Supporting Information

Pd-catalyzed *ortho* C-H Methylation and Fluorination of Benzaldehydes Using Orthanilic Acids as Transient Directing Groups

Xiao-Yang Chen*; and Erik J. Sorensen*

Department of Chemistry, Princeton University, Princeton, New Jersey, 08544, United States *Email: xc3@princeton.edu; ejs@princeton.edu

Table of Contents	Page
General Information	S2 S3-S26
Experimental Procedures and Characterization Data	
- Benzaldehyde ortho C-H Methylation	<i>S3-S12</i>
- Benzaldehyde ortho C-H Fluorination	<i>S13-S25</i>
- Synthesis and Isolation of Palladacycle 3	<i>S26</i>
¹ H, ¹³ C and ¹⁹ F NMR Spectra of New Compounds	S27-S99
X-Ray Crystallographic Data	S100-S107
References	S107

General Information

All commercially available reagents and solvents were purchased from Ark Pharm Inc., Chem-Impex Int'l. Inc., Combi-Blocks, Fisher Scientific, Oakwood Chemicals, Sigma Aldrich, Strem Chemicals and TCI America, and were used directly without further purifications. Reactions were monitored by thin layer chromatography (TLC) carried out on 250 μ m Merck silica gel plates (60 F254) containing a fluorescent indicator (254 nm). Visualization of the developed TLC plate was performed by irradiation with UV light. Organic solvents were concentrated under reduced pressure on a Büchi rotary evaporator using a water bath (25 °C). Filtration was performed using either Celite[®] or Silicycle SiliaFlash P60 silica gel (60 Å pore size, 40 – 63 μ m particle size, 230 – 400 mesh). Preparative thin layer chromatography was undertaken using Analtech Uniplate silica gel chromatography plates containing a fluorescent indicator (254 nm) (20x20 cm, 1000 micron). Flash column chromatography was performed using Silicycle SiliaFlash P60 silica gel (60 Å pore size, 230 – 400 mesh).

¹H NMR spectra were recorded on a Bruker 500 (500 MHz) and are referenced relative to residual CHCl₃ (in CDCl₃) proton signals at δ 7.26 ppm. Data for ¹H spectra are reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, b = broad, ap = apparent), integration, coupling constant (Hz) and assignment. ¹³C NMR spectra were recorded on a Bruker 500 (126 MHz) and are referenced relative to residual CHCl₃ (in CDCl₃) at δ 77.16 ppm. Data for ¹³C NMR spectra are reported in terms of chemical shift and multiplicity where appropriate. ¹⁹F NMR spectra were recorded on a Bruker 300 (282 MHz). Data for ¹⁹F NMR spectra are reported in terms of chemical shift and multiplicity where appropriate. In terms of chemical shift and multiplicity where appropriate. IR spectra were recorded on a Nicolet 6700 FT-IR spectrometer with a 30000-200 cm⁻¹ diamond and are reported in terms of frequency of absorption (cm⁻¹). High-resolution mass spectra were obtained from Princeton University Mass Spectrometry Facility using an Agilent 6210 TOF LC/MS (Electrospray Ionization). X-ray crystallographic analyses were performed using Bruker SMART APEX DUO diffractometer equipped with a copper or molybdenum X-ray tube on a Bruker Kappa APEX-II CCD diffractometer.

Experimental Procedures and Characterization Data

Benzaldehyde ortho C-H Methylation

Control experiments

CI I	Pd(OAc) ₂ (10 mol %) O DG1 (45 mol %) I II	
$\widehat{\Box}$	H 01 (2.0 equiv)	ll so₃н
ci ^r 🗸	$\begin{array}{cccc} {}^{\circ}\text{H} & CH_3BF_3K \ (4.0 \ \text{equiv}) & \text{Cl}^{\circ} & & \text{CH}_3 \\ & & \text{HFIP/TFA} \ (9:1, \ 0.2 \ \text{M}) & & \text{1f} \\ & & 90 \ ^{\circ}\text{C}, \ \text{air}, \ 24 \ \text{h} & & \text{1f} \end{array}$	DG1
O_		
H₃C↓N CH₃	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	o / /_−ci
		°CF ₃ ∠N⊕ F 2BF ₄
Сн ₃ О1	CH ₃ O2 O3 O4	O5
entry	variation from the standard condition	yield of 1f (%)
1	none	60
2	no Pd(OAc) ₂	0
3	no DG1	0
4	30 mol % DG1	54
5	60 mol % DG1	58
6	DG9 instead of DG1	20
7	DG10 instead of DG1	4
8	Pd(TFA) ₂ instead of Pd(OAc) ₂	58
9	PdCl ₂ instead of Pd(OAc) ₂	22
10	O2 instead of O1	34
11	O3 instead of O1	58
12	O4 instead of O1	14
13	O5 instead of O1	10
14	in HFIP/TFA (7:1, 0.2 M)	50
15	in HFIP/TFA (19:1, 0.2 M)	56
16	in HFIP/TFA (9:1, 0.1 M)	48
17	in HFIP/HOAc (9:1, 0.2 M)	10
18	in HFIP/p-TsOH (2.0 equiv, 0.2 M)	38
19	at 70 °C	54
20	at 100 °C	56
21	argon instead of air	68

Standard procedure for the control experiments

A 10-mL microwave-vial equipped with a stir bar was charged with $Pd(OAc)_2$ (2.2 mg, 0.01 mmol, 0.1 equiv), orthanilic acid (DG1) (7.8 mg, 0.045 mmol, 0.45 equiv), 1-fluoro-2,4,6-trimethylpyridinium tetrafluoroborate (O1) (45.4 mg, 0.20 mmol, 2.0 equiv), potassium methyl trifluoroborate (48.8 mg, 0.40 mmol, 4.0 equiv) and 2,4-dichlorobenzaldehyde (17.5 mg, 0.10 mmol, 1.0 equiv), followed by the addition of hexafluoroisopropanol (HFIP) (0.45 mL) and trifluoroacetic acid (TFA) (0.05 mL). The vial was sealed with a PTFE-lined aluminum cap, stirred at rt for 10 min before being heated in a pie-block at 90 °C under stirring for 24 h. After cooling to rt, the reaction mixture was filtered through a pad of Celite[®] and washed with EtOAc (10 mL). The filtrate was then concentrated *in vacuo* before CH₂Br₂ (6.95 µL, 0.1 mmol) was added. The yield of the desired product was determined by crude ¹H NMR using CH₂Br₂ as the internal standard.

Note: All control experiments were conducted on a 0.1 mmol scale, and changes were made based on the "standard condition" described above.

General procedure for the substrate scope experiments (using 1a as an example)

This compound was synthesized from 2-fluorobenzaldehyde using the standard condition and purified by preparative thin layer chromatography using hexane/acetone (10:1) as the developing solvent. Light yellow liquid (29.4 mg, 71%). ¹H NMR (500 MHz, CDCl₃) δ 10.55 (s, 1H), 7.43 (td, J = 8.3, 5.8 Hz, 1H), 7.08 – 6.98 (m, 2H), 2.62 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 189.42, 189.33, 167.49, 165.44, 142.68, 135.16, 135.08, 127.69, 127.67, 122.67, 122.63, 114.01, 113.83, 21.23, 21.21. ¹⁹F NMR (282 MHz, CDCl₃): δ -121.81 (dd, J = 10.5, 5.8 Hz). MS-ESI m/z 137.0401 ([M – H]⁻, C₈H₆FO, calc. 137.0408). IR (neat): 2967, 2928, 2878, 2778, 1698, 1613, 1575, 1473, 1413, 1382, 1296, 1246.

This compound was synthesized from 2-chlorobenzaldehyde using the standard condition and purified by preparative thin layer chromatography using hexane/acetone (10:1) as the developing solvent. Off-white solid (28.3 mg, 61%). ¹H NMR (500 MHz, CDCl₃) δ 10.65 (s, 1H), 7.35 (t, *J* = 7.7 Hz, 1H), 7.30 (dd, *J* = 8.0, 1.4 Hz, 1H), 7.17 – 7.14 (m, 1H), 2.58 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 192.66, 142.68, 139.22, 133.70, 130.86, 130.84, 128.46, 21.45. MS-ESI m/z 153.0108 ([M – H]⁻, C₈H₆ClO, calc. 153.0113). IR (neat): 3064, 2967, 2929, 2868, 2768, 1697, 1591, 1565, 1455, 1401, 1382, 1282.

This compound was synthesized from 4-chloro-2-fluorobenzaldehyde using the standard condition and purified by preparative thin layer chromatography using hexane/acetone (10:1) as the developing solvent. White solid (22.3 mg, 43%). ¹H NMR (500 MHz, CDCl₃) δ 10.45 (s, 1H), 7.08 – 6.99 (m, 2H), 2.60 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 188.19, 188.10, 167.21, 165.14, 144.02, 144.01, 140.48, 140.38, 128.06, 128.03, 121.18, 121.13, 114.84, 114.64, 21.22, 21.20. ¹⁹F NMR (282 MHz, CDCl₃): δ -119.41 (d, *J* = 10.4 Hz). MS-ESI m/z 171.0016 ([M – H]⁻, C₈H₅ClFO, calc. 171.0018). IR (neat): 3084, 2930, 2878, 2780, 1698, 1603, 1565, 1446, 1401, 1382, 1294, 1266.

This compound was synthesized from 4-bromo-2-fluorobenzaldehyde using the standard condition and purified by preparative thin layer chromatography using hexane/EtOAc (10:1) as the developing solvent. Yellow liquid (44.2 mg, 68%). ¹H NMR (500 MHz, CDCl₃) δ 10.46 (s, 1H), 7.23 – 7.20 (m, 2H), 2.60 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 188.36, 188.27, 166.90, 164.82, 144.02, 144.01, 131.00, 130.97, 128.74, 128.64, 121.50, 121.46, 117.77, 117.58, 21.08, 21.06. ¹⁹F NMR (282 MHz, CDCl₃): δ -116.81 – -122.94 (m). MS-ESI m/z 214.9509 ([M – H][–], C₈H₅BrFO, calc. 214.9502). IR (neat): 3082, 2877, 2779, 1695, 1597, 1562, 1442, 1399, 1381, 1259.

This compound was synthesized from 2-chloro-4-fluorobenzaldehyde using the standard condition and purified by preparative thin layer chromatography using hexane/acetone (10:1) as the developing solvent. Light yellow solid (22.3 mg, 43%). ¹H NMR (500 MHz, CDCl₃) δ 10.57 (s, 1H), 7.06 (dd, J = 8.0, 2.6 Hz, 1H), 6.89 (dd, J = 9.2, 2.6 Hz, 1H), 2.60 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 191.12, 165.31, 163.25, 145.88, 145.80, 141.11, 141.02, 127.54, 127.51, 118.20, 118.04, 116.02, 115.82, 21.84, 21.83. ¹⁹F NMR (282 MHz, CDCl₃): δ -101.37 – -105.99 (m). MS-ESI m/z 173.0164 ([M + H]⁺, C₈H₇CIFO, calc. 173.0164). IR (neat): 3079, 2893, 2781, 1693, 1594, 1575, 1461, 1429, 1394, 1381, 1290, 1260.

