Entrapped Styrene Butadiene Polymer Chains by Sol-Gel Derived Silica Nanoparticles with Hierarchical Raspberry Structures

Sankar Raman Vaikuntam^{a,b}, Klaus Werner Stöckelhuber^a Eshwaran Subramani Bhagavatheswaran^{a,b}, Sven Wießner^{a,b}, Ulrich Scheler^a, Kay Saalwächter^c, Petr Formanek^a, Gert Heinrich^{a,d}, Amit Das^{a,e*}

^aLeibniz-Institut für Polymerforschung, Dresden e.V., Hohe Strasse 6, 01069 Dresden, Germany ^bTechnische Universität Dresden, Institut für Werkstoffwissenschaft, 01062 Dresden, Germany ^cInstitut für Physik, Martin-Luther-Universität Halle-Wittenberg, 06099 Halle (Saale), Germany ^dTechnische Universität Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik, D-01069 Dresden, Germany ^eTampere University of Technology, Korkeakoulunkatu 16, 33101 Tampere, Finland ^{*}Corresponding author email: das@ipfdd.de

Fig. S1: Double-quantum buildup curves of different rubber system along with fits:- Effect of sulfur loading on crosslink density of rubber

Fig. S2: a) Effect of alkoxy-based (abSiO2) and b) precipitated silica (pSiO2) loading on crosslink density of rubber

Fig. S3: a) Effect of alkoxy (abSiO₂) **and b) precipitated silica** (pSiO2) **loading with presence of TESPT coupling agent on crosslink density of rubber**

Fig. S4: Effect of different silane coupling agent on cross link density of rubber as reflected in DQ NMR results.

Table S1: Crosslink	densities of different	silica filled SSBR	composites as	estimated by
NMR and swelling				

Silica	$D_{res}/2\pi$ (kHz)			V _{FR} (mol/kg)				
(in phr)	i	i-TESPT	Х	x-TESPT	i	i-TESPT	Х	x-TESPT
gum		0.	268			0.1	46	
10	0.281	0.286	0.259	0.291	0.154	0.155	0.149	0.158
20	0.284	0.274	0.252	0.294	0.174	0.206	0.153	0.188
30	0.281	0.302	0.245	0.296	0.213	0.272	0.157	0.220
40	0.281	0.305	0.237	0.298	0.221	0.302	0.159	0.258
50	0.288	0.312	0.221	0.307	0.289	0.397	0.161	0.273

30 phr of	D _{res} /27	τ (kHz)	VFR(mol/kg)		
silica	abSiO ₂	pSiO ₂	abSiO ₂	pSiO ₂	
Gum	0.2	268	0.146		
Pristine	0.281	0.245	0.212	0.157	
DMS	0.277	0.258	0.209	0.144	
APTES	0.252	0.263	0.200	0.155	
ODTES	0.255	0.253	0.207	0.185	
MPTES	0.280	0.275	0.252	0.206	
NXT	0.262	0.259	0.251	0.207	
TESPD	0.282	0.293	0.264	0.203	
TESPT	0.303	0.296	0.272	0.220	

 Table S2: Crosslink densities of various silane-modified silica-filled SSBR composites as

 estimated by NMR and swelling