
C(1)-H(1)	0.9800
C(1)-H(8)	0.9800
C(1)-H(7)	0.9800
C(2)-C(16)	1.518(6)
C(2)-C(17)	1.519(6)
C(4)-C(24)	1.517(5)
C(4)-C(5)	1.553(5)
C(4)-H(17)	1.0000
C(5)-C(6)	1.508(5)
C(5)-C(25)	1.566(5)
C(5)-H(18)	1.0000
C(6)-C(7)	1.332(6)
C(6)-H(19)	0.9500
C(7)-C(15)	1.477(6)
C(7)-C(8)	1.528(5)
C(8)-H(21)	0.9900
C(8)-H(20)	0.9900
C(9)-C(27)	1.380(6)
C(9)-C(10)	1.397(6)
C(10)-C(11)	1.389(6)
C(10)-H(28)	0.9500

Table 3. Bond lengths [Å] and angles [] for cu_qxjb_0m.

C(11)-C(12)	1.399(6)
C(11)-H(29)	0.9500
C(12)-C(28)	1.386(6)
C(12)-C(13)	1.511(5)
C(13)-H(2)	0.9800
C(13)-H(3)	0.9800
C(13)-H(30)	0.9800
C(14)-C(15)	1.515(5)
C(14)-H(24)	0.9900
C(14)-H(25)	0.9900
C(15)-C(26)	1.315(6)
C(16)-H(6)	0.9800
C(16)-H(4)	0.9800
C(16)-H(5)	0.9800
C(17)-H(10)	0.9800
C(17)-H(9)	0.9800
C(17)-H(11)	0.9800
C(18)-C(19)	1.514(5)
C(18)-C(25)	1.544(5)
C(18)-H(14)	1.0000
C(19)-C(20)	1.381(6)
C(19)-C(24)	1.413(5)
C(20)-C(21)	1.388(6)
C(20)-H(13)	0.9500
C(21)-C(22)	1.390(5)
C(22)-C(23)	1.408(5)
C(23)-C(24)	1.373(6)
C(23)-H(12)	0.9500
C(25)-H(16)	0.9900
C(25)-H(15)	0.9900
C(26)-H(22)	0.9500
C(26)-H(23)	0.9500
C(27)-C(28)	1.400(6)
C(27)-H(27)	0.9500
C(28)-H(26)	0.9500
O(3)-S(1)-O(4)	121.05(17)
O(3)-S(1)-N(2)	105.89(18)

O(4)-S(1)-N(2)	106.35(19)
O(3)-S(1)-C(9)	107.83(19)
O(4)-S(1)-C(9)	106.83(19)
N(2)-S(1)-C(9)	108.41(16)
C(3)-O(1)-C(2)	120.6(3)
C(3)-N(1)-C(4)	117.0(3)
C(3)-N(1)-C(18)	120.9(3)
C(4)-N(1)-C(18)	96.7(3)
C(8)-N(2)-C(14)	110.2(3)
C(8)-N(2)-S(1)	118.1(3)
C(14)-N(2)-S(1)	119.2(3)
C(2)-C(1)-H(1)	109.5
C(2)-C(1)-H(8)	109.5
H(1)-C(1)-H(8)	109.5
C(2)-C(1)-H(7)	109.5
H(1)-C(1)-H(7)	109.5
H(8)-C(1)-H(7)	109.5
O(1)-C(2)-C(16)	109.5(3)
O(1)-C(2)-C(17)	110.7(3)
C(16)-C(2)-C(17)	113.6(4)
O(1)-C(2)-C(1)	100.8(3)
C(16)-C(2)-C(1)	111.4(4)
C(17)-C(2)-C(1)	110.1(4)
O(2)-C(3)-O(1)	126.0(4)
O(2)-C(3)-N(1)	123.4(4)
O(1)-C(3)-N(1)	110.6(3)
N(1)-C(4)-C(24)	100.6(3)
N(1)-C(4)-C(5)	99.9(3)
C(24)-C(4)-C(5)	107.8(3)
N(1)-C(4)-H(17)	115.5
C(24)-C(4)-H(17)	115.5
C(5)-C(4)-H(17)	115.5
C(6)-C(5)-C(4)	109.5(3)
C(6)-C(5)-C(25)	113.1(3)
C(4)-C(5)-C(25)	101.3(3)
C(6)-C(5)-H(18)	110.9
C(4)-C(5)-H(18)	110.9
C(25)-C(5)-H(18)	110.9

