1	Reversible Lysine Derivatization Enables Improved Arg-C (iArg-C)
2	Digestion, a Highly Specific Arg-C Digestion Using Trypsin
3	
4	Zhen Wu ¹ , Jichang Huang ¹ , Jianan Lu ¹ , Xumin Zhang ^{*,1}
5	¹ State Key Laboratory of Genetic Engineering, Department of Biochemistry, School
6	of Life Sciences, Fudan University, Shanghai 200438, China
7	
8	
9	
10	Supplemental Information
11	iArg-C Digestion Protocol S-2, S-3
12	Table S-1. The identification results using different citraconylation and
13	decitraconylation treatments.
14	Table S-2. The identification results using iArg-C and Arg-C digestion.

15 Table S-3. The identification results using Lys-C and trypsin digestion.

1		iArg-C Digestion Protocol
2	Sample	e preparation TIMING 3 h
3	1)	Cell lysate. Add 20 volumes of lysis buffer (4 M guanidine hydrochloride,
4		100 mM TEAB) to the collected cells after washing three times with PBS
5		buffer, and sonicate for 6 min (2 s sonication with 5 s intervals).
6	2)	Collection. Collect supernatant via centrifugation at 20,000g for 20 min at
7		4 °C.
8	3)	Protein determination. Determine the protein concentration using Bradford
9		assay.
10	4)	Reduction. Add 10 mM DTT and then incubate at 37 °C for 45 min.
11	5)	Alkylation. Add 100 mM acrylamide and incubate for 1 h at room
12		temperature.
13	6)	Quenching. Add DTT to a final concentration of 50 mM to quench unreacted
14		acrylamide.
15	7)	Dilute the proteins to 1 mg/mL with lysis buffer.
16	Citraco	onylation TIMING 2 h
17	8)	Add 5 μL of 2M citraconic anhydride to 200 μL protein sample, and then
18		immediately add 5 μL 4M NaOH. After short vortex, incubate the sample for
19		10 min at room temperature.
20	9)	Repeat step 8 for another four times to reach a final concentration of 200 mM
21		citraconic anhydride.
22	10)	Incubate the solution at room temperature for 1 h.
23	Digesti	on TIMING 15-18 h
24	11)	Buffer displacement. Transfer samples from Eppendorf tubes to Microcon
25		YM-10 filters and centrifuged at 13,800 g for three-time buffer displacement
26		with 100 mM TEAB (pH 8.0). This step takes 3 to 6 h depending on sample

S-2

1	volume and protein concentration.
2	12) Digestion. Add digestion buffer (100 mM TEAB, pH 8.0) to reach the protein
3	concentration of 1 mg/mL. Add trypsin at a ratio of enzyme/protein as 1:50
4	and incubate at 37 °C for 12 h.
5	Sample collection TIMING 3-5 h
6	13) After digestion, collect the filtrate via centrifugation at 13,800g. To minimize
7	sample loss, wash the filter twice with 10% ACN and collect the filtrates via
8	centrifugation at 13,800g. Pool the three filtrates together.
9	14) Remove the remaining ACN and concentrate sample to about 1 mg/mL by a
10	Speedvac.
11	Decitraconylation TIMING 2 h
12	15) Decitraconylation. Add TFA to a final concentration of 1% (v/v) and incubate
13	at room temperature for 2 h.
14	

S-3