Supporting Information

CuH-Catalyzed Asymmetric Intramolecular Reductive Coupling of Allenes to Enones

Yun-Xuan Tan, Xiao-Qi Tang, Ping Liu, De-Shen Kong, Ya-Li Chen, Ping Tian, and Guo-Qiang Lin

TABLE OF CONTENTS

1. GENERAL INFORMATION	
2. PRELIMINARY REACTION INVESTIGATION	
2.1 Control Experiment: CuH-Catalyzed Semireduction of α -benzyloxymethyl Allene	S3
2.2 Initial Evaluation of Various Ligands	S3
2.2 Further Evaluation of Reaction Parameters	S7
3. SUBSTRATE PREPARATION	
3.1 General Procedures for the Preparation of Cyclohexadienone-Tethered Alkynes	S8
3.2 General Procedures for the Preparation of Cyclohexadienone-Tethered Allenes	S9
4. SCOPE OF THE SUBSTRATES	
5. THE KINETIC RESOLUTION Of (±)-3a	
6. TRANSFORMATION OF THE CYCLIZATION PRODUCTS	
6.1 The Transformation of Cyclization Product 3r.	\$22
6.2 The Transformation of Cyclization Product 3a	\$24
7. ASYMMETRIC DEAROMATIZATION MODIFICATION Of 9 And 13	S25
7.1 ASMMETRIC DEAROMATIZATION MODIFICATION Of 9	\$25
7.2 ASMMETRIC DEAROMATIZATION MODIFICATION Of 13	\$27
8. Absolute Configuration Confirmation Of 3j And 15	
8.1 The Single Crystal Data of 3j (CCDC 1572373)	\$29
8.2 The Single Crystal Data of 15 (CCDC 1572374)	\$31
9. ¹ H NMR, ¹³ C NMR, HSQC, COSY, NOSEY, HMBC, DEPT90, DEPT135 COPIES	

1. GENERAL INFORMATION

All solvents were dried before use following the standard procedures. Unless otherwise indicated, all starting materials purchased from commercial suppliers were used without further purification. The ¹H and ¹³C NMR spectra were recorded on Bruker AV-400 MHz in the indicated solvents. Chemical shifts are reported in δ (ppm) referenced to an internal TMS standard for ¹H NMR and CDCl₃ (δ = 77.10 ppm) for ¹³C NMR. Coupling constants (*J*) are quoted in Hz. Optical rotations were measured on a JASCO P-1030 polarimeter. IR spectra were recorded on Nicolet iN 10 MX. ESI mass spectra were recorded on Agilent1200/G6100A.

2. PRELIMINARY REACTION INVESTIGATION

2.1 Control Experiment: CuH-Catalyzed Semireduction of α-benzyloxymethyl Allene

A dried Schlenk flask was charged with CuCl (2.0 mg, 0.02 mmol, 10 mol%), *rac*-Binap (15.0 mg, 0.024 mmol, 12 mol%), *t*-BuONa (3.0 mg, 0.030 mmol, 15 mol%) and anhydrous THF (2 mL) under argon atmosphere. After the mixture was stirred at 0 °C for 10 min, DEMS was added (38 μ L, 0.24 mmol, 1.2 equiv), and then stirred at 0 °C for another 10 min. A solution of substrate α-benzyloxymethyl allene **30** (0.20 mmol) in anhydrous THF (2 mL) was added, followed by anhydrous MeOH (10 μ L, 0.24 mmol, 1.2 equiv). The resulting mixture was stirred at 0 °C for 12 hours. Then the reaction mixture was filtered, washed with EtOAc (10 mL × 3) and concentrated in vacuo. The residue was purified by flash silica gel (300–400 mesh) chromatography to afford the semireduction products **31**. 63% yield. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.30 – 7.27 (m, 3H), 7.26 – 7.17 (m, 2H), 5.83 – 5.71 (m, 1H), 5.07 – 4.94 (m, 2H), 4.45 (s, 2H), 3.46 (t, *J* = 6.8 Hz, 2H), 2.31 (qt, *J* = 6.7, 1.3 Hz, 2H).

2.2 Initial Evaluation of Various Ligands

 Table S1. Evaluation of Various Ligands for CuH-Catalyzed Asymmetric Intramolecular Reductive

 Coupling of Allenes to Enones Using 1a.