C(7)-C(6)-C(5)	126.5(4)
C(7)-C(6)-H(19)	116.8
C(5)-C(6)-H(19)	116.8
C(6)-C(7)-C(15)	130.2(4)
C(6)-C(7)-C(8)	121.4(4)
C(15)-C(7)-C(8)	108.3(3)
N(2)-C(8)-C(7)	103.1(3)
N(2)-C(8)-H(21)	111.1
C(7)-C(8)-H(21)	111.1
N(2)-C(8)-H(20)	111.1
C(7)-C(8)-H(20)	111.1
H(21)-C(8)-H(20)	109.1
C(27)-C(9)-C(10)	120.8(3)
C(27)-C(9)-S(1)	119.7(3)
C(10)-C(9)-S(1)	119.5(3)
C(11)-C(10)-C(9)	119.3(4)
C(11)-C(10)-H(28)	120.3
C(9)-C(10)-H(28)	120.3
C(10)-C(11)-C(12)	120.9(4)
C(10)-C(11)-H(29)	119.6
C(12)-C(11)-H(29)	119.6
C(28)-C(12)-C(11)	118.7(3)
C(28)-C(12)-C(13)	120.3(4)
C(11)-C(12)-C(13)	121.1(4)
C(12)-C(13)-H(2)	109.5
C(12)-C(13)-H(3)	109.5
H(2)-C(13)-H(3)	109.5
C(12)-C(13)-H(30)	109.5
H(2)-C(13)-H(30)	109.5
H(3)-C(13)-H(30)	109.5
N(2)-C(14)-C(15)	102.0(3)
N(2)-C(14)-H(24)	111.4
C(15)-C(14)-H(24)	111.4
N(2)-C(14)-H(25)	111.4
C(15)-C(14)-H(25)	111.4
H(24)-C(14)-H(25)	109.2
C(26)-C(15)-C(7)	128.9(4)
C(26)-C(15)-C(14)	124.5(4)

C(7)-C(15)-C(14)	106.5(3)
C(2)-C(16)-H(6)	109.5
C(2)-C(16)-H(4)	109.5
H(6)-C(16)-H(4)	109.5
C(2)-C(16)-H(5)	109.5
H(6)-C(16)-H(5)	109.5
H(4)-C(16)-H(5)	109.5
C(2)-C(17)-H(10)	109.5
C(2)-C(17)-H(9)	109.5
H(10)-C(17)-H(9)	109.5
C(2)-C(17)-H(11)	109.5
H(10)-C(17)-H(11)	109.5
H(9)-C(17)-H(11)	109.5
N(1)-C(18)-C(19)	100.6(3)
N(1)-C(18)-C(25)	99.0(3)
C(19)-C(18)-C(25)	107.2(3)
N(1)-C(18)-H(14)	115.9
C(19)-C(18)-H(14)	115.9
C(25)-C(18)-H(14)	115.9
C(20)-C(19)-C(24)	120.9(4)
C(20)-C(19)-C(18)	133.3(4)
C(24)-C(19)-C(18)	105.8(3)
C(19)-C(20)-C(21)	118.0(4)
C(19)-C(20)-H(13)	121.0
C(21)-C(20)-H(13)	121.0
C(20)-C(21)-C(22)	121.3(3)
C(20)-C(21)-Br(1)	117.1(3)
C(22)-C(21)-Br(1)	121.5(3)
C(21)-C(22)-C(23)	120.8(3)
C(21)-C(22)-Br(2)	121.7(3)
C(23)-C(22)-Br(2)	117.5(3)
C(24)-C(23)-C(22)	117.7(3)
C(24)-C(23)-H(12)	121.1
C(22)-C(23)-H(12)	121.1
C(23)-C(24)-C(19)	121.2(3)
C(23)-C(24)-C(4)	133.0(3)
C(19)-C(24)-C(4)	105.8(3)
C(18)-C(25)-C(5)	103.8(3)

