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1. Introduction 

The magnetic properties of high spin Co(II) ions (S = 3/2) have been thoroughly 

studied by experimental and theoretical methods.1-7 The S = 3/2 spin experiences a zero-

field splitting (ZFS) which splits the spin multiplet into two doublets which, in the main 

direction of the ZFS D-tensor, can be labeled as MS = ±1/2 and MS = ±3/2. The real spin S 

= 3/2 has, apart from the D-tensor which causes the ZFS, a “real” g-matrix which is 

anisotropic with values around the 2-3 range. The origin of these interactions is the 

admixture caused by the spin-orbit coupling of the orbital magnetic moment of the ground 

and excited states into the spin magnetic properties. This admixture is dependent on the 

energy separations between the different orbital sub-levels arising from the parent 4F and 4P 

terms under the octahedral, tetragonal and lower crystal field distortions. These properties 

can be analyzed at several different levels of theory1 including multiconfigurational 

electronic structure calculations.8, 9 In EPR spectroscopic studies at X-band it is not 

necessary, although not unadvisable, to be concerned with the orbital origin of the magnetic 

properties, as only the pure spin Hamiltonian is strictly needed to analyze the results. 

Furthermore, as the ZFS is usually much larger than the microwave energy at X-, Q- and 

even W-band, only transitions between the lower doublet are observed, to which an 

effective S´ = 1/2 spin can be assigned and which present resonance positions given by an 

effective g´-matrix. 
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ZFS of some kind is experienced by other high spin ions such as Fe(III) (S = 5/2), 

Mn(II) (S = 5/2) and some lanthanides, with the magnetic properties depending on the 

magnitude of the ZFS and the orbital contributions to the g-matrix. In this work we center 

the analysis on spin pairs containing Co(II) or Fe(III) ions which can be treated in certain 

experiments as effective S´=1/2 systems. 

2. Pilbrow’s equations for S = 3/2 

The relations between the effective g´-matrix components, the real g-matrix and the λ 

= E/D rhombicity parameter of the zero-field splitting have been given by Pilbrow.2 These 

expressions are written below for S = 3/2 
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m

 (1)  

The upper signs refer to the MS = ±1/2 and the lower signs to the MS = ±3/2 doublets. 

Terms containing ( )2

i B
g B Dµ are disregarded because they are too small in most cases, but 

can be obtained from Pilbrow’s work.  

3. Derivation of formulae for the effective g´ values for S = 5/2. 

For S ≥ 3/2 in axial symmetry (E = 0) some formulas reviewed by Pilbrow2 are 
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Where 
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 ( )22 2 2 2 2cos 1/2 sin
e

g g g Sθ θ⊥= + +
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For S = 5/2, one then obtains for the MS = ±1/2 doublet  
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So in the xy plane, where θ = 90º, g´⊥ = ( )( )2
3 1 /18

B
g B Dg g µ⊥⊥′= −  and in the z 

direction, where θ = 0º, g´z = g||. 

To the best of the authors’ knowledge no analytical expressions have been derived for 

effective g´-matrix components of an S = 5/2 or larger system when rhombic ZFS is 

present. We attempted to derive analytical formulae for the effective g´-values of an S = 5/2 

system using a mixture of exact diagonalization of the 6 × 6 matrices arising from the 

Hamiltonian (eq. 2) 

 ( ) ( )2 2 2
5/2

ˆ ˆ ˆˆ 35 12z x yH D S E S S= − + −  (2) 

plus introduction of the Zeeman interaction in a perturbative fashion, and obtained 

approximate formulae which to our opinion were not similar enough to the exact 

numerically calculated g´-values; we also realized that more exact expressions would be too 

complicated to be of any practical use. Therefore, in the need to calculate effective g´-

values as a function of the E/D parameter, we simply fit the exact numerical calculations 

with second order polynomials (eq. 3).  

 ( ) ( )2

0 1 2´ / /ug a a E D a E D= + +  (3) 
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The fittings are shown in Figure S1 and the polynomial coefficients are given in 

Table S1. These coefficients assume a real isotropic g-value of 2, which is a common 

approximation for Fe(III) ions. If a different real g-value need be considered, each 

expression can be multiplied by the factor (g/2).  