This compound was synthesized from 2,4-chlorobenzaldehyde using the standard condition and purified by preparative thin layer chromatography using hexane/acetone (10:1) as the developing solvent. White solid (35.1 mg, 62%). ¹H NMR (500 MHz, CDCl₃) δ 10.57 (s, 1H), 7.33 (d, *J* = 2.0 Hz, 1H), 7.18 – 7.15 (m, 1H), 2.57 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 191.49, 144.13, 139.98, 139.30, 131.00, 129.20, 128.28, 21.43. MS-ESI m/z 186.9724 ([M – H][–], C₈H₅Cl₂O, calc. 186.9723). IR (neat): 3083, 2878, 1730, 1700, 1584, 1549, 1435, 1380, 1292.

This compound was synthesized from 4-bromo-2-chlorobenzaldehyde using the standard condition and purified by preparative thin layer chromatography using hexane/EtOAc (10:1) as the developing solvent. Light yellow solid (51.1 mg, 73%). ¹H NMR (500 MHz, CDCl₃): δ 10.57 (s, 1H), 7.52 – 7.47 (m, 1H), 7.34 (s, 1H), 2.56 (s, 3H). ¹³C NMR (126 MHz, CDCl₃): δ 191.63, 144.11, 139.85, 133.95, 131.10, 129.60, 127.76, 21.31. MS-ESI m/z 230.9218 ([M – H][–], C₈H₅BrClO, calc. 230.9218). IR (neat): 3071, 2934, 2876, 2772, 1698, 1576, 1544, 1429, 1374, 1277.

This compound was synthesized from 2-chloro-4-methylbenzaldehyde using the standard condition and purified by preparative thin layer chromatography using hexane/EtOAc (10:1) as the developing solvent. White solid (32.7 mg, 65%). ¹H NMR (500 MHz, CDCl₃): δ 10.60 (s, 1H), 7.13 (d, *J* = 1.5 Hz, 1H), 6.96 (d, *J* = 1.6 Hz, 1H), 2.56 (s, 3H), 2.34 (s, 3H). ¹³C NMR (126 MHz, CDCl₃): δ 192.31, 145.06, 142.67, 139.46, 131.79, 128.95, 128.28, 21.53, 21.51. MS-ESI m/z 169.0412 ([M + H]⁺, C₉H₁₀ClO, calc. 169.0415). IR (neat): 2975, 2927, 2861, 2764, 1690, 1604, 1552, 1435, 1377.

This compound was synthesized from 2-methoxy-4-trifluoromethylbenzaldehyde using the standard condition and purified by preparative thin layer chromatography using hexane/acetone (10:1) as the developing solvent. White solid (26.2 mg, 40%). ¹H NMR (500 MHz, CDCl₃): δ 10.64 (s, 1H), 7.07 (d, *J* = 1.6 Hz, 1H), 7.05 (s, 1H), 3.96 (s, 3H), 2.60 (s, 3H). ¹³C NMR (126 MHz, CDCl₃): δ 191.81, 163.00, 143.02, 135.70, 135.44, 135.18, 134.93, 126.70, 125.64, 124.53, 122.36, 120.84, 120.81, 120.78, 120.75, 120.19, 106.13, 106.10, 106.07, 106.03, 56.24, 21.61. ¹⁹F NMR (282 MHz, CDCl₃): δ -63.59. MS-ESI m/z 219.0617 ([M + H]⁺, C₁₀H₁₀F₃O₂, calc. 219.0627). IR (neat): 2985, 2948, 2928, 1683, 1616, 1583, 1481, 1458, 1434, 1403, 1385, 1342, 1301.

This compound was synthesized from 2-methoxy-4-nitrobenzaldehyde using the standard condition and purified by preparative thin layer chromatography using hexane/EtOAc (5:1) as the developing solvent. Yellow solid (38.6 mg, 66%). ¹H NMR (500 MHz, CDCl₃): δ 10.64 (s, 1H), 7.75 – 7.62 (m, 2H), 4.01 (s, 3H), 2.64 (s, 3H). ¹³C NMR (126 MHz, CDCl₃): δ 191.40, 163.15, 150.60, 143.63, 127.51, 118.76, 104.30, 56.62, 21.71. MS-ESI m/z 196.0594 ([M + H]⁺, C₉H₁₀NO₄, calc. 196.0604). IR (neat): 3113, 2885, 1695, 1589, 1511, 1457, 1407, 1355, 1306, 1283.

This compound was synthesized from 4-bromo-3-chlorobenzaldehyde using the standard condition and purified by preparative thin layer chromatography using hexane/acetone (10:1) then hexane/DCM (1:1) as the developing solvent. White solid (35.7 mg, 51%). ¹H NMR (500 MHz, CDCl₃): δ 10.16 (s, 1H), 7.83 (s, 1H), 7.56 (s, 1H), 2.61 (d, *J* = 0.8 Hz, 3H).¹³C NMR (126 MHz, CDCl₃): δ 190.49, 139.98, 137.02, 134.22, 133.00, 132.78, 128.87, 18.69. MS-ESI m/z 230.9213 ([M – H]⁻, C₈H₅BrClO, calc. 230.9218). IR (neat): 3080, 2867, 2759, 1689, 1577, 1543, 1447, 1378, 1357.

This compound was synthesized from 3-chloro-4-methylbenzaldehyde using the standard condition and purified by preparative thin layer chromatography using hexane/acetone (10:1) then hexane/DCM (1:1) as the developing solvent. White solid (21.8 mg, 43%). ¹H NMR (500 MHz, CDCl₃): δ 10.16 (s, 1H), 7.75 (s, 1H), 7.13 (s, 1H), 2.60 (s, 3H), 2.40 (s, 3H). ¹³C NMR (126 MHz, CDCl₃): δ 191.19, 142.52, 138.91, 134.49, 133.39, 132.62, 132.12, 20.45, 18.93. MS-ESI m/z 169.0407 ([M + H]⁺, C₉H₁₀ClO, calc. 169.0415). IR (neat): 2976, 2922, 2878, 2766, 1682, 1600, 1485, 1458, 1439, 1403, 1384, 1368.

This compound was synthesized from 3-bromo-4-methylbenzaldehyde using the standard condition and purified by preparative thin layer chromatography using hexane/acetone (10:1) then hexane/DCM (1:1) as the developing solvent. Off-white solid (25.6 mg, 40%). ¹H NMR (500 MHz, CDCl₃) δ 10.14 (s, 1H), 7.92 (s, 1H), 7.13 (s, 1H), 2.58 (s, 3H), 2.42 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 191.01, 144.33, 139.55, 135.55, 134.32, 133.59, 122.53, 23.27, 19.02. MS-ESI m/z 212.9904 ([M + H]⁺, C₉H₁₀BrO, calc. 212.9910). IR (neat): 2974, 2919, 2875, 2768, 1689, 1593, 1480, 1455, 1381, 1366, 1244.

This compound was synthesized from 4-methoxy-3-trifluoromethylbenzaldehyde using the standard condition and purified by preparative thin layer chromatography using hexane/EtOAc (5:1) as the developing solvent. Off-white solid (41.2 mg, 63%). ¹H NMR (500 MHz, CDCl₃): δ 10.13 (s, 1H), 8.01 (s, 1H), 6.84 (s, 1H), 3.98 (s, 3H), 2.72 (s, 3H). ¹³C NMR (126 MHz, CDCl₃): δ 190.29, 160.99, 160.98, 160.97, 147.62, 131.90, 131.86, 131.82, 131.78, 126.89, 126.43, 124.27, 122.11, 119.94, 117.62, 117.37, 117.11, 116.86, 114.82, 56.40, 20.26. ¹⁹F NMR (282 MHz, CDCl₃) δ -62.64. MS-ESI m/z 219.0623 ([M + H]⁺, C₁₀H₁₀F₃O₂, calc. 219.0627). IR (neat): 3076, 2963, 2927, 2854, 2746, 1696, 1621, 1561, 1510, 1471, 1426, 1392, 1311, 1268.

This compound was synthesized from methyl 5-formyl-2-methoxybenzoate using the standard condition *with the exception of using EtOAc as the solvent in the filtration step*, and purified by preparative thin layer chromatography using hexane/acetone/DCM (2:1:1) as the developing solvent. White solid (23.7 mg, 38%). ¹H NMR (500 MHz, CDCl₃): δ 10.10 (s, 1H), 8.29 (s, 1H), 6.82 (s, 1H), 3.98 (s, 3H), 3.90 (s, 3H), 2.71 (s, 3H). ¹³C NMR (126 MHz, CDCl₃): δ 190.89, 165.45, 162.81, 147.63, 137.73, 127.20, 117.91, 114.98, 56.49, 52.30, 20.65. MS-ESI m/z 209.0810 ([M + H]⁺, C₁₁H₁₃O₄, calc. 209.0808). IR (neat): 2956, 2848, 2755, 1737, 1683, 1607, 1554, 1501, 1473, 1437, 1378, 1285, 1261.

This compound was synthesized from 4-bromo-3-methylbenzaldehyde using the standard condition and purified by preparative thin layer chromatography using hexane/acetone (10:1) then hexane/DCM (1:1) as the developing solvent. White solid (26.2 mg, 41%). ¹H NMR (500 MHz, CDCl₃): δ 10.19 (s, 1H), 7.62 (s, 1H), 7.46 (s, 1H), 2.60 (s, 3H), 2.42 (s, 3H). ¹³C NMR (126 MHz, CDCl₃): δ 192.02, 139.43, 136.32, 135.61, 133.74, 133.20, 131.49, 22.41, 18.72. MS-ESI m/z 210.9765 ([M – H]⁻, C₉H₈BrO, calc. 210.9764). IR (neat): 2923, 2863, 2723, 1687, 1595, 1547, 1479, 1445, 1383, 1284.

This compound was synthesized from 3,4-dimethylbenzaldehyde using the standard condition and purified by preparative thin layer chromatography using hexane/EtOAc (10:1) as the developing solvent. Colorless liquid (16.4 mg, 37%). ¹H NMR (500 MHz, CDCl₃): δ 10.19 (s, 1H), 7.55 (s, 1H), 7.03 (s, 1H), 2.60 (s, 3H), 2.29 (s, 6H). ¹³C NMR (126 MHz, CDCl₃): δ 192.73, 143.58, 138.23, 134.75, 133.30, 133.17, 132.22, 20.15, 19.24, 19.05. MS-ESI m/z 149.0953 ([M + H]⁺, C₁₀H₁₃O, calc. 149.0961). IR (neat): 2925, 2865, 1694, 1613, 1558, 1503, 1452, 1385, 1259.

This compound was synthesized from 3-bromo-2-fluorobenzaldehyde using the standard condition and purified by preparative thin layer chromatography using hexane/acetone (10:1) as the developing solvent. White solid (44.3 mg, 68%). ¹H NMR (500 MHz, CDCl₃): δ 10.51 (d, J = 0.7 Hz, 1H), 7.63 (dd, J = 8.2, 7.1 Hz, 1H), 7.05 – 6.86 (m, 1H), 2.58 (d, J = 0.8 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃): δ 188.62, 188.54, 163.48, 161.43, 141.83, 138.05, 138.03, 128.61, 128.58, 123.71, 123.65, 107.00, 106.83, 20.96, 20.94. ¹⁹F NMR (282 MHz, CDCl₃): δ -115.71 (d, J = 7.2 Hz). MS-ESI m/z 214.9496 ([M – H]⁻, C₈H₅BrFO, calc. 214.9513). IR (neat): 2964, 2928, 2892, 2787, 1698, 1684, 1598, 1550, 1473, 1440, 1391, 1378, 1280.