C(18)-C(25)-H(16)	111.0
C(5)-C(25)-H(16)	111.0
C(18)-C(25)-H(15)	111.0
C(5)-C(25)-H(15)	111.0
H(16)-C(25)-H(15)	109.0
C(15)-C(26)-H(22)	120.0
C(15)-C(26)-H(23)	120.0
H(22)-C(26)-H(23)	120.0
C(9)-C(27)-C(28)	119.1(4)
C(9)-C(27)-H(27)	120.5
C(28)-C(27)-H(27)	120.5
C(12)-C(28)-C(27)	121.3(4)
C(12)-C(28)-H(26)	119.4
C(27)-C(28)-H(26)	119.4

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Br(1)	24(1)	26(1)	12(1)	-7(1)	-4(1)	-3(1)
Br(2)	23(1)	14(1)	22(1)	-3(1)	4(1)	-5(1)
S(1)	22(1)	10(1)	8(1)	0(1)	1(1)	2(1)
O (1)	19(1)	20(1)	2(1)	2(1)	4(1)	1(1)
O(2)	23(2)	26(1)	5(1)	3(1)	-3(1)	2(1)
O(3)	31(2)	11(1)	13(1)	0(1)	1(1)	-2(1)
O(4)	29(2)	17(2)	14(1)	1(1)	4(1)	8(1)
N(1)	18(2)	17(2)	6(1)	3(1)	1(1)	-2(1)
N(2)	21(2)	16(1)	6(1)	-1(1)	0(1)	0(1)
C(1)	37(3)	21(2)	11(2)	2(2)	10(2)	0(2)
C(2)	22(2)	15(2)	11(2)	0(2)	6(2)	1(2)
C(3)	18(2)	18(2)	7(2)	-1(2)	1(2)	-6(2)
C(4)	18(2)	11(2)	4(2)	2(1)	0(2)	-3(2)
C(5)	19(2)	13(2)	9(2)	0(2)	1(2)	-1(2)
C(6)	18(2)	16(2)	9(2)	0(2)	1(2)	-5(2)
C(7)	23(2)	14(2)	6(2)	0(1)	-4(2)	-1(2)
C(8)	18(2)	18(2)	7(2)	-3(2)	0(2)	2(2)
C(9)	22(2)	12(2)	8(2)	-2(1)	1(2)	1(2)
C(10)	18(2)	19(2)	12(2)	-1(2)	1(2)	4(2)
C(11)	21(2)	20(2)	13(2)	1(2)	3(2)	-2(2)
C(12)	27(2)	13(2)	9(2)	-1(1)	2(2)	2(2)
C(13)	27(2)	20(2)	14(2)	4(2)	4(2)	0(2)
C(14)	16(2)	21(2)	13(2)	-1(2)	0(2)	1(2)
C(15)	21(2)	14(2)	10(2)	2(2)	1(2)	0(2)
C(16)	23(2)	27(2)	20(2)	-1(2)	3(2)	-1(2)
C(17)	38(3)	15(2)	21(2)	1(2)	8(2)	3(2)
C(18)	19(2)	14(2)	4(2)	2(1)	-2(2)	-1(1)
C(19)	17(2)	15(2)	6(2)	1(1)	1(2)	-2(2)
C(20)	19(2)	22(2)	5(2)	1(2)	-3(2)	2(2)
C(21)	20(2)	17(2)	9(2)	-6(1)	0(2)	3(2)
C(22)	16(2)	12(2)	18(2)	-1(1)	4(2)	-3(1)
C(23)	20(2)	14(2)	9(2)	2(1)	3(2)	0(2)
C(24)	18(2)	13(2)	5(2)	0(1)	1(2)	1(2)

Table 4.Anisotropic displacement parameters $(Å^2x \ 10^3)$ for cu_qxjb_0m. The anisotropicdisplacement factor exponent takes the form: $-2\pi^2 [h^2 \ a^{*2} U^{11} + ... + 2 \ h \ k \ a^* \ b^* \ U^{12}]$

