The Indium and Zinc Mediated Acyloxyallylation of Protected and Unprotected Aldotetroses – Revealing a Pronounced Diastereodivergence and a Fundamental Difference in the Performance of the Mediating Metal

Markus Draskovits¹, Christian Stanetty^{1,*}, Ian R. Baxendale², Marko D. Mihovilovic¹

¹Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria ²Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, United Kingdom

*E-mail: christian.stanetty@tuwien.ac.at

Part 1: Quantification of threose derived enitols

Figure S1. Determination of the enitol-ratio 17a-d (gulo>ido>talo as peracetates) from D-threose 14
Figure S2. Determination of enitole-ratio 16a-d (talo>galacto>gulo) derived from protected D-threose
15

Part 2: Investigation of the fate of bromopropenyl esters 3a and 23 under the reaction conditions

Figure S3. Time resolved conversion of $3a$ to $26-d_{10}$ via the rapidly formed intermediates 25	S 6
Figure S4. Conversion of 23 to $26-d_{10}$ and comparison with isolated $26-d_{10}$ from the experiment w	<i>ith</i>
3a (bottom)	S 7

Part 3: ¹H and ¹³C-NMRs of the synthesized compounds

Figure S5. ¹ H-NMR (400 MHz, CDCl ₃) of 3c	S8
Figure S6. ¹³ C-NMR (101 MHz, CDCl ₃) of 3c	S8
Figure S7. ¹ H-NMR (400 MHz, CDCl ₃) of 3d	S9
Figure S8. ¹³ C-NMR (101 MHz, CDCl ₃) of 3d	S9
Figure S9. ¹ H-NMR (400 MHz, D ₂ O) of 6	S10
Figure S10. ¹³ C-NMR (101 MHz, D ₂ O) of 6	S10
Figure S11. ¹ H-NMR (400 MHz, CDCl ₃) of 7	S11
Figure S12. ¹³ C-NMR (101 MHz, CDCl ₃) of 7	S11
Figure S13. ¹ H-NMR (400 MHz, MeOD) of 8a	S12
Figure S14. ¹³ C-NMR (101 MHz, MeOD) of 8a	S12
Figure S15. ¹ H-NMR (400 MHz, MeOD) of 8b	S13
Figure S16. ¹³ C-NMR (101 MHz, MeOD) of 8b	S13
Figure S17. ¹ H-NMR (400 MHz, MeOD) of 8c (10% 8d)	S14

Figure S18. ¹³ C-NMR (101 MHz, MeOD) of 8c (10% 8d)	S14
Figure S19. ¹ H-NMR (400 MHz, CDCl ₃) of 9a	S15
Figure S20. ¹³ C-NMR (101 MHz, CDCl ₃) of 9a	S15
Figure S21. ¹ H-NMR (400 MHz, CDCl ₃) of 9b	S16
Figure S22. ¹³ C-NMR (101 MHz, CDCl ₃) of 9b	S16
Figure S23. ¹ H-NMR (400 MHz, CD ₂ Cl ₂) of crude 15	S17
Figure S24. ¹³ C-NMR (101 MHz, CD ₂ Cl ₂) of crude 15	S17
Figure S25. ¹ H-NMR (400 MHz, MeOD) of 16a (10% 16c)	S18
Figure S26. ¹³ C-NMR (101 MHz, MeOD) of 16a (10% 16c)	S18
Figure S27. ¹ H-NMR (400 MHz, MeOD) of 16b	S19
Figure S28. ¹³ C-NMR (101 MHz, MeOD) of 16b	S19
Figure S29 ¹ H-NMR (400 MHz, MeOD) of 16c	S20
Figure S30. ¹³ C-NMR (101 MHz, MeOD) of 16c	S20
Figure S31. ¹ H-NMR (400 MHz, MeOD) of 16d (as minor compound in 16c)	S21
Figure S32. ¹³ C-NMR (101 MHz, MeOD) of 16d (as minor compound in 16c)	S21
Figure S33. ¹ H-NMR (400 MHz, CDCl ₃) of 17a (10% 17c)	S22
Figure S34. ¹³ C-NMR (101 MHz, CDCl ₃) of 17a (10% 17c)	S22
Figure S35. ¹ H-NMR (400 MHz, CDCl ₃) of 17b	S23
Figure S36. ¹³ C-NMR (101 MHz, CDCl ₃) of 17b	S23
Figure S37. ¹ H-NMR (400 MHz, CDCl ₃) of crude 22	S24
Figure S38. ¹³ C-NMR (101 MHz, CDCl ₃) of crude 22	S24
Figure S39. Comparison of ¹ H-NMR of synthesized l-mannose 10 (top) and a commerci	ally available
D-mannose (bottom)	S25
Figure S40. Comparison of ¹³ C-NMR of synthesized L-mannose 10 (top) and a commerci	ally available
D-mannose (bottom)	S25
Figure S41. Comparison of ¹ H-NMR of synthesized L-glucose 11 (above) to commercia	ally available
D-glucose (down)	S26
Figure S42. Comparison of ¹³ C-NMR of synthesized L-glucose 11 (above) to commerci	ally available
D-glucose (down)	S26
Figure S43. Comparison of ¹ H-NMR of synthesized L-allose 12 (top) and commercial D-al	lose (bottom)
Figure S44. Comparison of ¹³ C-NMR of synthesized L-allose 12 (top, APT) and comme	rcial D-allose
(bottom)	S27
Figure S45. Comparison of ¹ H-NMR of a synthesized mixture of L-altrose 13 and L-allose	e 12 (top) and
commercial D-altrose (bottom)	S28
Figure S46. Comparison of ¹³ C-NMR of a synthesized mixture of L-altrose 13 and L-allos	e 12 (middle)
and commercial D-altrose (top) and D-allose (bottom)	S28

