Supporting Information

Investigation of spontaneous imbibition by using a surfactant-free active silica water-based nanofluid for enhanced oil recovery

Yuyang Li, Caili Dai, * Hongda Zhou, Xinke Wang, Wenjiao Lv and Mingwei Zhao *

School of Petroleum Engineering, State Key Laboratory of Heavy Oil, China
University of Petroleum (East China), Qingdao, Shandong 266580, China

Table 1S Core parameters

Core parameters	Length (mm)	Diameter (mm)	Permeability (mD)	Porosity (%)
1 wt% nanofluid	25.1	25.1	0.613	14.1
0.5 wt% nanofluid	25.0	25.2	0.608	13.9
0.1 wt% nanofluid	25.3	24.9	0.621	14.3
0.05 wt% nanofluid	24.9	25.0	0.594	13.8
0.01 wt% nanofluid	25.1	25.2	0.609	14.2
0.005 wt% nanofluid	24.8	25.1	0.589	14.4
0.001 wt% nanofluid	25.2	24.9	0.614	13.9
Brine	25.0	25.1	0.602	14.5

Figure 1S Pore size distribution of the sandstone core.

Figure 2S The viscosity of nanofluid at different concentrations (60°C).