 

 

Figure S1. Numerical (symbols) and analytic approximate (lines) effective g´-values for 

the MS = ±5/2 (top), MS = ±3/2 (center) and MS = ±1/2 (bottom) Kramer’s doublets of an S 

= 5/2 spin with axial and rhombic ZFS, as a function of E/D. The xyz axes follow the 

common convention for rhombic ZFS, as shown in eq. 2. 
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Table S1. Coefficients of polynomial expression (eq. 3) fitting each Kramer’s doublet in an 

S = 5/2 spin with rhombic ZFS. 

MS = ±1/2 a0 a1 a2 MS = ±3/2 a0 a1 a2 MS = ±5/2 a0 a1 a2 

g´x 6.0 -26.96 34.87 g´x 0.0 27.09 -42.94 g´x 0.0 -0.13 8.06 

g´y 6.0 23.57 -38.81 g´y 0.0 23.68 -33.62 g´y 0.0 0.17 5.05 

g´z 2.0 -3.04 -4.32 g´z 6.0 -2.91 -7.51 g´z 10.0 0.13 -3.19 

 

4. Effective interactions for two interacting S = 3/2 ions 

Recently we have developed formulae for the effective anisotropic exchange 

interaction between two S = 3/2 Co(II) ions which are valid when a real isotropic 

interaction J couples two equivalent ions and the ZFS is much larger than J.10 

For two equivalent S = 3/2 ions coupled by an isotropic exchange interaction J3/2, 

each experiencing a ZFS with a positive D value defining the z direction, the EPR signals at 

low temperature and microwave frequency much lower than D, can be analyzed as the 

result of two interacting S´ = 1/2 spins with an effective anisotropic exchange interaction 

J
1/2

ani, whose components are given below (eq. 4), with the effective isotropic exchange 

interaction J1/2 already subtracted. 

 

1/2 3/ 2

1/2 3/ 2
ani,z

1/2 1/2 3/ 2
ani,y ani,x

3

2

J J

J J

J J J

=

= −

= =

 (4) 

If the real S = 3/2 spins also experience anisotropic interactions such as anisotropic 

exchange (J3/2) or dipolar interaction (D3/2
dip), these interactions will also give rise to 

effective anisotropic interactions if the spins are analyzed as S´ = 1/2.  
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Initially our extension of the effective interaction formulas for arbitrary interactions 

(real and effective) was performed for certain symmetrical situations in which the interspin 

(anisotropic exchange or dipolar) interaction shared axes with both ions ZFS tensors. After 

obtaining these relations (eqs. (12), (13) and (14) shown below), their mathematical 

expressions made us realize that the formulas for effective magnetic interactions could be 

expressed generally for any pair of effective spins, regardless of the relative orientations of 

each ions ZFS and the interspin interaction. For purposes of showing our reasoning to the 

reader we will present the deduction of formulas for high symmetry situations, and then 

prove their general validity through the simulation of particular cases: a pair of high-spin 

Co(II) ions (Figure 1 in the main text) and a high-spin Fe(III)-Cu(II) spin pair (Figure S4 in 

this Supplementary Material). 

Our previous work was based on Pilbrow’s work2 on effective g´-matrices for high-

spin Co(II) ions. The eigenvalues and eigenvectors of the Hamiltonian 

 ( ) ( )2 2 2
ZFS , , ,H 5 4

2
k k z k k

E
D S S S+ −= − + +  (5) 

for an S = 3/2 spin, where k indicates a given Co(II) ion, are 
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 (6) 

and 
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 (8) 

The four eigenvectors can be grouped in two Kramers’ doublets, as shown in Figure 

S2. 
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Figure S2. Energy levels for a high-spin Co(II) ion with positive ZFS (D = 25 cm-1, E/D = 

0.05) with external magnetic field pointing in the x (left), y (center) and z (right) directions, 

given by the principal axes system of the D-tensor. Real g-values in the x, y, z order are 2.5, 

2.5, 2.0. 