This compound was synthesized from 2,3-dichlorobenzaldehyde using the standard condition and purified by preparative thin layer chromatography using hexane/toluene (2:1) as the developing solvent. Light yellow solid (40.3 mg, 71%). ¹H NMR (500 MHz, CDCl₃): δ 10.60 (s, 1H), 7.51 (d, *J* = 8.3 Hz, 1H), 7.12 (d, *J* = 8.2 Hz, 1H), 2.54 (s, 3H). ¹³C NMR (126 MHz, CDCl₃): δ 192.21, 140.63, 136.60, 133.93, 132.77, 131.63, 131.26, 20.99. MS-ESI m/z 186.9722 ([M – H][–], C₈H₅Cl₂O, calc. 186.9723). IR (neat): 3073, 2929, 2877, 1687, 1548, 1446, 1377, 1359, 1272.

This compound was synthesized from 2,3-difluoro-4-methylbenzaldehyde using the standard condition and purified by preparative thin layer chromatography using hexane/EtOAc (10:1) as the developing solvent. Yellow liquid (31.6 mg, 62%). ¹H NMR (500 MHz, CDCl₃): δ 10.45 (s, 1H), 6.83 (d, J = 6.3 Hz, 1H), 2.53 (s, 3H), 2.33 (d, J = 2.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃): δ 187.85, 187.82, 187.77, 187.74, 154.90, 154.80, 152.85, 152.74, 147.99, 147.89, 146.04, 145.94, 135.82, 135.78, 133.15, 133.13, 133.04, 133.02, 128.50, 128.47, 128.45, 121.40, 121.38, 20.40, 20.38, 14.84, 14.82, 14.80. ¹⁹F NMR (282 MHz, CDCl₃): δ -145.27 (dd, J = 19.8, 6.2 Hz), -147.73 (dd, J = 19.5, 2.3 Hz). MS-ESI m/z 171.0606 ([M + H]⁺, C₉H₉F₂O, calc. 171.0616). IR (neat): 2930, 2887, 2781, 1694, 1633, 1570, 1501, 1402, 1387, 1317, 1292.

Preliminary studies on benzaldehyde ortho C-H alkylation

Initial attempts to perform *ortho* C-H alkylation of benzaldehydes using β -hydrogen-containing alkylating reagents were plagued by the rapid generation of Pd black upon stirring the reaction mixture at room temperature. This is presumably because Pd(II) quickly undergoes β -hydride elimination under such acidic conditions after transmetalating with potassium alkyl trifluoroborates. Replacing TFA with a milder acid, while successfully resolving this issue, was accompanied by the loss of catalytic turnover. As depicted below, the modified reaction with potassium ethyl trifluoroborate only gave the corresponding product in 9% yield. Further investigations are necessary to improve this process.

A 10-mL microwave-vial equipped with a stir bar was charged with Pd(OAc)₂ (6.7 mg, 0.03 mmol, 0.1 equiv), orthanilic acid (DG1) (23.5 mg, 0.135 mmol, 0.45 equiv), 1-fluoro-2,4,6trimethylpyridinium tetrafluoroborate (O1) (136.2 mg, 0.60 mmol, 2.0 equiv), potassium ethyl trifluoroborate (163.2 mg, 1.20 mmol, 4.0 equiv), 3-bromo-2-fluorobenzaldehyde (60.9 mg, 0.30 mmol, 1.0 equiv) and chloroacetic acid (283.5 mg, 3.0 mmol, 10.0 equiv), followed by the addition of hexafluoroisopropanol (HFIP) (1.50 mL). The vial was sealed with a PTFE-lined cap, sparged with argon gas and stirred at rt for 15 min before being heated in a pie-block at 100 °C under stirring for 24 h. After cooling to rt, the reaction mixture was filtered through a pad of silica gel and washed with hexane/EtOAc (1:1, 60 mL). The filtrate was then concentrated in vacuo and the resulting residue was purified by preparative thin layer chromatography using hexane/EtOAc (10:1) as the developing solvent. Yellow liquid (6.2 mg, 9%). ¹H NMR (500 MHz, CDCl₃): δ 10.50 (s, 1H), 7.66 (dd, J = 8.5, 7.1 Hz, 1H), 6.99 (d, J = 8.8 Hz, 1H), 2.99 (q, J = 7.7 Hz, 2H), 1.21 (t, J = 7.7 Hz, 3H).¹³C NMR (126 MHz, CDCl₃): δ 188.50, 188.41, 163.42, 161.37, 148.06, 138.34, 138.32, 127.11, 127.07, 123.32, 123.27, 107.08, 106.91, 26.62, 26.60, 15.39. ¹⁹F NMR (282 MHz, CDCl₃): δ -114.83 (d, J = 7.1 Hz). MS-ESI m/z 230.9818 ([M + H]⁺, C₉H₉BrFO, calc. 230.9815). IR (neat): 2972, 2932, 2875, 2778, 1704, 1598, 1557, 1473, 1401, 1262.

Benzaldehyde ortho C-H Fluorination

Control experiments

CI _ CI ~	$H = \frac{Pd(OAc)_2 (10 \text{ mol }\%)}{DG9 (50 \text{ mol }\%)}$ $\frac{O2 (1.5 \text{ equiv})}{DCE (0.1 \text{ M})}$ $110 \text{ °C, air, 24 h}$ CI CI CI $X = F (2s)$	O H X NH ₂ Or Cl	н `so₃н 59
H ₃ C H ₃ C CH	$ \begin{array}{c} {}^{\Theta}_{BF_4} \\ {}^{CH_3} \\ {}^{H_3C} \\ {}^{N\oplus} \\ {}^{CH_3} \\ {}^{H_3C} \\ {}^{N\oplus} \\ {}^{CH_3} \\ {}^{N\oplus} \\ \\ {}^{N\oplus} \\$	0 0 0 // 0 // S / F 04	CI N⊕ F 2BF₄ ⁻ 05
entry	variation from the standard condition	yie X = F (2s)	ld (%) X = Cl
1	none	72	14
2	no Pd(OAc) ₂	0	0
3	no DG9	0	0
4	30 mol % DG9	24	4
5	70 mol % DG9	52	22
6	Pd(TFA) ₂ instead of Pd(OAc) ₂	52	14
7	Pd(NO ₃) ₂ •2H ₂ O instead of Pd(OAc) ₂	34	28
8	O1 instead of O2	8	10
9	O6 instead of O2	8	10
10	O4 instead of O2	0	2
11	O5 instead of O2	0	0
12	with TfOH (50 mol %)	30	38
13	PhCF ₃ instead of DCE	2	0
14	trichloroethylene instead of DCE	0	62
15	chloroform instead of DCE	8	22
16	0.15 M	50	22
17	at 100 °C	44	12
18	at 120 °C	42	20

Standard procedure for the control experiments

A 10-mL microwave-vial equipped with a stir bar was charged with $Pd(OAc)_2$ (2.2 mg, 0.01 mmol, 0.1 equiv), aniline-2,4-disulfonic acids (DG9) (12.7 mg, 0.05 mmol, 0.5 equiv), 1-fluoro-2,4,6-trimethylpyridinium triflate (O2) (43.4 mg, 0.15 mmol, 1.5 equiv) and 3,4-dichlorobenzaldehyde (17.5 mg, 0.10 mmol, 1.0 equiv), followed by the addition of dichloroethane (DCE) (1.0 mL). The vial was sealed with a PTFE-lined aluminum cap, stirred at rt for 10 min before being heated in a pie-block at 110 °C under stirring for 24 h. After cooling to rt, the reaction mixture was filtered through a pad of Celite[®] and washed with EtOAc (10 mL). The filtrate was then concentrated *in vacuo* before CH₂Br₂ (6.95 μ L, 0.1 mmol) was added. The yield of the desired product was determined by crude ¹H NMR using CH₂Br₂ as the internal standard.

Note: All control experiments were conducted on a 0.1 mmol scale, and changes were made based on the "standard condition" described above.

General procedure for the substrate scope experiments (using **2a** as an example)

A 10-mL microwave-vial equipped with a stir bar was charged with $Pd(OAc)_2$ (6.7 mg, 0.03 mmol, 0.1 equiv), aniline-2,4-disulfonic acids (DG9) (38.0 mg, 0.15 mmol, 0.5 equiv), 1-fluoro-2,4,6-trimethylpyridinium triflate (O2) (130.2 mg, 0.45 mmol, 1.5 equiv) and 2-fluorobenzaldehyde (31.6 μ L, 0.30 mmol, 1.0 equiv), followed by the addition of DCE (3.0 mL). The vial was sealed with a PTFE-lined cap, stirred at rt for 10 min before being heated in a pie-block at 110 °C under stirring for 24 h. After cooling to rt, the reaction mixture was filtered through a pad of Celite[®] and washed with EtOAc (30 mL). The filtrate was then concentrated *in vacuo* and the resulting residue was purified by preparative thin layer chromatography using hexane/EtOAc (5:1) as the developing solvent.

This compound was synthesized from 2-fluorobenzaldehyde using the standard condition and purified by preparative thin layer chromatography using hexane/EtOAc (5:1) as the developing solvent. Colorless liquid (29.4 mg, 69%). ¹H NMR (500 MHz, CDCl₃): δ 10.37 (s, 1H), 7.56 (tt, *J* = 9.0, 6.3 Hz, 1H), 7.00 (t, *J* = 8.8 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃): δ 184.79, 184.75, 184.72, 164.39, 164.35, 162.30, 162.26, 136.46, 136.37, 136.28, 112.75, 112.71, 112.58, 112.55. ¹⁹F NMR (282 MHz, CDCl₃): δ -114.77 (dd, *J* = 8.9, 6.2 Hz). MS-ESI m/z 141.0159 ([M – H][–], C₇H₃F₂O, calc. 141.0157). IR (neat): 3102, 2926, 1707, 1622, 1577, 1471, 1411, 1240.

This compound was synthesized from 2-chlorobenzaldehyde using the standard condition and purified by preparative thin layer chromatography using hexane/EtOAc (5:1) as the developing solvent. White solid (36.1 mg, 75%). ¹H NMR (500 MHz, CDCl₃): 10.45 (d, J = 1.1 Hz, 1H), 7.48 (td, J = 8.5, 5.7 Hz, 1H), 7.29 – 7.27 (m, 1H), 7.13 – 7.07 (m, 1H). ¹³C NMR (126 MHz, CDCl₃): δ 187.09, 187.06, 164.43, 162.32, 137.25, 137.22, 135.36, 135.27, 126.93, 126.90, 121.96, 121.88, 115.87, 115.70. ¹⁹F NMR (282 MHz, CDCl₃): δ -114.38 (dd, J = 10.1, 5.7 Hz). MS-ESI m/z 156.9867 ([M – H]⁻, C₇H₃ClFO, calc. 156.9862). IR (neat): 3089, 2895, 1701, 1600, 1574, 1454, 1409, 1292.

This compound was synthesized from 2-bromobenzaldehyde using the standard condition and purified by preparative thin layer chromatography using hexane/EtOAc (5:1) as the developing solvent. Light yellow solid (32.9 mg, 54%). ¹H NMR (500 MHz, CDCl₃): δ 10.35 (d, *J* = 1.1 Hz, 1H), 7.48 (dt, *J* = 8.1, 1.1 Hz, 1H), 7.40 (td, *J* = 8.3, 5.6 Hz, 1H), 7.14 (ddd, *J* = 9.8, 8.5, 1.1 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃): δ 188.65, 188.63, 164.32, 162.20, 135.60, 135.52, 130.24, 130.21, 125.50, 125.48, 122.96, 122.89, 116.57, 116.40. ¹⁹F NMR (282 MHz, CDCl₃): δ -113.96 (dd, *J* = 10.3, 5.5 Hz). MS-ESI m/z 200.9351 ([M – H][–], C₇H₃BrFO, calc. 200.9357). IR (neat): 3095, 3076, 2881, 2772, 1693, 1598, 1566, 1450, 1401, 1249.