Figure S47. Comparison of ¹ H-NMR of synthesized (top) and commercially available (bottom) D-
gulose 18
Figure S48. Comparison of ¹³ C-NMR of synthesized (top) and commercially available (bottom) D-
gulose 18
Figure S49. Comparison of ¹ H-NMR of synthesized (top) and a commercially (bottom) D-idose 19
Figure S50. Comparison of ¹³ C-NMR of synthesized (top) and a commercially (bottom) D-idose 19
Figure S51. Comparison of ¹ H-NMR of synthesized (top) and a commercial (bottom) D-talose 20.S31
Figure S52. Comparison of ¹³ C-NMR of synthesized (top) and a commercial (bottom) D-talose 20S31
Figure S53. Comparison of ¹ H-NMR of a synthesized mixture of D-galactose and D-talose (top) and
commercially available D-galactose 21 (bottom)
Figure S54. Comparison of ¹³ C-NMR of a synthesized mixture (middle) and commercially available
D-galactose 21 (top) and D-talose 20 (bottom)

Part 1: Quantification of threose derived enitols

Figure S1. Determination of the enitol-ratio 17a-d (gulo>ido>talo as peracetates) from D-threose 14¹

Figure S2. Determination of enitole-ratio 16a-d (talo>galacto>gulo) derived from protected D-threose 15²

¹ based on integration of the diagnostic H7b-signals

² based on the integration of the diagnostic allylic position H3.

Part 2: Investigation of the fate of bromopropenyl esters 3a and 23 under the reaction conditions

To mimic the reaction conditions in anhydrous EtOH we followed the fate of bromopropenyl acetate **3a** in MeOH-d₄ (without indium) at rt over time (¹H-NMR). An immediate and rapid consumption of reagent **3a** (*E*-isomer faster than *Z*-isomer) and a clean formation of **25** (judged by the concomitant formation of d3-methylacetate in amounts equal to consumed **3a**) was observed, putatively *via* the transient intermediate **24**. Intermediate **25** was then converted in a slower manner to 1,1,2 trimethoxy propane **26-d**₁₀ with deuterium-incorporation at the 2-position. Concomitant to the initial formation of intermediate **21** a significant shift of the HDO signal was observed which remained unaltered by the conversion to the final compound **26-d**₁₀. This observation is consistent with the drop of pH which was reported before and also observed by us.

Scheme S1: Fate of bromopropenylacetate **3a** in alcoholic solutions (NMR and isolation)

To confirm the above interpretation of the NMR-study in terms of final product, analogous experiments in non-deuterated MeOH and EtOH were performed giving 1,1,2 trimethoxy propane **26** and 1,1,2triethoxypropane **27** upon evaporation, clarifying that the acetyl group is not incorporated in the final product (not clear from the NMR-study). Subjection of the more stable chloropropenyl pivaloate **23** to the same conditions in MeOH-d₄ gave analogous but significantly slower conversion in the first step, in particular of the (*Z*)-isomer which was still present after 36h. The intermediate **25** was consequently only detected in minor amounts but the final product formed was the same compound **26-d₁₀**, further supporting our postulated order of events.

NMR-study (time resolved)

Scheme S2: Fate of chloropropenyl pivaloate 23 in solution of MeOH-d4 in comparison to 3a

Draskovits, M.; Stanetty, C.*; Baxendale, I. R.; Mihovilovic, M. D.