Orthonormality of the eigenvectors of a Hamiltonian imply that ak = dk and bk = ck 

(although it would not be easily seen by inspection of the formulas). Therefore the lower 

Kramer’s doublets are φk3 and φk4, and given by 
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If a pair of high spin Co(II) ions interact with an interaction much smaller than each 

ion’s ZFS, the Hamiltonian 

 ˆ ˆHS HS

AB A BH = ⋅ ⋅S J S  (10) 

can be truncated in order to include only each ion’s lower eigenstates (i.e. lower 

Kramers’ doublets). Application of Hamiltonian (eq. 10) to the direct product [φA3 φA4]⊗ 

[φB3 φB4] would give a 16 × 16 energy matrix. The way in which matrix is formed is given 

in eq. 11 

 ( )
3 3

3 4
3 3 3 4 4 3 4 4

4 3

4 4

ˆ ˆ
A B

eff HSA B
AB A B A B A B A B A B

A B

A B

ϕ ϕ
ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕϕ ϕ
ϕ ϕ

 
 

= ⋅ ⋅     
 
  

H S J S  (11) 

Substitution of expression (eq. 9) into the matrix (eq. 11), carrying on all the calculations of 

matrix elements of the type ˆ ˆ
SA SB Au Bv SA SBM M S S M M′ ′  with u,v = x, y, z, gives, as said 

before, a 16 × 16 energy matrix. However, as couplings with eigenstates containing φk1 and 

φk2, have been disregarded due to the large ZFSA/JAB and ZFSB/JAB ratios, this matrix can 

be block diagonalized into two 4 × 4 matrices.  

Let us assume that the anisotropic interaction between the real S = 3/2 spins (D3/2) has 

components Dx
3/2, Dy

3/2
 and Dz

3/2, without any assumption as to the relative values of the 

different components, except for a null trace. Then, the formulae obtained in our previous 

work10  can be extended as 
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This energy matrix has the same shape as the energy matrix of two effective S´ = 1/2 

spins interacting by a diagonal tensor Jeff, as will be shown further below. 

The following step is to assume that the A and B sites are equivalent (which is not a 

problem because previously it was assumed that they had the same ZFS directions) 
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Now if we further assume that the rhombicity is nearly 0 (a= 1, b = 0), we get a much 

simplified expression. 
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By comparing this energy matrix with the one arising from the effective spin 

exchange Hamiltonian eff 1/2
exch A AB BH ′ ′=+ ⋅ ⋅S D S  in the A B 1/2′ ′= =S S  effective basis 
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Which coincides with the expressions in eq. 12 when E/D = 0. 
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In this case we also consider that the real D3/2 tensor has zero-trace, because all the 

isotropic part would have gone into the J3/2 → J1/2+J
1/2

ani relations. In the case of high 

rhombicity (E/D = 1/3), b1 = 0.9659 and b2 = 0.2588), we have 
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Following the same procedure than for the E/D = 0 case, we find the following relations.  
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It has to be noted that in the way that E/D is defined as positive, DZFS
x > DZFS

y, so 

clear knowledge of the values of the x and y components of both the zero-field splitting and 

the Co(II)-Co(II) real anisotropic interaction is necessary to use the previous formulae.  

We have to confess that observation that the coefficients multiplying the real D-

components are indeed the Pilbrow factors for the g-values squared was made a posteriori 

by observation of the numerical results. Initially we thought that the relations obtained in 

our previous work10 were only useful for a real isotropic exchange J3/2, and that we would 

only be able to derive similar formulas for anisotropic interactions in certain high symmetry 

situations. The simplicity of the obtained results made sense a posteriori, and this insight 

allowed us to propose more general equations for the effective interactions. This relations 
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are proved in this work by simulation of the energy levels of an interaction system of S = 

3/2 or S = 5/2 ions in both the real spin formulation and the effective spin formulation. 

Equations 12 and 13 show, for example, that if two Co(II) ions have ZFS principal 

directions perpendicular to the Co(II)-Co(II) vector, depending on the relative orientation of 

the ZFS x and y eigenvectors, the effective anisotropic interaction can be much larger than 

the real anisotropic interaction. 

Now we will explore a few situations in which the Co(II) pair has different relative 

orientations and rhombicities (Figure S3) 

 

Figure S3. Relative orientations of the Co-Co vector and the ZFS principal axis. 

(Left) perpendicular directions, (right) colinear directions. 