This compound was synthesized from 3-bromobenzaldehyde using the standard condition and purified by preparative thin layer chromatography using hexane/EtOAc (5:1) as the developing solvent. Light yellow liquid (39.6 mg, 65%). ¹H NMR (500 MHz, CDCl₃): δ 10.29 (s, 1H), 7.97 (dd, J = 6.1, 2.7 Hz, 1H), 7.70 (ddd, J = 9.0, 4.7, 2.7 Hz, 1H), 7.09 (t, J = 9.4 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃): δ 185.85, 185.80, 164.74, 162.68, 139.11, 139.04, 131.43, 131.41, 125.52, 125.45, 118.76, 118.59, 117.81, 117.79. ¹⁹F NMR (282 MHz, CDCl₃): δ -124.03 (dt, J = 10.4, 5.5 Hz). MS-ESI m/z 200.9358 ([M – H][–], C₇H₃BrFO, calc. 200.9357). IR (neat): 3095, 2872, 2761, 1708, 1602, 1579, 1475, 1393, 1256.

This compound was synthesized from 4-chloro-2-fluorobenzaldehyde using the standard condition and purified by preparative thin layer chromatography using hexane/EtOAc (5:1) as the developing solvent. Off-white solid (23.8 mg, 45%). ¹H NMR (500 MHz, CDCl₃): δ 10.28 (s, 1H), 7.09 – 7.01 (m, 2H). ¹³C NMR (126 MHz, CDCl₃): δ 183.52, 183.49, 183.45, 164.23, 164.17, 162.12, 162.06, 142.07, 141.96, 141.85, 114.00, 113.98, 113.95, 113.81, 113.79, 113.77, 113.05. ¹⁹F NMR (282 MHz, CDCl₃): δ -112.95 (d, *J* = 8.6 Hz). MS-ESI m/z 174.9765 ([M – H][–], C₇H₂ClF₂O, calc. 174.9768). IR (neat): 3092, 2921, 1693, 1617, 1572, 1430, 1305.

This compound was synthesized from 4-bromo-2-fluorobenzaldehyde using the standard condition and purified by preparative thin layer chromatography using hexane/EtOAc (5:1) as the developing solvent. White solid (39.8 mg, 60%). ¹H NMR (500 MHz, CDCl₃): δ 10.28 (d, *J* = 1.1 Hz, 1H), 7.24 – 7.18 (m, 2H). ¹³C NMR (126 MHz, CDCl₃): δ 183.66, 183.63, 183.59, 164.01, 163.96, 161.89, 161.84, 129.65, 129.54, 129.44, 116.90, 116.88, 116.85, 116.71, 116.69, 116.67, 113.34. ¹⁹F NMR (282 MHz, CDCl₃): δ -113.23 (d, *J* = 8.3 Hz). MS-ESI m/z 218.9259 ([M – H][–], C₇H₂BrF₂O, calc. 218.9263). IR (neat): 3080, 2893, 1694, 1611, 1568, 1424, 1408, 1299.

This compound was synthesized from 2-chloro-4-fluorobenzaldehyde using the standard condition and purified by preparative thin layer chromatography using hexane/EtOAc (5:1) as the developing solvent. White solid (29.1 mg, 55%). ¹H NMR (500 MHz, CDCl₃): δ 10.37 (d, J = 1.2 Hz, 1H), 7.05 (dt, J = 8.1, 2.1 Hz, 1H), 6.86 (ddd, J = 10.7, 8.4, 2.5 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃): δ 185.64, 185.62, 166.32, 166.20, 165.57, 165.46, 164.24, 164.13, 163.45, 163.34, 139.13, 139.08, 139.02, 138.98, 119.01, 118.98, 118.94, 118.91, 115.11, 115.08, 114.92, 114.89, 104.83, 104.63, 104.43. ¹⁹F NMR (282 MHz, CDCl₃): δ -98.36 (dt, J = 12.4, 8.4 Hz), -106.80 – -112.03 (m). MS-ESI m/z 174.9770 ([M – H]⁻, C₇H₂ClF₂O, calc. 174.9768). IR (neat): 3087, 2908, 1693, 1600, 1580, 1462, 1434, 1405, 1303.

This compound was synthesized from 2,4-dichlorobenzaldehyde using the standard condition and purified by preparative thin layer chromatography using hexane/EtOAc (5:1) as the developing solvent. Light yellow solid (43.4 mg, 75%). ¹H NMR (500 MHz, CDCl₃): δ 10.38 (d, *J* = 1.1 Hz, 1H), 7.31 (t, *J* = 1.8 Hz, 1H), 7.14 (dd, *J* = 10.0, 2.0 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃): δ 185.89, 185.87, 164.28, 162.15, 140.97, 140.86, 138.04, 138.00, 127.20, 127.17, 120.53, 120.46, 116.86, 116.66. ¹⁹F NMR (282 MHz, CDCl₃): δ -112.57 (d, *J* = 10.0 Hz). MS-ESI m/z 190.9471 ([M – H][–], C₇H₂Cl₂FO, calc. 190.9472). IR (neat): 3080, 2881, 1697, 1593, 1551, 1408, 1390, 1236.

This compound was synthesized from 4-bromo-2-chlorobenzaldehyde using the standard condition and purified by preparative thin layer chromatography using hexane/EtOAc (5:1) as the developing solvent. Pale yellow solid (35.6 mg, 50%). ¹H NMR (500 MHz, CDCl₃): δ 10.38 (d, *J* = 1.1 Hz, 1H), 7.47 (t, *J* = 1.7 Hz, 1H), 7.30 (dd, *J* = 9.7, 1.8 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃): δ 186.03, 186.01, 164.01, 161.88, 137.99, 137.96, 129.99, 129.96, 128.75, 128.66, 120.86, 120.79, 119.77, 119.57. ¹⁹F NMR (282 MHz, CDCl₃): δ -112.76 (d, *J* = 9.7 Hz). MS-ESI m/z 236.9125 ([M + H]⁺, C₇H₄BrClFO, calc. 236.9113). IR (neat): 3076, 2879, 1698, 1588, 1407, 1387.

This compound was synthesized from 2-bromo-4-fluorobenzaldehyde using the standard condition and purified by preparative thin layer chromatography using hexane/EtOAc (5:1) as the developing solvent. White solid (35.1 mg, 53%). ¹H NMR (500 MHz, CDCl₃): δ 10.27 (d, *J* = 1.2 Hz, 1H), 7.26 (dt, *J* = 7.8, 2.1 Hz, 1H), 6.91 (ddd, *J* = 10.7, 8.4, 2.4 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃): δ 187.23, 187.21, 166.36, 166.25, 165.43, 165.32, 164.28, 164.17, 163.29, 163.19, 126.82, 126.79, 126.72, 126.69, 119.93, 119.90, 119.86, 119.83, 118.38, 118.35, 118.19, 118.15, 105.41, 105.22, 105.01. ¹⁹F NMR (282 MHz, CDCl₃): δ -98.89 (dt, *J* = 12.4, 8.1 Hz), -108.04 - -111.77 (m). MS-ESI m/z 218.9256 ([M – H]⁻, C₇H₂BrF₂O, calc. 218.9263). IR (neat): 3087, 2884, 1693, 1601, 1574, 1457, 1424, 1398, 1300, 1282.

This compound was synthesized from 2-bromo-4-chlorobenzaldehyde using the standard condition and purified by preparative thin layer chromatography using hexane/EtOAc (5:1) as the developing solvent. Pale yellow solid (52.0 mg, 73%). ¹H NMR (500 MHz, CDCl₃): δ 10.27 (d, *J* = 1.1 Hz, 1H), 7.51 (t, *J* = 1.7 Hz, 1H), 7.18 (dd, *J* = 10.0, 2.0 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃): δ 187.40, 187.38, 164.08, 161.95, 141.13, 141.03, 130.32, 130.29, 125.94, 125.91, 121.50, 121.43, 117.46, 117.26. ¹⁹F NMR (282 MHz, CDCl₃): δ -112.36 (d, *J* = 10.4 Hz). MS-ESI m/z 234.8961 ([M – H]⁻, C₇H₂BrClFO, calc. 234.8967). IR (neat): 3075, 2879, 1693, 1589, 1560, 1408, 1388, 1231.

This compound was synthesized from 2-fluoro-4-methoxybenzaldehyde using the standard condition and purified by preparative thin layer chromatography using hexane/EtOAc (3:1) as the developing solvent. Pale yellow solid (17.0 mg, 33%). ¹H NMR (500 MHz, CDCl₃): δ 10.19 (s, 1H), 6.56 – 6.40 (m, 2H), 3.87 (s, 3H). ¹³C NMR (126 MHz, CDCl₃): δ 183.65, 183.62, 183.58, 166.00, 165.88, 165.81, 163.81, 163.74, 108.40, 108.31, 108.22, 98.96, 98.92, 98.77, 98.73, 56.44. ¹⁹F NMR (282 MHz, CDCl₃): δ -112.96 (d, *J* = 10.7 Hz). MS-ESI m/z 173.0407 ([M + H]⁺, C₈H₇F₂O₂, calc. 173.0409). IR (neat): 3093, 2994, 2896, 2851, 1688, 1623, 1571, 1428, 1350, 1310, 1212.

This compound was synthesized from 2-chloro-4-methylbenzaldehyde using the standard condition and purified by preparative thin layer chromatography using hexane/EtOAc (5:1) as the developing solvent. Yellow solid (29.0 mg, 56%). ¹H NMR (500 MHz, CDCl₃): δ 10.38 (d, *J* = 2.0 Hz, 1H), 7.08 (s, 1H), 6.89 (d, *J* = 11.2 Hz, 1H), 2.38 (d, *J* = 2.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃): δ 186.85, 186.83, 164.42, 162.32, 147.62, 147.54, 137.04, 137.01, 127.51, 127.48, 119.39, 119.31, 116.38, 116.21, 21.79, 21.77. ¹⁹F NMR (282 MHz, CDCl₃): δ -115.33 (d, *J* = 11.2 Hz). MS-ESI m/z 171.0011 ([M – H]⁻, C₈H₅ClFO, calc. 171.0018). IR (neat): 3079, 2873, 2775, 1705, 1616, 1561, 1451, 1400, 1300, 1203.

This compound was synthesized from 2-bromo-4-methylbenzaldehyde using the standard condition and purified by preparative thin layer chromatography using hexane/EtOAc (5:1) as the developing solvent. Light yellow solid (41.0 mg, 63%). ¹H NMR (500 MHz, CDCl₃): δ 10.29 (d, *J* = 1.1 Hz, 1H), 7.29 (s, 1H), 6.93 (dd, *J* = 11.3, 1.5 Hz, 1H), 2.38 (s, 3H). ¹³C NMR (126 MHz, CDCl₃): δ 188.43, 188.41, 164.29, 162.18, 147.83, 147.75, 130.86, 130.83, 125.44, 125.41, 120.34, 120.27, 117.09, 116.92, 21.61, 21.60. ¹⁹F NMR (282 MHz, CDCl₃): δ -114.99 (d, *J* = 11.2 Hz). MS-ESI m/z 214.9507 ([M - H]⁻, C₈H₅BrFO, calc. 214.9513). IR (neat): 3066, 2875, 2768, 1697, 1608, 1553, 1446, 1399, 1267, 1205.