3	(<i>R</i>)-Synphos, L3	88	54	13
4	(R)-Segphos, L4	80	63	10
5	(<i>R</i>)-H ₈ -Binap, L5	70	61	41
6	(<i>R</i>)-Difluorphos, L6	98	65	29
7	(<i>R</i>)-XylBinap, L7	93	64	26
8	(R)-DTBM-Segphos, L8	90	30	7
9	(R,S_p) -Josiphos, L9	85	51	-5
10	(R,S_p) -PPF-P $(t$ -Bu $)_2$, L10	0	/	/
11	(S, S_p) - <i>i</i> -Pr-FOXAP, L11	60	0	/
12	(<i>R</i> , <i>S</i> _p)-Xyl-Josiphos, L12	83	46	-5
13	(R)-MeO-BIPHEP, L13	98	81	33
14	(<i>R</i>)-L14	45	40	5
15	(<i>R</i>)-MeO-F ₁₂ -BIPHEP, L15	72	60	11
16	(<i>S</i>)-P-Phos, L16	100	81	-35
17	(<i>R</i>)-BTFM-Garphos, L17	78	41	-14
18	(<i>Ra</i> , <i>R</i> , <i>R</i>)-L18	0	/	/
19	(<i>Sa</i> , <i>R</i> , <i>R</i>)-Siphos-PE, L19	0	/	/
20	(<i>R</i>)-L20	0	/	/
21	(<i>R</i> , <i>R</i>)- <i>i</i> -Pr-Duphos, L21	88	60	52
22	(S,S)-Me-Duphos, L22	87	47	-5
23	(<i>S</i> , <i>S</i>)-DIPAMP, L23	0	/	/
24	(<i>R</i> , <i>R</i>)-QuinoxP, L24	85	56	23
25	(<i>R</i> , <i>R</i> , <i>S</i> , <i>S</i>)-DUANPHOS, L25	68	33	-2
26	(<i>S</i> , <i>S</i> , <i>R</i> , <i>R</i>)-TANGPHOS, L26	0	/	/
27	(<i>R</i>)-SDP, L27	52	22	34
28	(1 <i>S</i> ,4 <i>R</i>)- L28	90	0	/
29	(<i>R</i> , <i>R</i>)-Ph-BPE, L29	75	31	-50
30	L30	44	0	/
31	(<i>R</i>)- <i>i</i> -Pr-Phox, L31	50	17	-29
32	L32	82	0	/
33	L33	19	19	29

[a] Determined by ¹H-NMR of unpurified mixtures using CH_2Br_2 as an internal standard. [b] Determined by ¹H-NMR of isolated and purified product **3a**. [c] Determined by HPLC analysis using a chiral stationary phase.

S5

L32 82% conv., 0% yield

2.2 Further Evaluation of Reaction Parameters

Table S2. Evaluation of Other Reaction Parameters for CuH-Catalyzed Asymmetric Intramolecular Reductive Coupling of Allenes to Enones Using **1a**.

		H • •		CuCl (10 mo <i>t</i> -BuONa (15 r L21 (12 mo	ol%) nol%) l%) ➡►	H	0	
		Mế ^U 1a	o	DEMS, solv additive, T(^c	ent °C)	O Me 3a		
Entry	T/°C	Additive ^a	Solvent	DEMS/eq	t/h	Conv./ % ^b	Yield/% ^c	Ee/% ^d
1	-20	МеОН	THF	1.0	24	84	55	60
2	-40		THF	1.0	48	78	57	57
3	-40	МеОН	THF	1.0	48	81	67	57
4	-78		THF	2.5	48	15	13	37
5	-78	MeOH	THF	2.5	48	32	31	37
6	-40	MeOH	THF	1.5	48	98	65	68
7	-40	MeOH	Et ₂ O	1.5	48	100	45	74
8	-40	МеОН	1,4-dioxane	1.5	48	99	46	32
9	-40	МеОН	MTBE	1.5	48	100	52	51
10	-40		THF	2.0	48	100	53	82
11	-40	MeOH	THF	2.0	48	100	51	86
12	-40	МеОН	THF	2.2	48	100	43	95

[a] Additive (2.5 eq).

[b] Determined by ¹H-NMR of unpurified mixtures using CH₂Br₂ as an internal standard.

[c] Determined by ¹H-NMR of isolated and purified product **3a**.

[d] Determined by HPLC analysis using a chiral stationary phase.