The general expression for the real dipolar interaction tensor is 
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If the ZFS is collinear with the Co-Co direction (Fig 1, right), then the preceding 

formula simplifies to the following 
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For the axial case (E/D = 0), using eq. 12 we then have for the effective dipolar 

tensor. 
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The last step is strictly true when the ZFS is axial.2 Now in the case that the Co-Co 

direction is in the x direction of the ZFS tensor (or the y direction, which is the same for 

axial ZFS), (Figure S3, left) we get 
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The previous relations make it very plausible that in general, for two Co(II) ions, 

disregarding any similarity or coaxiality 
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and, assuming for now coaxiality of ZFS tensors, 
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where λA,B is the rhombicity parameter of Co(II) A or B. And probably, in general (no more 

coaxiality) 

1/2 3/2
, 1 , 2
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ani full ani full= ⋅ ⋅J P J P  

1/2 3/2
, ,

' '

' '

' '

xA xA xB xB
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   = ⋅ ⋅ ⋅ ⋅ ⋅ ⋅   
   
   

J R R J R R

 where RA,B are the rotation matrices (eigenvector matrices of the g´A,B matrices). 

The coefficients g´x/gx are simply the Pilbrow relations. The last formula is probably very 

complicated to be analytically derived in general, but it can be demonstrated by simulation 

of the resonances of an arbitrary system considered as real spins and effective spins. 
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with ,1(2)
ˆ
ZH given by 
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5. Numerical calculations on interacting pairs containing S = 5/2 ions 

The previous forms of the expressions for effective interactions between S = 3/2 ions 

have a form which appears to be general. Therefore, instead of trying to apply the same 

reasoning to S = 5/2 or higher systems, which provide analytically much more complicated 

expressions, we will assume the obtained equations are applicable and just verify them 

numerically. Figure S4 shows two simulations of the energy levels as a function of the 
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magnetic field, each for a spin pair composed by an S = 5/2 Fe(III) (S´ = 1/2 corresponding 

to the lower doublet) and an S = 1/2 Cu(II). The black lines are the exact results obtained 

using S = 5/2 for an Fe(III), while the red lines where obtained assuming an effective S´ = 

1/2, with effective g´-values and the effective expressions for the interactions. 

Simulation parameters are presented in Table S2. In Simulation 1 a high symmetry 

situation was chosen. For Simulation 2 the g-matrices (effective and real) were arbitrarily 

rotated. This rotation of the g-matrices causes a highly anisotropic and antisymmetric 

effective exchange interaction tensor Jeff between the Fe(III) and Cu(II) spins. In this 

simulation the maximum value of the real anisotropic exchange interaction Jani is 45000 

MHz = 1.5 cm-1, which is 6.66 times lower than the D-value chosen for Fe(III). This is an 

approximate limit given by the perturbation approach used to derive the relations. If the real 

Jani tensor was doubled, small discrepancies between the real spin and effective spin 

simulations started to show. 

Table S2. Simulation parameters for the pair of high spin Co(II) ions corresponding to Figure 1. 

 Simulation 1   Simulation 2 

 ZFS Euler 
Rotation 
Anglesa 

Real g-
matrix 

Effective 
g´-matrix 

  ZFS Euler 
Rotation 
Anglesa 

Real g-matrix Effective g´-
matrix 

Fe(III) D = 10 cm-1 α = 0º  gx = 2.00 2.7406  Fe(III) D = 10 cm-1 α = -30º  gx = 2.00 2.7406 

 E/D = 0.15 β = 0º gy = 2.00 8.6623   E/D = 0.15 β = 150º gy = 2.00 8.6623 

  γ = 0º gz = 2.00 1.4468    γ = 0º gz = 2.00 1.4468 

Cu(II) - α = 0º  gx = 2.05 Idem  Cu(II) - α = 20º  gx = 2.05 Idem 

 - β = 0º gy = 2.05 Idem   - β = 80º gy = 2.05 Idem 

  γ = 0º gz = 2.25 Idem    γ = 40º gz = 2.25 Idem 

 Real Interaction (MHz)b Effective Interaction 
(MHz)b 

  Real Interaction (MHz)c Effective Interaction (MHz)c 

 1971.0 0 0 2700.9 0 0   22500 0 0 39683.8 24982.2 -27028.4

 0 1971.0 0 0 8536.9 0   0 22500 0 24982.2 80795.8 -28846.9

 0 0 -4326.7 0 0 -3129.9   0 0 45000 -13514.2 -14423.4 48157.9
aThe D-tensors and real g-matrices for each Co(II) ion are assumed coincident and the Euler rotation angles are randomly 
chosen to illustrate the generality of the model. 
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bThe simulated interaction is magnetic dipolar, with the Fe(III)-Cu(II) vector chosen in the common frame z-direction and 
an inter ion distance of 3 Å.  