This compound was synthesized from 2-bromo-4-methoxybenzaldehyde using the standard condition and purified by preparative thin layer chromatography using hexane/EtOAc (5:1) as the developing solvent. White solid (50.3 mg, 72%). ¹H NMR (500 MHz, CDCl₃): δ 10.21 (d, *J* = 1.3 Hz, 1H), 6.99 (dd, *J* = 2.5, 1.4 Hz, 1H), 6.62 (dd, *J* = 12.4, 2.4 Hz, 1H), 3.86 (s, 3H). ¹³C NMR (126 MHz, CDCl₃): δ 187.67, 187.65, 165.96, 164.79, 164.68, 163.85, 127.11, 127.06, 116.38, 116.36, 116.22, 116.15, 102.43, 102.23, 56.36. ¹⁹F NMR (282 MHz, CDCl₃): δ -111.83 (d, *J* = 12.4 Hz). MS-ESI m/z 232.9598 ([M + H]⁺, C₈H₇BrFO₂, calc. 232.9608). IR (neat): 3085, 2873, 1684, 1603, 1563,

This compound was synthesized from 4-methoxy-2-nitrobenzaldehyde using the standard condition and purified by preparative thin layer chromatography using hexane/EtOAc (2:1) as the developing solvent. Yellow solid (36.4 mg, 61%). ¹H NMR (500 MHz, CDCl₃): δ 10.14 (s, 1H), 7.16 (dd, J =2.4, 1.4 Hz, 1H), 6.90 (dd, J = 11.5, 2.4 Hz, 1H), 3.94 (s, 3H). ¹³C NMR (126 MHz, CDCl₃): δ 183.29, 183.26, 164.68, 164.24, 164.14, 162.60, 112.32, 112.20, 106.99, 106.96, 106.03, 105.82, 56.88. ¹⁹F NMR (282 MHz, CDCl₃): δ -112.31 (d, J = 11.5 Hz). MS-ESI m/z 200.0344 ([M + H]⁺, C₈H₇FNO₄, calc. 200.0354). IR (neat): 3098, 2877, 1704, 1623, 1537, 1485, 1340, 1292.

This compound was synthesized from 2-methoxy-4-trifluoromethylbenzaldehyde using the standard condition and purified by preparative thin layer chromatography using hexane/EtOAc (3:1) as the developing solvent. Pale yellow solid (46.0 mg, 69%). ¹H NMR (500 MHz, CDCl₃): δ 10.42 (d, *J* = 1.2 Hz, 1H), 7.00 (d, *J* = 9.1 Hz, 2H), 4.00 (s, 3H). ¹³C NMR (126 MHz, CDCl₃): δ 186.48, 186.46, 164.11, 162.43, 162.39, 162.01, 137.71, 137.61, 137.44, 137.35, 137.17, 137.08, 136.90, 136.81, 125.94, 123.77, 123.74, 121.60, 121.57, 119.43, 116.25, 116.18, 106.58, 106.55, 106.52, 106.49, 106.38, 106.35, 106.32, 106.29, 104.58, 104.55, 104.52, 104.49, 104.46, 56.89. ¹⁹F NMR (282 MHz, CDCl₃): δ -63.91, -111.91 (d, *J* = 10.0 Hz). MS-ESI m/z 221.0234 ([M - H]⁻, C₉H₅F₄O₂, calc. 221.0231). IR (neat): 3085, 2953, 2916, 1706, 1629, 1589, 1467, 1428, 1357, 1257.

This compound was synthesized from 2-methoxy-4-nitrobenzaldehyde following the standard condition and purified by preparative thin layer chromatography using hexane/EtOAc (2:1) as the developing solvent. Yellow solid (37.0 mg, 62%). ¹H NMR (500 MHz, CDCl₃): δ 10.43 (d, *J* = 1.2 Hz, 1H), 7.66 (t, *J* = 1.7 Hz, 1H), 7.59 (dd, *J* = 9.9, 2.0 Hz, 1H), 4.06 (s, 3H). ¹³C NMR (126 MHz, CDCl₃): δ 185.97, 185.95, 163.85, 162.41, 162.36, 161.74, 151.80, 151.70, 117.99, 117.91, 105.02,

104.81, 102.94, 102.91, 57.27. ¹⁹F NMR (282 MHz, CDCl₃): δ -109.85 (d, J = 9.8 Hz). MS-ESI m/z 200.0343 ([M + H]⁻, C₈H₇FNO₄, calc. 200.0354). IR (neat): 3116, 3097, 2897, 1705, 1614, 1533, 1470, 1427, 1401, 1355, 1208.

This compound was synthesized from 3,4-dichlorobenzaldehyde using the standard condition and purified by preparative thin layer chromatography using hexane/EtOAc (10:1) as the developing solvent. White solid (40.0 mg, 69%). ¹H NMR (500 MHz, CDCl₃): δ 10.26 (s, 1H), 7.95 (d, *J* = 6.6 Hz, 1H), 7.37 (d, *J* = 9.4 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃): δ 184.97, 184.92, 163.33, 161.26, 140.27, 140.18, 129.72, 129.70, 123.71, 123.63, 119.34, 119.14. ¹⁹F NMR (282 MHz, CDCl₃): δ - 122.50 (dd, *J* = 9.4, 6.7 Hz). MS-ESI m/z 190.9474 ([M – H][–], C₇H₂Cl₂FO, calc. 190.9472). IR (neat): 3086, 1686, 1600, 1455, 1411, 1378, 1234.

This compound was synthesized from 4-bromo-3-chlorobenzaldehyde using the standard condition and purified by preparative thin layer chromatography using hexane/EtOAc (10:1) as the developing solvent. Off-white solid (49.9 mg, 70%). ¹H NMR (500 MHz, CDCl₃): δ 10.26 (s, 1H), 7.93 (d, J = 6.6 Hz, 1H), 7.54 (d, J = 9.1 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃): δ 185.16, 185.11, 163.00, 160.91, 131.75, 131.72, 130.44, 130.36, 129.34, 129.32, 124.21, 124.13, 122.56, 122.37. ¹⁹F NMR (282 MHz, CDCl₃): δ -122.95 (dd, J = 9.1, 6.5 Hz). MS-ESI m/z 234.8960 ([M – H][–], C₇H₂BrClFO, calc. 234.8967). IR (neat): 3084, 1684, 1592, 1565, 1451, 1410, 1369, 1232.

This compound was synthesized from 3-bromo-4-fluorobenzaldehyde using the standard condition and purified by preparative thin layer chromatography using hexane/EtOAc (10:1) as the developing solvent. White solid (31.2 mg, 47%). ¹H NMR (500 MHz, CDCl₃): δ 10.23 (s, 1H), 8.11 (t, *J* = 7.5 Hz, 1H), 7.02 (dd, *J* = 9.8, 8.0 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃): δ 184.57, 184.56, 184.52, 184.51, 165.35, 165.26, 164.18, 164.08, 163.27, 163.18, 162.12, 162.02, 133.54, 133.51, 133.49,

122.13, 122.10, 122.05, 122.02, 106.37, 106.17, 106.01, 105.98, 105.96, 105.84, 105.81. ¹⁹F NMR (282 MHz, CDCl₃): δ -91.32 (dt, J = 12.3, 7.8 Hz), -118.66 (ddd, J = 12.3, 9.8, 7.2 Hz). MS-ESI m/z 218.9263 ([M – H]⁻, C₇H₂BrF₂O, calc. 218.9263). IR (neat): 3047, 2867, 1706, 1604, 1587, 1478, 1446, 1412, 1400, 1276.

This compound was synthesized from 3-bromo-4-methylbenzaldehyde using the standard condition and purified by preparative thin layer chromatography using hexane/EtOAc (10:1) as the developing solvent. Off white solid (45.6 mg, 70%). ¹H NMR (500 MHz, CDCl₃): δ 10.23 (s, 1H), 7.98 (d, *J* = 6.6 Hz, 1H), 7.07 (d, *J* = 10.6 Hz, 1H), 2.44 (s, 3H). ¹³C NMR (126 MHz, CDCl₃): δ 185.69, 185.64, 164.45, 162.39, 147.72, 147.65, 131.98, 131.97, 123.41, 123.34, 120.34, 120.31, 118.87, 118.70, 23.89, 23.87. ¹⁹F NMR (282 MHz, CDCl₃): δ -124.47 (dd, *J* = 10.5, 6.5 Hz). MS-ESI m/z 214.9506 ([M – H]⁻, C₈H₅BrFO, calc. 214.9513). IR (neat): 3068, 2918, 2868, 2765, 1694, 1677, 1608, 1565, 1471, 1401, 1374, 1251.

This compound was synthesized from 4-methoxy-3-trifluoromethylbenzaldehyde using the standard condition and purified by preparative thin layer chromatography using hexane/EtOAc (5:1) as the developing solvent. Off-white solid (56.0 mg, 84%). ¹H NMR (500 MHz, CDCl₃): δ 10.20 (s, 1H), 8.21 – 7.99 (m, 1H), 6.77 (d, *J* = 11.8 Hz, 1H), 3.99 (s, 3H). ¹³C NMR (126 MHz, CDCl₃): δ 184.87, 184.83, 169.06, 166.96, 163.85, 163.84, 163.76, 163.75, 128.58, 128.54, 128.50, 125.92, 123.75, 121.59, 119.42, 116.79, 116.71, 116.62, 116.59, 116.36, 116.34, 100.59, 100.39, 56.99. ¹⁹F NMR (282 MHz, CDCl₃): δ -62.66, -112.61 (dd, *J* = 12.0, 7.9 Hz). MS-ESI m/z 223.0378 ([M + H]⁺, C₉H₇F₄O₂, calc. 223.0377). IR (neat): 3069, 2954, 2933, 2893, 2842, 1677, 1623, 1583, 1501, 1472, 1316, 1266, 1239.

This compound was synthesized from methyl 5-formyl-2-methoxybenzoate using the standard

condition and purified by preparative thin layer chromatography using hexane/EtOAc (1:1) as the developing solvent. Pale yellow solid (32.5 mg, 51%). ¹H NMR (500 MHz, CDCl₃): δ 10.18 (s, 1H), 8.38 (d, *J* = 8.2 Hz, 1H), 6.73 (d, *J* = 12.3 Hz, 1H), 3.97 (s, 3H), 3.88 (s, 3H). ¹³C NMR (126 MHz, CDCl₃): δ 185.24, 185.20, 168.85, 166.75, 165.63, 165.54, 164.61, 133.70, 133.66, 117.38, 117.35, 117.10, 117.02, 100.35, 100.15, 56.99, 52.41. ¹⁹F NMR (282 MHz, CDCl₃): δ -112.00 (dd, *J* = 12.4, 8.2 Hz). MS-ESI m/z 213.0551 ([M + H]⁺, C₁₀H₁₀FO₄, calc. 213.0558). IR (neat): 3090, 2958, 2871, 1696, 1612, 1573, 1493, 1467, 1436, 1291, 1260, 1200.

This compound was synthesized from 4-bromo-3-methylbenzaldehyde using the standard condition and purified by preparative thin layer chromatography using hexane/EtOAc (10:1) as the developing solvent. Pale yellow solid (37.1 mg, 57%). ¹H NMR (500 MHz, CDCl₃): δ 10.29 (s, 1H), 7.71 (d, *J* = 7.2 Hz, 1H), 7.42 (d, *J* = 9.6 Hz, 1H), 2.41 (s, 3H). ¹³C NMR (126 MHz, CDCl₃): δ 186.62, 186.57, 163.30, 161.23, 135.13, 135.10, 132.58, 132.50, 129.55, 129.53, 123.10, 123.03, 120.87, 120.84, 120.68, 22.21. ¹⁹F NMR (282 MHz, CDCl₃): δ -125.01 – -125.10 (m). MS-ESI m/z 214.9502 ([M – H]⁻, C₈H₅BrFO, calc. 214.9513). IR (neat): 3094, 2931, 2876, 2775, 1694, 1599, 1477, 1411, 1388, 1255.