C(25)	20(2)	13(2)	11(2)	1(1)	1(2)	0(2)
C(26)	24(2)	23(2)	15(2)	-2(2)	-2(2)	6(2)
C(27)	20(2)	16(2)	11(2)	-1(2)	-1(2)	-3(2)
C(28)	18(2)	19(2)	14(2)	1(2)	-2(2)	0(2)

	X	у	Z	U(eq)
H(1)	1438	785	6908	35
H(8)	588	2053	7018	35
H(7)	2261	2065	7023	35
H(17)	5259	1940	5025	13
H(18)	7628	808	5237	16
H(19)	5236	-479	4838	17
H(21)	5800	-2402	4245	17
H(20)	6031	-1154	3918	17
H(28)	9753	-1235	2959	19
H(29)	9715	484	2424	21
H(2)	6663	1661	1810	31
H(3)	8320	1555	1741	31
H(30)	7686	2438	2161	31
H(24)	9208	-893	3880	20
H(25)	9837	-2178	4106	20
H(6)	326	1541	5704	35
H(4)	-640	1665	6180	35
H(5)	328	449	6108	35
H(10)	2306	3790	6396	37
H(9)	634	3807	6413	37
H(11)	1426	3633	5902	37
H(14)	4981	286	6370	15
H(13)	6526	2188	6892	18
H(12)	6851	4086	5329	17
H(16)	6237	-1021	5793	18
H(15)	7457	-103	5989	18
H(22)	9111	-853	5288	25
H(23)	10431	-1186	4924	25
H(27)	5516	-1427	2902	19
H(26)	5497	292	2361	20

Table 5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å²x 10^3) for cu_qxjb_0m.

Table 6. Torsio	n angles ['] for cu	_qxjb_0m.
-----------------	--------------	----------	-----------

O(3)-S(1)-N(2)-C(8)	-42.2(3)
O(4)-S(1)-N(2)-C(8)	-172.2(3)
C(9)-S(1)-N(2)-C(8)	73.3(3)
O(3)-S(1)-N(2)-C(14)	179.5(3)
O(4)-S(1)-N(2)-C(14)	49.6(3)
C(9)-S(1)-N(2)-C(14)	-65.0(3)
C(3)-O(1)-C(2)-C(16)	67.5(4)
C(3)-O(1)-C(2)-C(17)	-58.6(5)
C(3)-O(1)-C(2)-C(1)	-175.0(3)
C(2)-O(1)-C(3)-O(2)	0.6(6)
C(2)-O(1)-C(3)-N(1)	-177.2(3)
C(4)-N(1)-C(3)-O(2)	39.7(5)
C(18)-N(1)-C(3)-O(2)	157.0(4)
C(4)-N(1)-C(3)-O(1)	-142.4(3)
C(18)-N(1)-C(3)-O(1)	-25.2(5)
C(3)-N(1)-C(4)-C(24)	78.7(4)
C(18)-N(1)-C(4)-C(24)	-51.0(3)
C(3)-N(1)-C(4)-C(5)	-170.9(3)
C(18)-N(1)-C(4)-C(5)	59.3(3)
N(1)-C(4)-C(5)-C(6)	83.5(3)
C(24)-C(4)-C(5)-C(6)	-171.8(3)
N(1)-C(4)-C(5)-C(25)	-36.1(3)
C(24)-C(4)-C(5)-C(25)	68.5(4)
C(4)-C(5)-C(6)-C(7)	147.3(4)
C(25)-C(5)-C(6)-C(7)	-100.5(5)
C(5)-C(6)-C(7)-C(15)	4.7(7)
C(5)-C(6)-C(7)-C(8)	-170.5(4)
C(14)-N(2)-C(8)-C(7)	-22.0(4)
S(1)-N(2)-C(8)-C(7)	-163.7(3)
C(6)-C(7)-C(8)-N(2)	178.9(4)
C(15)-C(7)-C(8)-N(2)	2.8(4)
O(3)-S(1)-C(9)-C(27)	17.5(4)
O(4)-S(1)-C(9)-C(27)	149.0(3)
N(2)-S(1)-C(9)-C(27)	-96.7(3)
O(3)-S(1)-C(9)-C(10)	-161.6(3)
O(4)-S(1)-C(9)-C(10)	-30.0(4)