cInteraction is electronic exchange. The effective interaction tensor is both anisotropic and antisymmetric due to the non-
coincidence and anisotropy of the g and g´-matrices. 

 

 

Figure S4. Energy levels of a dimer composed by an S = 5/2 ion and an S = 1/2 ion, 

with the S = 5/2 ion treated as a real spin (black) and effective S´= 1/2 spin (red). Left: 

Parameters given in Table S2 (Simulation 1). Right: Parameters given in Table S2 

(Simulation 2). 
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6. Simulation of EPR Spectra of pairs containing high-spin Co(II), Fe(III) or Cu(II) 

and a nitroxide radical 

Figure S5 shows simulations performed with EasySpin11 of metal-nitroxyl interacting 

systems with metals of different spin states (Co(II): S = 3/2, MS = ±1/2, g´-values = 5.00, 

5.00, 2.60; Fe(III): S = 5/2, MS = ±3/2, g´-values = 4.3, 4.3, 4.3; Cu(II): S = 1/2, g-values = 

2.06, 2.06, 2.25), while nitroxyl is an quasi isotropic S = 1/2 spin (g-values = 2.0088, 

2.0061, 2.0027, hyperfine A-values = 15.46, 16.84, 92.5 MHz). The spin-spin distance was 

15 Å with the vector parallel to the z-direction. 
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Figure S5. Top: HS Co(II)-NR. Middle: HS Fe(III) (g = 4.3, MS = ±3/2)-NR. Bottom: 

Cu(II)-NR. In all cases the spin-spin distance was 15 Å and a purely magnetic dipolar 

interaction was assumed, using effective g-matrices for HS Co(II) and Fe(III) and real g-

matrices for Cu(II) and the nitroxide radical. More simulation parameters are indicated in 

the text. 

 

7. Magnetic Properties of Dysprosium-containing pairs. 

Dysprosium(III) ([Xe]4f 9) possesses a ground state multiplet 6H15/2 with S = 5/2 and L = 5, 

giving a total J = 15/2. The real gJ value associated with the J multiplet is given by4 

 
( 1) ( 1) ( 1)

1
2 ( 1)

J

J J S S L L
g

J J

+ + + − +
= +

+
 (17) 

and for dysprosium(III) this gives gJ = 1.333. Crystal field operators split the J-multiplet 

into MJ doublets, and the ground state will depend on the relative magnitudes of the crystal 

field operator terms.  
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If only axial crystal field terms are added to the spin Hamiltonian, these ground state 

doublets will be pure and the effective g´-matrix will be g´x = g´y = 0, g´z = gJ(2|MJ|). This 

is exemplified with the spin Hamiltonian 

 0 0 0 0 0 0
, 2 2 4 4 6 6

ˆ
CF axialH B O B O B O= + +  (18) 

with the expressions for the higher order crystal field terms given by Stevens.12 A 

simulation of the energy levels of this Hamiltonian plus a Zeeman term in the x, y, z 

directions is given in Figure S6 and the crystal field parameters are given in the 

corresponding legend. 
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Figure S6.  Energy levels of the J = 15/2 multiplet of Dy(III) in the presence of an axial 

crystal field, given by eq. (18), with crystal field parameters B2
0 = -80 cm-1, B4

0 = -40.8 cm-

1 and B6
0 = -8 cm-1, B2

2 = -0.02 cm-1, with the magnetic field pointing in the directions 

given by the effective g´-values. The low crystal field values were chosen to qualitatively 

show all the energy levels and their Zeeman splitting in the magnetic field; however in real 

compounds these will be much larger (see chapter 5 in ref. 4). 
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Compounds with negative and strictly axial crystal field operators will give MJ = ±15/2, 