This compound was synthesized from 4-fluoro-3-methoxybenzaldehyde using the standard condition and purified by preparative thin layer chromatography using hexane/EtOAc (5:1) as the developing solvent. White solid (32.0 mg, 62%). ¹H NMR (500 MHz, CDCl₃): δ 10.28 (s, 1H), 7.41 (dd, *J* = 9.3, 6.3 Hz, 1H), 6.96 (t, *J* = 10.0 Hz, 1H), 3.91 (s, 3H). ¹³C NMR (126 MHz, CDCl₃): δ 185.80, 185.79, 185.75, 185.74, 160.56, 160.47, 158.53, 158.44, 157.76, 157.66, 155.69, 155.59, 145.45, 145.43, 145.36, 145.34, 120.22, 120.19, 120.15, 120.12, 110.59, 110.57, 110.56, 110.53, 105.93, 105.75, 105.72, 105.54, 56.72. ¹⁹F NMR (282 MHz, CDCl₃): δ -118.22 (td, *J* = 9.9, 7.2 Hz), -128.62 (dt, *J* = 9.7, 6.9 Hz). MS-ESI m/z 171.0265 ([M – H][–], C₈H₅F₂O₂, calc. 171.0263). IR (neat): 3057, 2882, 1690, 1677, 1618, 1606, 1500, 1426, 1409, 1348, 1292, 1279, 1211.

This compound was synthesized from 4-chloro-3-methoxybenzaldehyde using the standard condition and purified by preparative thin layer chromatography using hexane/EtOAc (5:1) as the developing solvent. Off white solid (41.3 mg, 73%). ¹H NMR (500 MHz, CDCl₃): δ 10.29 (s, 1H), 7.34 (d, *J* = 5.8 Hz, 1H), 7.26 (d, *J* = 9.4 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃): δ 186.15, 186.10, 159.74, 157.72, 152.31, 152.29, 130.87, 130.79, 122.84, 122.76, 118.96, 118.76, 108.91, 108.89, 56.84. ¹⁹F NMR (282 MHz, CDCl₃): δ -131.22 (dd, *J* = 9.2, 5.9 Hz). MS-ESI m/z 186.9957 ([M – H]⁻, C₈H₅ClFO₂, calc. 186.9968). IR (neat): 3076, 2885, 1683, 1599, 1479, 1459, 1395, 1265.

This compound was synthesized from 4-methoxy-3-methylbenzaldehyde using the standard condition and purified by preparative thin layer chromatography using hexane/EtOAc (5:1) as the developing solvent. Light yellow solid (8.1 mg, 16%). ¹H NMR (500 MHz, CDCl₃): δ 10.20 (s, 1H), 7.71 – 7.57 (m, 1H), 6.57 (d, J = 12.3 Hz, 1H), 3.90 (s, 3H), 2.18 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 186.32, 186.28, 166.37, 164.34, 164.33, 164.26, 129.46, 129.43, 123.73, 123.71, 116.89, 116.83, 98.28, 98.08, 56.18, 15.66. ¹⁹F NMR (282 MHz, CDCl₃): δ -122.20 (dd, J = 12.3, 8.0 Hz). MS-ESI m/z 169.0658 ([M + H]⁺, C₉H₁₀FO₂, calc. 169.0659). IR (neat): 3018, 2957, 2861, 1733, 1677, 1616, 1586, 1506, 1439, 1341, 1273, 1243.

This compound was synthesized from 2-bromo-3-fluorobenzaldehyde using the standard condition and purified by preparative thin layer chromatography using hexane/EtOAc (5:1) as the developing solvent. Light-yellow solid (45.7 mg, 69%). ¹H NMR (500 MHz, CDCl₃): δ 10.32 (s, 1H), 7.34 (ddd, J = 9.3, 7.4, 4.5 Hz, 1H), 7.15 (td, J = 9.4, 4.0 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃): δ 187.56, 187.54, 187.52, 160.37, 160.35, 158.29, 158.27, 156.81, 156.78, 154.86, 154.83, 123.51, 123.42, 121.82, 121.74, 121.62, 121.54, 117.16, 117.11, 116.97, 116.91, 112.30, 112.28, 112.11, 112.09. ¹⁹F NMR (282 MHz, CDCl₃): δ -109.75 (ddd, J = 15.6, 7.5, 4.0 Hz), -120.08 (ddd, J = 15.5, 9.5, 4.6 Hz). MS-ESI m/z 218.9246 ([M – H][–], C₇H₂BrF₂O, calc. 218.9263). IR (neat): 3094, 2875, 1700, 1602, 1584, 1467, 1401, 1381, 1293, 1242.

This compound was synthesized from 5-methyl-2-thiophenecarboxaldehyde using the standard condition and purified by preparative thin layer chromatography using hexane/Et₂O (4:1) as the developing solvent. Light yellow liquid (16.0 mg, 37%). ¹H NMR (500 MHz, CDCl₃) δ 9.93 (s, 1H), 6.62 (s, 1H), 2.51 (s, 3H). ¹³C NMR (126 MHz, CDCl₃): δ 179.45, 179.44, 163.83, 161.62, 150.74, 150.66, 121.06, 120.99, 116.76, 116.57, 17.42, 17.41. ¹⁹F NMR (282 MHz, CDCl₃): δ -118.93. MS-ESI m/z 145.0120 ([M + H]⁺, C₆H₆FOS, calc. 145.0118). IR (neat): 3087, 2926, 2858, 2820, 2732, 1720, 1664, 1557, 1476, 1411, 1376, 1238.

Synthesis and Isolation of Palladacycle 3

Following a previously reported procedure,¹ a 10-mL microwave vial equipped with a stir bar was charged with Pd(OAc)₂ (67.4 mg, 0.30 mmol, 1.0 equiv), orthanilic acid (DG1) (52.0 mg, 0.30 mmol, 1.0 equiv), 2-fluorobenzaldehyde (31.6 µL, 0.30 mmol, 1.0 equiv) and HFIP (3.0 mL). The vial was sealed with a PTFE-lined aluminum cap, sparged with argon gas and stirred at rt for 15 mins before being heated in a pie-block at 100 °C for 12 h. After cooling to rt, the vial was decapped and triphenylphosphine (94.4 mg, 0.36 mmol, 1.2 equiv) was quickly added. The vial was re-sealed with a PTFE-lined aluminum cap and heated with stirring at 100 °C for 1 h. After cooling to rt, the reaction was filtered through a pad of Celite[®], washed with DCM (30 mL) and the filtrate concentrated in vacuo. The residue was purified by preparative thin layer chromatography using DCM/MeOH (20:1) as the developing solvent to yield the desired palladacycle 3 as a yellow solid (120.0 mg, 62%). Single crystal was obtained by slow diffusion of hexane to a solution of palladacycle 3 in DCM at -20 °C.² ¹H NMR (500 MHz, CDCl₃): δ 8.87 (d, *J* = 6.4 Hz, 1H), 8.04 (d, *J* = 8.3 Hz, 1H), 7.75 (dd, J = 12.1, 8.3 Hz, 6H), 7.53 - 7.36 (m, 12H), 6.72 - 6.62 (m, 2H), 6.20 (t, J = 6.6 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃): δ 166.28, 166.27, 166.25, 166.23, 162.55, 160.46, 155.90, 155.87, 155.84, 143.94, 137.49, 135.31, 135.22, 135.01, 135.00, 134.97, 134.95, 134.45, 134.42, 134.36, 134.34, 134.00, 133.95, 133.93, 133.89, 131.91, 131.64, 131.62, 129.09, 128.78, 128.69, 128.59, 128.52, 128.17, 120.06, 120.04, 111.83, 111.68. ¹⁹F NMR (282 MHz, CDCl₃): δ -109.37 (dd, J = 9.2, 6.8 Hz). MS-ESI m/z 646.0219 ([M + H]⁺, C₃₁H₂₄FNO₃PPdS, calc. 646.0228). IR (neat): 3055, 1601, 1574, 1555, 1454, 1434, 1264, 1240.

¹H, ¹³C and ¹⁹F NMR Spectra of New Compounds

----63.59

<-115.69
<-115.72</pre>

-30	
f1	(ppm)

S52

-98.30 -98.35 -98.35 -98.35 -98.35 -98.35 -98.35 -98.35 -98.35 -98.35 -98.41 -109.99 -110.02 -110.02

S64

-115.31
-115.35

-111.89
-111.89

-91.28 -91.30 -91.33 -91.33 -91.33 -91.37 -118.61 -118.65 -118.65 -118.65 -118.65 -118.65 -118.65 -118.65 -118.65 -118.65 -118.65

S97

S98

Palladacycle 3	
·,	
• • • • • • • • • • • • • • • • • • •	

-109.34 -109.36 -109.37 -109.39

											1 1 1 1				
50	30	10	-10	-30	-50	-70	-90	-110	-130	-150	-170	-190	-210	-230	-25
							f1 (p	opm)							

X-ray Crystallography Data

A translucent pale-yellow prism-like specimen of $C_{32}H_{25}Cl_2FNO_3PPdS$, approximate dimensions 0.192 mm x 0.277 mm x 0.471 mm, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured.

Table 1: Data collection details for PDJXC4.

Axis	dx/m m	20/°	ω/°	φ /°	χ/°	Width /°	Fram es	Time /s	Wavelengt h/Å	Voltage/ kV	Current/ mA	Temperatur e/K
Phi	49.99 1	0.00	0.00	0.00	54.7 4	1.00	180	2.00	0.71073	50	1.0	n/a
Ome ga	33.99 1	35.9 3	- 130.0 7	- 54.00	54.7 4	0.50	303	10.00	0.71073	50	1.0	n/a
Ome ga	33.99 1	35.9 3	- 130.0 7	51.00	54.7 4	0.50	303	10.00	0.71073	50	1.0	n/a
Ome ga	33.99 1	35.9 3	- 130.0 7	- 105.0 0	54.7 4	0.50	303	10.00	0.71073	50	1.0	n/a
Ome ga	33.99 1	35.9 3	- 130.0 7	0.00	54.7 4	0.50	303	10.00	0.71073	50	1.0	n/a
Ome ga	33.99 1	35.9 3	- 130.0 7	- 156.0 0	54.7 4	0.50	303	10.00	0.71073	50	1.0	n/a
Ome ga	33.99 1	35.9 3	- 130.0	102.0 0	54.7 4	0.50	303	10.00	0.71073	50	1.0	n/a

A total of 1998 frames were collected. The total exposure time was 5.15 hours. The frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm. The integration of the data using a monoclinic unit cell yielded a total of 118216 reflections to a maximum θ angle of 39.38° (0.56 Å resolution), of which 17723 were independent (average redundancy 6.670, completeness = 99.9%, R_{int} = 3.63%, R_{sig} = 2.36%) and 15393 (86.85%) were greater than $2\sigma(F^2)$. The final cell constants of <u>a</u> = 12.7112(5) Å, <u>b</u> = 14.8397(6) Å, <u>c</u> = 15.9385(6) Å, β = 98.6077(13)°, volume = 2972.6(2) Å³, are based upon the refinement of the XYZ-centroids of 9747 reflections above 20 $\sigma(I)$ with 5.676° < 2 θ < 80.63°. Data were corrected for absorption effects using the multi-scan method (SADABS). The ratio of minimum to maximum apparent transmission was 0.893. The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.6580 and 0.8360.