Supporting Information

Figure S3. Time resolved conversion of 3a to 26-d₁₀ via the rapidly formed intermediates 25.³

³ Noteworthy, the comparison with isolated **26** (bottom) reveals the missing ³J-couplings (4.5 ppm, 3.4 ppm) and additional small couplings (1.8) due to the tentative incorporation of deuterium in **26-d**₁₀.

Figure S4. Conversion of 23 to 26-d₁₀ and comparison with isolated 26-d₁₀ from the experiment with 3a (bottom)

Part 3: 1H and 13C-NMRs of synthesized compounds

Figure S5. ¹H-NMR (400 MHz, CDCl₃) of 3c

Draskovits, M.; Stanetty, C.*; Baxendale, I. R.; Mihovilovic, M. D.

Figure S9. ¹H-NMR (400 MHz, D₂O) of 6

Figure S11. ¹H-NMR (400 MHz, CDCl₃) of 7

Figure S13. ¹H-NMR (400 MHz, MeOD) of 8a

Figure S15. ¹H-NMR (400 MHz, MeOD) of 8b

Figure S17. ¹H-NMR (400 MHz, MeOD) of 8c (10% 8d)

Figure S19. ¹H-NMR (400 MHz, CDCl₃) of 9a

Figure S21. ¹H-NMR (400 MHz, CDCl₃) of 9b

Draskovits, M.; Stanetty, C.*; Baxendale, I. R.; Mihovilovic, M. D.

Figure S23. ¹H-NMR (400 MHz, CD₂Cl₂) of crude 15

Figure S25. ¹H-NMR (400 MHz, MeOD) of 16a (10% 16c)

Figure S27. ¹H-NMR (400 MHz, MeOD) of 16b

Figure S29 ¹H-NMR (400 MHz, MeOD) of 16c

Figure S31. ¹H-NMR (400 MHz, MeOD) of 16d (as minor compound in 16c)

Figure S32. ¹³C-NMR (101 MHz, MeOD) of 16d (as minor compound in 16c)

Figure S33. ¹H-NMR (400 MHz, CDCl₃) of 17a (10% 17c)

77.48 CDCl3 77.16 CDCl3 76.84 CDCl3 - 121.70 — 131.60 170.54 170.25 170.12 169.86 169.68 76.84 72.42 70.69 69.41 68.68 61.99 21.05 20.95 20.89 20.78 20.68 QAc QAc AcO ÔAc ÔAc 120 110 100 f1 (ppm) 70 . 60 40 10 0 220 210 200 190 180 170 160 150 140 130 90 80 50 30 20

Figure S35. ¹H-NMR (400 MHz, CDCl₃) of 17b

Draskovits, M.; Stanetty, C.*; Baxendale, I. R.; Mihovilovic, M. D.

Figure S37. ¹H-NMR (400 MHz, CDCl₃) of crude 22

Comparision of the hexoses synthesized via acyloxyallylation with commercial authentic samples

Figure S39. Comparison of ¹H-NMR of synthesized l-mannose **10** (top) and a commercially available D-mannose (bottom)

Figure S40. Comparison of ¹³C-NMR of synthesized L-mannose **10** (top) and a commercially available D-mannose (bottom)

Figure S41. Comparison of ¹H-NMR of synthesized L-glucose 11 (above) to commercially available D-glucose (down)

Figure S42. Comparison of ¹³C-NMR of synthesized L-glucose **11** (above) to commercially available D-glucose (down)

Figure S43. Comparison of ¹H-NMR of synthesized L-allose 12 (top) and commercial D-allose (bottom)

Figure S44. Comparison of ¹³C-NMR of synthesized L-allose 12 (top, APT) and commercial D-allose (bottom)

Figure S46. Comparison of ¹³C-NMR of a synthesized mixture of L-altrose **13** and L-allose **12** (middle) and commercial D-altrose (top) and D-allose (bottom)

Figure S47. Comparison of ¹H-NMR of synthesized (top) and commercially available (bottom) D-gulose 18

Figure S48. Comparison of ¹³C-NMR of synthesized (top) and commercially available (bottom) D-gulose 18

Figure S49. Comparison of ¹H-NMR of synthesized (top) and a commercially (bottom) D-idose 19

Figure S51. Comparison of ¹H-NMR of synthesized (top) and a commercial (bottom) D-talose 20

Figure S52. Comparison of ¹³C-NMR of synthesized (top) and a commercial (bottom) D-talose 20

Figure S53. Comparison of ¹H-NMR of a synthesized mixture of D-galactose and D-talose (top) and commercially available D-galactose **21** (bottom)

Figure S54. Comparison of ¹³C-NMR of a synthesized mixture (middle) and commercially available D-galactose **21** (top) and D-talose **20** (bottom)