±13/2 or ±11/2 ground states, with g´x = g´y = 0, and therefore will be EPR-silent, although 

their ability to magnetically interact with other spins will not be impaired, as shown in the 

work of Pineda et al.13 

Application of the effective magnetic interaction model to Dy(III) dimers present a 

complication compared with dimers containing HS Co(II) or Fe(III), because effective g´-

matrix formulas for Dy(III) ions in arbitrary crystal fields do not exist. These perhaps could 

be derived under some situations, but this would exceed the purpose of this work. Instead 

our approach has been to develop a program (Jmultiplet_zfs) which simulates the energy 

levels of a Dy(III) ion under the action of a crystal field Hamiltonian containing O2
0, O4

0, 

O6
0 and O2

2 terms, together with Zeeman interaction. Many other crystal field terms could 

be easily added (see Table 16 in Abragam and Bleaney’s book4). The program plots the 

energy levels for the magnetic field in the x, y and z directions, and calculates the effective 

g´-values. The user can change crystal field parameters, the total J of the ion (thus allowing 

simulation of other lanthanides), the L and S values, which allow calculation of gJ using eq. 

(17), and some other quantities. 

With the calculated effective g´-values for a certain ion obtained using Jmultiplet_zfs and 

the definition of a real magnetic interaction matrix, another program, called 

Ln_Dimer_Levels, simulates the energy levels of a dimer as a function of magnetic field.  

A simulation of a weakly coupled Dy(III) dimer is shown in Figure S7. The red lines are 

simulations using effective interactions for effective J´ = 1/2 Dy(III) sites, while the black 

dots use the full J = 15/2 space for each center, together with crystal field parameters. The 

non-typical shape of the dimer levels (absence of clear singlet and a triplet groups) is due to 



S26 
 

the very high deviation from null-trace in the effective Dy(III)-Dy(III) interaction tensor, 

caused by the high anisotropy of the effective g´-matrices. The agreement in the z-direction 

is excellent, and this is the most important magnetic direction for Dy(III) (with g´z ~ 13-20). 

The agreement in the other two directions is not perfect, but it is quite good, as the 

separation between the two doublets is correctly reproduced, but the exact curvature of the 

levels on each doublet is not perfectly reproduced. The agreement between the real and 

effective spin models starts to break down when the real exchange has such a value that the 

splitting between the lowest two Kramers’ pairs becomes equal with the splitting between 

the first and third Kramers’ pairs. We will not attempt to derive explicit bounds for the 

JAB
real/Crystal Field terms as there will be many different possibilities. However, as the 

Ln_Dimer_Levels program shows all real spin energy levels, any interested users can 

experiment themselves to test the validity of the model as it applies to their specific 

systems. For this system, JAB
real up to 30000 MHz gives a good agreement. This can be 

seen in Figure S8. 



S27 
 

 

Figure S7. Energy levels for a hypothetical Dy(III) dimer with the magnetic field 

pointing in the x (left), y (right) and z (direction) of both Dy(III) ions. The black dots show 

the energy levels using the full J = 15/2 space for each ion (total 256 by 256 matrix) and the 

following Hamiltonian parameters (DyA: B2
0 = 3200 cm-1, B4

0 = -1440 cm-1, B6
0 = -400 cm-

1, B2
2 = 22 cm-1, gJ = 1.33333; DyB: B2

0 = 4000 cm-1, B4
0 = -1040 cm-1, B6

0 = -400 cm-1, B2
2 

= -50 cm-1, gJ = 1.33333; ,
real

AB isoJ  = 1000 MHz (0.0333 cm-1)), while the red lines show the 

energy levels of the effective J´ = 1/2 subspace (total 4 by 4 matrix), with the following 

parameters (DyA: g´x = 0.103295, g´y = 0.58509, g´z = 14.44965; DyB: g´x = 2.626123, g´y = 

0.51238, g´z = 15.84771; ,
eff

AB xJ  = 152.59 MHz, ,
eff

AB yJ = 168.63 MHz, ,
eff

AB zJ = 128810 MHz). 
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Figure S8. Simulation of the same system as Figure S7, but with ,
real

AB isoJ = 30000 MHz 

(1 cm-1) 
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