The structure was solved and refined using the Bruker SHELXTL Software Package, using the space group P 1 21/c 1, with Z = 4 for the formula unit, $C_{32}H_{25}Cl_2FNO_3PPdS$. The final anisotropic full-matrix least-squares refinement on F² with 407 variables converged at R1 = 3.14%, for the observed data and wR2 = 7.81% for all data. The goodness-of-fit was 1.089. The largest peak in the final difference electron density synthesis was 1.480 e⁻/Å³ and the largest hole was -0.619 e⁻/Å³ with an RMS deviation of 0.121 e⁻/Å³. On the basis of the final model, the calculated density was 1.633 g/cm³ and F(000), 1472 e⁻.

Table 2. Sample and crystal data for PDJXC4.

Identification code	PDJXC4			
Chemical formula	C ₃₂ H ₂₅ Cl ₂ FNO ₃ PPdS			
Formula weight	730.86 g/mol			
Temperature	100(2) K			
Wavelength	0.71073 Å			
Crystal size	0.192 x 0.277 x 0.471 mm			
Crystal habit	translucent pale yellow prism			
Crystal system	monoclinic			
Space group	P 1 21/c 1			
Unit cell dimensions	a = 12.7112(5) Å	$\alpha = 90^{\circ}$		
	b = 14.8397(6) Å	$\beta = 98.6077(13)^{\circ}$		
	c = 15.9385(6) Å	$\gamma = 90^{\circ}$		
Volume	2972.6(2) Å ³			
Z	4			
Density (calculated)	1.633 g/cm^3			
Absorption coefficient	0.970 mm ⁻¹			
F(000)	1472			

Table 3. Data collection and structure refinement for PDJXC4.

Theta range for data collection	n 2.12 to 39.38°				
Index ranges	-22<=h<=22, -26<=	=k<=26, -28<=l<=28			
Reflections collected	118216				
Independent reflections	17723 [$R(int) = 0.0363$]				
Coverage of independent reflections	99.9%				
Absorption correction	multi-scan				
Max. and min. transmission	0.8360 and 0.6580				
Structure solution technique	direct methods				
Structure solution program	SHELXT (Sheldrick, 2016)				
Refinement method	Full-matrix least-squares on F ²				
Refinement program	SHELXL-2014/7 (S	Sheldrick, 2014)			
Function minimized	$\Sigma w (F_o^2 - F_c^2)^2$				
Data / restraints / parameters	17723 / 3 / 407				
Goodness-of-fit on F ²	1.089				
Δ/σ_{max}	0.005				
Final R indices	15393 data; I>2σ(I)	R1 = 0.0314, wR2 = 0.0736			
	all data	R1 = 0.0397, wR2 = 0.0781			

Weighting scheme	w=1/[$\sigma^{2}(F_{o}^{2})$ +(0.0321P) ² +2.5718P] where P=(F_{o}^{2} +2 F_{c}^{2})/3
Largest diff. peak and hole	1.480 and -0.619 eÅ ⁻³
R.M.S. deviation from mean	0.121 eÅ ⁻³

Table 4. Atomic coordinates and equivalent isotropic atomic displacement parameters (Å²) for PDJXC4.

U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	x/a	y/b	z/c	U(eq)
Pd1	0.76337(2)	0.54706(2)	0.33872(2)	0.00813(2)
S 1	0.85557(2)	0.67186(2)	0.21708(2)	0.01023(4)
P1	0.67363(2)	0.43633(2)	0.26275(2)	0.00913(4)
F1	0.97554(6)	0.52672(5)	0.63852(5)	0.01542(12)
01	0.75084(7)	0.63659(6)	0.23341(5)	0.01249(13)
N1	0.86049(7)	0.64215(6)	0.41048(5)	0.00933(13)
C1	0.89382(8)	0.75006(7)	0.30111(6)	0.00991(14)
O2	0.84305(8)	0.72476(6)	0.14000(5)	0.01633(15)
C2	0.92861(9)	0.83503(7)	0.27990(7)	0.01273(16)
O3	0.93633(7)	0.60262(6)	0.22372(6)	0.01587(14)
C3	0.95414(10)	0.90136(8)	0.34148(8)	0.01550(18)
C4	0.94074(10)	0.88301(8)	0.42492(8)	0.01635(19)
C5	0.90793(9)	0.79809(7)	0.44760(7)	0.01355(17)
C6	0.88832(8)	0.73001(7)	0.38654(6)	0.01001(14)
C7	0.90125(8)	0.61008(7)	0.48361(6)	0.01048(15)
C8	0.86353(8)	0.52325(7)	0.50674(6)	0.00995(14)
C9	0.89904(9)	0.48353(7)	0.58506(6)	0.01116(15)
C10	0.85945(9)	0.40301(8)	0.61045(7)	0.01329(17)
C11	0.77856(10)	0.36250(8)	0.55438(7)	0.01435(17)
C12	0.74174(9)	0.39971(7)	0.47464(7)	0.01259(16)
C13	0.78513(8)	0.47922(7)	0.44775(6)	0.01001(14)
C14	0.68368(8)	0.44847(7)	0.15079(7)	0.01109(15)
C15	0.62161(10)	0.51256(8)	0.10186(7)	0.01442(17)
C16	0.63549(11)	0.52693(9)	0.01797(7)	0.01716(19)
C17	0.71097(11)	0.47798(9)	0.98240(8)	0.0183(2)
C18	0.77273(11)	0.41408(10)	0.03073(8)	0.0203(2)
C19	0.75946(10)	0.39935(9)	0.11478(7)	0.01630(19)
C20	0.53266(8)	0.43643(7)	0.27073(7)	0.01134(15)
C21	0.45747(9)	0.39344(8)	0.21072(7)	0.01448(17)
C22	0.35077(9)	0.39149(9)	0.22191(8)	0.0175(2)
C23	0.31876(10)	0.43305(9)	0.29203(9)	0.0190(2)
C24	0.39264(10)	0.47707(9)	0.35122(9)	0.0180(2)
C25	0.49954(9)	0.47885(8)	0.34066(8)	0.01419(17)

	x/a	y/b	z/c	U(eq)
C26	0.72158(8)	0.32254(7)	0.28676(7)	0.01109(15)
C27	0.83004(9)	0.31087(8)	0.31628(8)	0.01454(17)
C28	0.87176(10)	0.22507(9)	0.33251(8)	0.01699(19)
C29	0.80540(11)	0.15025(8)	0.31904(8)	0.0189(2)
C30	0.69759(11)	0.16134(8)	0.29036(9)	0.0191(2)
C31	0.65520(10)	0.24736(8)	0.27409(8)	0.01556(18)
C32A	0.3939(14)	0.2602(16)	0.4557(11)	0.047(5)
Cl1A	0.3848(5)	0.2903(3)	0.5614(6)	0.0451(11)
Cl2A	0.5234(9)	0.2243(8)	0.4441(8)	0.067(2)
C32B	0.4131(3)	0.2572(3)	0.4417(3)	0.0248(6)
Cl1B	0.37192(11)	0.30654(17)	0.53127(17)	0.0457(4)
Cl2B	0.54021(7)	0.20874(6)	0.46657(8)	0.0260(2)

Table 5. Bond lengths (Å) for PDJXC4.

Pd1-C13	1.9915(10)	Pd1-N1	2.0979(9)
Pd1-O1	2.1280(8)	Pd1-P1	2.2481(3)
S1-O3	1.4451(9)	S1-O2	1.4466(9)
S1-O1	1.4891(9)	S1-C1	1.7838(11)
P1-C20	1.8153(11)	P1-C26	1.8164(11)
P1-C14	1.8170(11)	F1-C9	1.3543(13)
N1-C7	1.2933(13)	N1-C6	1.4181(13)
C1-C2	1.3944(15)	C1-C6	1.4057(14)
C2-C3	1.3936(17)	С2-Н2	0.95
C3-C4	1.3927(18)	С3-Н3	0.95
C4-C5	1.3921(16)	C4-H4	0.95
C5-C6	1.3991(15)	С5-Н5	0.95
C7-C8	1.4419(15)	С7-Н7	0.95
C8-C9	1.3931(14)	C8-C13	1.4225(15)
C9-C10	1.3805(16)	C10-C11	1.3936(17)
C10-H10	0.95	C11-C12	1.4005(16)
C11-H11	0.95	C12-C13	1.3967(15)
С12-Н12	0.95	C14-C15	1.3968(16)
C14-C19	1.3979(16)	C15-C16	1.3910(16)
С15-Н15	0.95	C16-C17	1.3902(18)
C16-H16	0.95	C17-C18	1.3884(19)
С17-Н17	0.95	C18-C19	1.3923(17)
C18-H18	0.95	С19-Н19	0.95
C20-C25	1.3986(16)	C20-C21	1.4007(16)
C21-C22	1.3945(16)	C21-H21	0.95
C22-C23	1.390(2)	С22-Н22	0.95
C23-C24	1.3905(19)	С23-Н23	0.95

1.3942(16)	C24-H24	0.95
0.95	C26-C31	1.3951(16)
1.3993(16)	C27-C28	1.3887(17)
0.95	C28-C29	1.392(2)
0.95	C29-C30	1.388(2)
0.95	C30-C31	1.3948(17)
0.95	C31-H31	0.95
1.765(14)	C32A-Cl2A	1.765(14)
0.99	C32A-H32B	0.99
1.753(4)	C32B-Cl2B	1.759(4)
0.99	C32B-H32D	0.99
	1.3942(16) 0.95 1.3993(16) 0.95 0.95 0.95 0.95 1.765(14) 0.99 1.753(4) 0.99	1.3942(16)C24-H240.95C26-C311.3993(16)C27-C280.95C28-C290.95C29-C300.95C30-C310.95C31-H311.765(14)C32A-C12A0.99C32A-H32B1.753(4)C32B-C12B0.99C32B-H32D

Table 6. Bond angles (°) for PDJXC4.