3. SUBSTRATE PREPARATION

3.1 General Procedures for the Preparation of Cyclohexadienone-Tethered Alkynes

A well-stirred solution of substituted phenol **20** (1.0 mmol, 1.0 eq) in 1 mL of propargyl alcohol (**21**) was cooled to 0 °C and treated with phenyliodine (III) diacetate (PIDA, 483 mg, 1.5 mmol, 1.5 eq) in several portions. The resulting mixture was warmed to room temperature and stirred overnight. Then it was diluted with water (30 mL) and extracted with DCM (30 mL \times 3). The combined organic phases were washed with brine (30 mL), dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by flash column chromatography using hexane/ethyl acetate eluent to afford the desired product **22**.

(Note that compounds 22a, 22b, 22e–22k, 22m, 22n, 22p-22r were prepared according to the corresponding report.^[1])

4-(prop-2-yn-1-yloxy)-4-propylcyclohexa-2,5-dienone (22c)

Red oil. 72 mg, 38% yield. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 6.80 (d, J = 10.2 Hz, 2H), 6.36 (d, J = 10.2 Hz, 2H), 4.00 (d, J = 2.4 Hz, 2H), 2.46 (t, J = 2.4 Hz, 1H), 1.80 – 1.72 (m, 2H), 1.34 – 1.22 (m, 2H), 0.90 (t, J = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 185.34, 150.16, 131.54, 80.50, 76.56, 74.89, 53.53, 41.57, 16.93, 14.26. ESI-MS: [M+Na]^{\oplus} 213.1; HRMS (ESI): [M+H]^{\oplus} calcd for C₁₂H₁₅O₂^{\oplus} 191.1067, found 191.1065; IR (KBr) ν (cm⁻¹) 3285, 2962, 2935, 1671, 1383, 1175, 1060, 862.

4-butyl-4-(prop-2-yn-1-yloxy)cyclohexa-2,5-dienone (22d)

Yellow white solid. 70 mg, 35% yield. m.p. 63-64 °C. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 6.79 (d, J = 10.0 Hz, 2H), 6.36 (d, J = 10.0 Hz, 2H), 4.01 (d, J = 2.0 Hz, 2H), 2.45 (s, 1H), 1.82 – 1.74 (m, 2H), 1.33 – 1.18 (m, 4H), 0.87 (t, J = 7.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 185.18, 150.02, 131.47, 80.43, 76.49, 74.83, 53.43, 39.07, 25.47, 22.77, 13.79. ESI-MS: [M+Na]^{\oplus} 227.1; HRMS (ESI): [M+H]^{\oplus} calcd for C₁₃H₁₇O₂^{\oplus} 205.1223, found 205.1223; IR (KBr) v (cm⁻¹) 3279, 2975, 2947, 1672, 1461, 1382, 1067, 875, 680.

2,4,6-trimethyl-4-(prop-2-yn-1-yloxy)cyclohexa-2,5-dienone (22s)

^[1] He, Z.-T.; Tang, X.-Q.; Xie, L.-B.; Cheng, M.; Tian, P.; Lin, G.-Q. Angew. Chem., Int. Ed. 2015, 54, 14815.

White solid. 61 mg, 32% yield. m.p. 44-46 °C. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 6.55 (s, 2H), 3.94 (d, J = 2.3 Hz, 2H), 2.45 (m, 1H), 1.91 (s, 6H), 1.43 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 186.21, 145.58, 136.74, 80.76, 74.38, 73.12, 52.99, 26.44, 15.81. ESI-MS: [M+Na]^{\oplus} 213.1; HRMS (ESI): [M+H]^{\oplus} calcd for C₁₂H₁₅O₂^{\oplus} 191.1067, found 191.1067; IR (KBr) v (cm⁻¹) 3291, 2977, 2926, 2864, 1675, 1391, 1211, 1077, 701.

3.2 General Procedures for the Preparation of Cyclohexadienone-Tethered Allenes

To a well-stirred solution of **22** (1.0 mmol, 1.0 eq) in dioxane (5 mL) was added paraformaldehyde **24** (150 mg, 5.0 mmol, 5 eq), CuBr (72 mg, 0.5 mmol, 0.5 eq) and diisopropylamine **23** (280 ul, 2.0 mmol, 2.0 eq) under argon atmosphere. The resulting mixture was stirred at 110 °C for 1 h. After cooled to room temperature, the reaction mixture was filtered and washed with DCM (10 mL ×3). The combined organic phases were dried over anhydrous Na_2SO_4 and concentrated under reduced pressure. The residue was purified by flash column chromatography using hexane/ethyl acetate eluent to afford the pure substrates **1**.