N(2)-S(1)-C(9)-C(10)	84.2(3)
C(27)-C(9)-C(10)-C(11)	-0.6(6)
S(1)-C(9)-C(10)-C(11)	178.5(3)
C(9)-C(10)-C(11)-C(12)	-0.3(6)
C(10)-C(11)-C(12)-C(28)	0.9(6)
C(10)-C(11)-C(12)-C(13)	-178.9(4)
C(8)-N(2)-C(14)-C(15)	31.9(4)
S(1)-N(2)-C(14)-C(15)	173.1(3)
C(6)-C(7)-C(15)-C(26)	24.8(8)
C(8)-C(7)-C(15)-C(26)	-159.6(4)
C(6)-C(7)-C(15)-C(14)	-159.1(4)
C(8)-C(7)-C(15)-C(14)	16.5(5)
N(2)-C(14)-C(15)-C(26)	147.5(4)
N(2)-C(14)-C(15)-C(7)	-28.8(4)
C(3)-N(1)-C(18)-C(19)	-75.8(4)
C(4)-N(1)-C(18)-C(19)	51.2(3)
C(3)-N(1)-C(18)-C(25)	174.7(3)
C(4)-N(1)-C(18)-C(25)	-58.3(3)
N(1)-C(18)-C(19)-C(20)	148.7(5)
C(25)-C(18)-C(19)-C(20)	-108.4(5)
N(1)-C(18)-C(19)-C(24)	-32.7(4)
C(25)-C(18)-C(19)-C(24)	70.2(4)
C(24)-C(19)-C(20)-C(21)	1.9(6)
C(18)-C(19)-C(20)-C(21)	-179.6(4)
C(19)-C(20)-C(21)-C(22)	-1.4(6)
C(19)-C(20)-C(21)-Br(1)	178.1(3)
C(20)-C(21)-C(22)-C(23)	-0.6(6)
Br(1)-C(21)-C(22)-C(23)	179.9(3)
C(20)-C(21)-C(22)-Br(2)	177.4(3)
Br(1)-C(21)-C(22)-Br(2)	-2.1(5)
C(21)-C(22)-C(23)-C(24)	2.0(6)
Br(2)-C(22)-C(23)-C(24)	-176.1(3)
C(22)-C(23)-C(24)-C(19)	-1.5(6)
C(22)-C(23)-C(24)-C(4)	179.0(4)
C(20)-C(19)-C(24)-C(23)	-0.5(6)
C(18)-C(19)-C(24)-C(23)	-179.3(4)
C(20)-C(19)-C(24)-C(4)	179.1(4)
C(18)-C(19)-C(24)-C(4)	0.3(4)

N(1)-C(4)-C(24)-C(23)	-148.1(4)
C(5)-C(4)-C(24)-C(23)	107.8(5)
N(1)-C(4)-C(24)-C(19)	32.4(4)
C(5)-C(4)-C(24)-C(19)	-71.8(4)
N(1)-C(18)-C(25)-C(5)	35.1(4)
C(19)-C(18)-C(25)-C(5)	-69.0(4)
C(6)-C(5)-C(25)-C(18)	-116.6(4)
C(4)-C(5)-C(25)-C(18)	0.5(4)
C(10)-C(9)-C(27)-C(28)	0.8(5)
S(1)-C(9)-C(27)-C(28)	-178.3(3)
C(11)-C(12)-C(28)-C(27)	-0.7(6)
C(13)-C(12)-C(28)-C(27)	179.1(4)
C(9)-C(27)-C(28)-C(12)	-0.1(6)

Symmetry transformations used to generate equivalent atoms:

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
C(23)-H(12)O(2)#1	0.95	2.53	3.118(5)	120.6
C(18)-H(14)O(4)#2	1.00	2.37	3.263(5)	148.1
C(17)-H(11)O(2)	0.98	2.40	2.949(5)	115.0
C(16)-H(6)O(2)	0.98	2.52	3.086(6)	116.4
C(8)-H(20)Br(2)#3	0.99	3.04	3.560(4)	114.4
C(1)-H(1)O(3)#2	0.98	2.56	3.495(6)	158.6
C(1)-H(1)Br(1)#4	0.98	3.09	3.678(4)	120.1
C(23)-H(12)O(2)#1	0.95	2.53	3.118(5)	120.6
C(18)-H(14)O(4)#2	1.00	2.37	3.263(5)	148.1
C(17)-H(11)O(2)	0.98	2.40	2.949(5)	115.0
C(16)-H(6)O(2)	0.98	2.52	3.086(6)	116.4
C(8)-H(20)Br(2)#3	0.99	3.04	3.560(4)	114.4
C(1)-H(1)O(3)#2	0.98	2.56	3.495(6)	158.6
C(1)-H(1)Br(1)#4	0.98	3.09	3.678(4)	120.1
C(23)-H(12)O(2)#1	0.95	2.53	3.118(5)	120.6
C(18)-H(14)O(4)#2	1.00	2.37	3.263(5)	148.1
C(17)-H(11)O(2)	0.98	2.40	2.949(5)	115.0
C(16)-H(6)O(2)	0.98	2.52	3.086(6)	116.4
C(8)-H(20)Br(2)#3	0.99	3.04	3.560(4)	114.4
C(1)-H(1)O(3)#2	0.98	2.56	3.495(6)	158.6
C(1)-H(1)Br(1)#4	0.98	3.09	3.678(4)	120.1
C(23)-H(12)O(2)#1	0.95	2.53	3.118(5)	120.6
C(18)-H(14)O(4)#2	1.00	2.37	3.263(5)	148.1
C(17)-H(11)O(2)	0.98	2.40	2.949(5)	115.0
C(16)-H(6)O(2)	0.98	2.52	3.086(6)	116.4
C(8)-H(20)Br(2)#3	0.99	3.04	3.560(4)	114.4
C(1)-H(1)O(3)#2	0.98	2.56	3.495(6)	158.6
C(1)-H(1)Br(1)#4	0.98	3.09	3.678(4)	120.1
C(1)-H(1)Br(1)#4	0.98	3.09	3.678(4)	120.1
C(1)-H(1)O(3)#2	0.98	2.56	3.495(6)	158.6
C(8)-H(20)Br(2)#3	0.99	3.04	3.560(4)	114.4
C(16)-H(6)O(2)	0.98	2.52	3.086(6)	116.4
C(17)-H(11)O(2)	0.98	2.40	2.949(5)	115.0
C(18)-H(14)O(4)#2	1.00	2.37	3.263(5)	148.1

Table 7. Hydrogen bonds for cu_qxjb_0m [Å and °].

C(23)-H(12)O(2)#1	0.95	2.53	3.118(5)	120.6
C(1)-H(1)Br(1)#4	0.98	3.09	3.678(4)	120.1
C(1)-H(1)O(3)#2	0.98	2.56	3.495(6)	158.6
C(8)-H(20)Br(2)#3	0.99	3.04	3.560(4)	114.4
C(16)-H(6)O(2)	0.98	2.52	3.086(6)	116.4
C(17)-H(11)O(2)	0.98	2.40	2.949(5)	115.0
C(18)-H(14)O(4)#2	1.00	2.37	3.263(5)	148.1
C(23)-H(12)O(2)#1	0.95	2.53	3.118(5)	120.6
C(1)-H(1)Br(1)#4	0.98	3.09	3.678(4)	120.1
C(1)-H(1)O(3)#2	0.98	2.56	3.495(6)	158.6
C(8)-H(20)Br(2)#3	0.99	3.04	3.560(4)	114.4
C(16)-H(6)O(2)	0.98	2.52	3.086(6)	116.4
C(17)-H(11)O(2)	0.98	2.40	2.949(5)	115.0
C(18)-H(14)O(4)#2	1.00	2.37	3.263(5)	148.1
C(23)-H(12)O(2)#1	0.95	2.53	3.118(5)	120.6

Symmetry transformations used to generate equivalent atoms:

#1 x+1/2,-y+1/2,-z+1 #2 x-1/2,-y-1/2,-z+1 #3 x-1/2,-y+1/2,-z+1 #4 -x+1,y-1/2,-z+3/2