C13-Pd1-N1	82.57(4)	C13-Pd1-O1	171.18(4)
N1-Pd1-O1	88.77(3)	C13-Pd1-P1	95.37(3)
N1-Pd1-P1	174.31(3)	O1-Pd1-P1	93.41(2)
O3-S1-O2	115.77(6)	O3-S1-O1	112.41(5)
O2-S1-O1	110.58(5)	O3-S1-C1	107.27(5)
O2-S1-C1	105.52(5)	O1-S1-C1	104.35(5)
C20-P1-C26	106.84(5)	C20-P1-C14	106.50(5)
C26-P1-C14	103.20(5)	C20-P1-Pd1	112.85(4)
C26-P1-Pd1	116.03(4)	C14-P1-Pd1	110.60(4)
S1-O1-Pd1	113.20(5)	C7-N1-C6	119.90(9)
C7-N1-Pd1	111.56(7)	C6-N1-Pd1	128.45(7)
C2-C1-C6	119.33(10)	C2-C1-S1	117.83(8)
C6-C1-S1	122.82(8)	C3-C2-C1	121.11(10)
С3-С2-Н2	119.4	С1-С2-Н2	119.4
C4-C3-C2	119.05(10)	С4-С3-Н3	120.5
С2-С3-Н3	120.5	C5-C4-C3	120.61(11)
С5-С4-Н4	119.7	С3-С4-Н4	119.7
C4-C5-C6	120.15(10)	С4-С5-Н5	119.9
С6-С5-Н5	119.9	C5-C6-C1	119.43(9)
C5-C6-N1	120.16(9)	C1-C6-N1	120.39(9)
N1-C7-C8	117.11(9)	N1-C7-H7	121.4
С8-С7-Н7	121.4	C9-C8-C13	119.93(9)
C9-C8-C7	122.12(9)	C13-C8-C7	117.92(9)
F1-C9-C10	118.96(9)	F1-C9-C8	117.99(9)
C10-C9-C8	123.05(10)	C9-C10-C11	116.86(10)
С9-С10-Н10	121.6	С11-С10-Н10	121.6
C10-C11-C12	121.75(10)	С10-С11-Н11	119.1
C12-C11-H11	119.1	C13-C12-C11	121.19(10)
C13-C12-H12	119.4	С11-С12-Н12	119.4

C12-C13-C8	117.06(9)	C12-C13-Pd1	133.24(8)
C8-C13-Pd1	109.68(7)	C15-C14-C19	119.49(10)
C15-C14-P1	119.94(8)	C19-C14-P1	120.36(8)
C16-C15-C14	119.92(11)	С16-С15-Н15	120.0
C14-C15-H15	120.0	C17-C16-C15	120.43(11)
С17-С16-Н16	119.8	С15-С16-Н16	119.8
C18-C17-C16	119.86(11)	С18-С17-Н17	120.1
С16-С17-Н17	120.1	C17-C18-C19	120.08(12)
C17-C18-H18	120.0	C19-C18-H18	120.0
C18-C19-C14	120.21(11)	С18-С19-Н19	119.9
С14-С19-Н19	119.9	C25-C20-C21	119.55(10)
C25-C20-P1	118.31(8)	C21-C20-P1	122.11(9)
C22-C21-C20	119.97(11)	С22-С21-Н21	120.0
C20-C21-H21	120.0	C23-C22-C21	120.07(11)
С23-С22-Н22	120.0	С21-С22-Н22	120.0
C22-C23-C24	120.32(11)	С22-С23-Н23	119.8
С24-С23-Н23	119.8	C23-C24-C25	119.90(12)
С23-С24-Н24	120.1	С25-С24-Н24	120.1
C24-C25-C20	120.18(11)	С24-С25-Н25	119.9
С20-С25-Н25	119.9	C31-C26-C27	119.59(10)
C31-C26-P1	122.43(9)	C27-C26-P1	117.94(8)
C28-C27-C26	120.38(11)	С28-С27-Н27	119.8
С26-С27-Н27	119.8	C27-C28-C29	119.81(11)
С27-С28-Н28	120.1	С29-С28-Н28	120.1
C30-C29-C28	120.14(11)	С30-С29-Н29	119.9
С28-С29-Н29	119.9	C29-C30-C31	120.31(12)
С29-С30-Н30	119.8	С31-С30-Н30	119.8
C30-C31-C26	119.77(11)	С30-С31-Н31	120.1
С26-С31-Н31	120.1	Cl1A-C32A-Cl2A	111.8(9)
Cl1A-C32A-H32A	109.2	Cl2A-C32A-H32A	109.2
Cl1A-C32A-H32B	109.2	Cl2A-C32A-H32B	109.2
H32A-C32A-H32B	107.9	Cl1B-C32B-Cl2B	111.3(2)
Cl1B-C32B-H32C	109.4	Cl2B-C32B-H32C	109.4
Cl1B-C32B-H32D	109.4	Cl2B-C32B-H32D	109.4
H32C-C32B-H32D	108.0		

Table 7. Anisotropic atomic displacement parameters (Å²) for PDJXC4. The anisotropic atomic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2} U₁₁ + ... + 2 h k a^{*} b^{*} U₁₂]

	U_{11}	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U_{12}
Pd1	0.00857(3)	0.00879(3)	0.00698(3)	0.00045(2)	0.00101(2)	-0.00135(2)
S 1	0.01225(10)	0.01079(9)	0.00778(9)	0.00111(7)	0.00191(7)	-0.00055(7)
P1	0.00843(10)	0.01015(10)	0.00867(10)	-0.00031(8)	0.00086(7)	-0.00097(8)

	U11	U22	U33	U ₂₃	U ₁₃	U12
F1	0.0191(3)	0.0156(3)	0.0102(3)	-0.0006(2)	-0.0026(2)	-0.0005(2)
01	0.0120(3)	0.0150(3)	0.0099(3)	0.0030(2)	-0.0001(2)	-0.0025(3)
N1	0.0111(3)	0.0094(3)	0.0076(3)	0.0010(2)	0.0016(2)	-0.0016(2)
C1	0.0100(3)	0.0096(3)	0.0103(4)	0.0009(3)	0.0020(3)	-0.0004(3)
O2	0.0216(4)	0.0181(4)	0.0093(3)	0.0047(3)	0.0021(3)	-0.0027(3)
C2	0.0130(4)	0.0111(4)	0.0146(4)	0.0030(3)	0.0037(3)	-0.0004(3)
O3	0.0176(4)	0.0137(3)	0.0168(4)	-0.0014(3)	0.0041(3)	0.0030(3)
C3	0.0157(4)	0.0107(4)	0.0202(5)	0.0014(3)	0.0028(4)	-0.0023(3)
C4	0.0200(5)	0.0110(4)	0.0177(5)	-0.0021(3)	0.0016(4)	-0.0025(3)
C5	0.0172(4)	0.0113(4)	0.0120(4)	-0.0018(3)	0.0017(3)	-0.0021(3)
C6	0.0110(4)	0.0095(3)	0.0097(3)	-0.0002(3)	0.0018(3)	-0.0013(3)
C7	0.0119(4)	0.0105(4)	0.0088(3)	-0.0003(3)	0.0009(3)	-0.0010(3)
C8	0.0122(4)	0.0096(3)	0.0082(3)	0.0008(3)	0.0022(3)	0.0000(3)
C9	0.0128(4)	0.0128(4)	0.0078(3)	-0.0005(3)	0.0014(3)	0.0012(3)
C10	0.0175(4)	0.0134(4)	0.0094(4)	0.0031(3)	0.0033(3)	0.0017(3)
C11	0.0180(4)	0.0131(4)	0.0126(4)	0.0033(3)	0.0043(3)	-0.0018(3)
C12	0.0148(4)	0.0127(4)	0.0106(4)	0.0014(3)	0.0033(3)	-0.0028(3)
C13	0.0114(4)	0.0104(3)	0.0085(3)	0.0003(3)	0.0023(3)	-0.0007(3)
C14	0.0112(4)	0.0125(4)	0.0093(3)	-0.0008(3)	0.0008(3)	-0.0013(3)
C15	0.0176(4)	0.0146(4)	0.0109(4)	0.0013(3)	0.0017(3)	0.0021(3)
C16	0.0220(5)	0.0173(5)	0.0117(4)	0.0018(4)	0.0009(4)	0.0028(4)
C17	0.0218(5)	0.0226(5)	0.0106(4)	0.0007(4)	0.0031(4)	0.0005(4)
C18	0.0195(5)	0.0293(6)	0.0129(4)	0.0005(4)	0.0049(4)	0.0062(4)
C19	0.0152(4)	0.0222(5)	0.0116(4)	-0.0001(4)	0.0022(3)	0.0043(4)
C20	0.0094(4)	0.0116(4)	0.0129(4)	0.0004(3)	0.0013(3)	-0.0005(3)
C21	0.0109(4)	0.0174(4)	0.0145(4)	0.0000(3)	0.0001(3)	-0.0019(3)
C22	0.0112(4)	0.0196(5)	0.0208(5)	0.0025(4)	-0.0010(4)	-0.0032(4)
C23	0.0102(4)	0.0215(5)	0.0256(6)	0.0036(4)	0.0037(4)	0.0001(4)
C24	0.0135(4)	0.0203(5)	0.0212(5)	0.0000(4)	0.0062(4)	0.0022(4)
C25	0.0118(4)	0.0143(4)	0.0167(4)	-0.0016(3)	0.0030(3)	0.0004(3)
C26	0.0125(4)	0.0104(4)	0.0105(4)	0.0003(3)	0.0022(3)	0.0002(3)
C27	0.0123(4)	0.0156(4)	0.0158(4)	0.0001(3)	0.0027(3)	0.0015(3)
C28	0.0169(5)	0.0189(5)	0.0159(4)	0.0022(4)	0.0049(4)	0.0069(4)
C29	0.0267(6)	0.0143(4)	0.0176(5)	0.0020(4)	0.0092(4)	0.0067(4)
C30	0.0254(6)	0.0109(4)	0.0216(5)	-0.0007(4)	0.0052(4)	-0.0003(4)
C31	0.0168(4)	0.0122(4)	0.0176(5)	-0.0003(3)	0.0022(4)	-0.0018(3)
C32A	0.040(8)	0.051(9)	0.047(9)	0.031(7)	-0.003(6)	-0.005(6)
Cl1A	0.0456(18)	0.0386(14)	0.056(3)	-0.0028(16)	0.025(2)	0.0137(12)
Cl2A	0.078(4)	0.064(3)	0.074(4)	-0.039(3)	0.056(3)	-0.050(3)
C32B	0.0271(12)	0.0189(10)	0.0277(11)	0.0026(9)	0.0023(9)	0.0062(9)
Cl1B	0.0347(4)	0.0505(7)	0.0555(8)	-0.0220(6)	0.0180(5)	0.0055(4)

	U11	U ₂₂	U33	U23	U13	U12
Cl2B	0.0168(3)	0.0200(3)	0.0429(4)	0.0001(2)	0.0104(2)	-0.0006(2)

Table 8. Hydrogen atomic coordinates and isotropic atomic displacement parameters (Å²) for PDJXC4.

	x/a	y/b	z/c	U(eq)
H2	0.9350	0.8479	0.2225	0.015
H3	0.9803	0.9583	0.3267	0.019
H4	0.9541	0.9289	0.4667	0.02
Н5	0.8988	0.7863	0.5047	0.016
H7	0.9538	0.6423	0.5205	0.013
H10	0.8861	0.3765	0.6636	0.016
H11	0.7476	0.3082	0.5707	0.017
H12	0.6863	0.3703	0.4382	0.015
H15	0.5700	0.5463	0.1258	0.017
H16	0.5931	0.5705	-0.0152	0.021
H17	0.7203	0.4882	-0.0749	0.022
H18	0.8241	0.3804	0.0064	0.024
H19	0.8020	0.3558	0.1478	0.02
H21	0.4791	0.3656	0.1624	0.017
H22	0.2999	0.3617	0.1815	0.021
H23	0.2461	0.4314	0.2996	0.023
H24	0.3703	0.5059	0.3988	0.022
H25	0.5500	0.5090	0.3811	0.017
H27	0.8754	0.3619	0.3253	0.017
H28	0.9454	0.2175	0.3527	0.02
H29	0.8339	0.0915	0.3295	0.023
H30	0.6525	0.1101	0.2818	0.023
H31	0.5814	0.2547	0.2545	0.019
H32A	0.3742	0.3126	0.4182	0.056
H32B	0.3428	0.2110	0.4377	0.056
H32C	0.4144	0.3036	0.3972	0.03
H32D	0.3614	0.2101	0.4189	0.03

References:

- (1) Zhu, R. Y.; Liu, L. Y.; Yu, J. Q. J. Am. Chem. Soc. 2017, 139, 12394.
- (2) Ren, Z.; Dong, G. B. Organometallics 2016, 35, 1057.