(Note that compounds 1a, 1b, 1e–1k, 1m, 1n, 1p-1r were prepared according to the corresponding report.^[1])

4-(buta-2,3-dien-1-yloxy)-4-propylcyclohexa-2,5-dienone (1c)

Red oil. 80 mg, 39% yield. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 6.79 (d, J = 10.0 Hz, 2H), 6.34 (d, J = 10.0 Hz, 2H), 5.29 – 5.13 (m, 1H), 4.68 – 4.85 (m, 2H), 3.82 – 3.94 (m, 2H), 1.77 – 1.69 (m, 2H), 1.22 – 1.34 (m, 2H), 0.90 (t, J = 7.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 209.24, 185.56, 151.29, 130.96, 88.63, 76.11, 75.93, 63.73, 41.71, 16.90, 14.28. ESI-MS: [M+Na]^{\oplus} 227.2; HRMS (ESI): [M+H]^{\oplus} calcd for C₁₃H₁₇O₂^{\oplus} 205.1223, found 205.1222; IR (KBr) v (cm⁻¹) 2962, 2935, 1957, 1671,

1466, 1381, 1174, 862.

4-(buta-2,3-dien-1-yloxy)-4-butylcyclohexa-2,5-dienone (1d)

Yellow oil. 94 mg, 43% yield. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 6.78 (d, J = 10.1 Hz, 2H), 6.34 (d, J = 10.1 Hz, 2H), 5.21 (p, J = 6.8 Hz, 1H), 4.77 (dd, J = 4.0, 2.6 Hz, 2H), 3.92 – 3.84 (m, 2H), 1.80 – 1.70 (m, 2H), 1.32 – 1.18 (m, 4H), 0.87 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 209.25, 185.55, 151.25, 130.99, 88.62 , 76.09, 75.96, 63.74, 39.27, 25.56, 22.88, 13.87. ESI-MS: [M+H]^{\oplus} 219.1; HRMS (ESI): [M+H]^{\oplus} calcd for C₁₄H₁₉O₂^{\oplus} 219.1380, found 219.1378; IR (KBr) v (cm⁻¹) 3040, 2958, 2935, 1958, 1672, 1381, 1255, 861.

4-(buta-2,3-dien-1-yloxy)-2,4,6-trimethylcyclohexa-2,5-dienone (1s)

Pale yellow solid. 80 mg, 39% yield. m.p. 42-43 °C. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 6.54 (s, 2H), 5.20 (p, J = 6.8 Hz, 1H), 4.76 (dd, J = 4.1, 2.4 Hz, 2H), 3.87 – 3.78 (m, 2H), 1.91 (s, 6H), 1.40 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 209.20, 186.65, 146.79, 136.35, 88.76, 75.88, 72.66, 63.47, 26.73, 16.04. ESI-MS: [M+H]^{\oplus} 205.1; HRMS (ESI): [M+H]^{\oplus} calcd for C₁₃H₁₇O₂^{\oplus} 205.1223, found 205.1223; IR (KBr) v (cm⁻¹) 3263, 3060, 2976, 2922, 1956, 1675, 1369, 1069, 857.

4. SCOPE OF THE SUBSTRATES

GENERAL PROCEDURE: A dried Schlenk flask was charged with CuCl (2.0 mg, 0.02 mmol, 10 mol%), ligand L21 (10.0 mg, 0.024 mmol, 12 mol%), *t*-BuONa (3.0 mg, 0.030 mmol, 15 mol%) and anhydrous THF (2 mL) under argon atmosphere. After the mixture was stirred at -40 °C for 10 min, DEMS (70 µL, 0.44 mmol, 2.2 equiv) was added, and then stirred at -40 °C for another 10 min. A solution of substrate 1 (0.20 mmol) in anhydrous THF (2 mL) was added, followed by anhydrous MeOH (20 µL, 0.5 mmol, 2.5 equiv). The resulting mixture was stirred at -40 °C for 48 hours. Then the reaction mixture was filtered, washed with EtOAc (10 mL × 3) and concentrated in vacuo. The residue was purified by flash silica gel (300–400 mesh) chromatography to afford the desired products **3**. (Notice: The racemic products were prepared according to the same procedure above except for using *rac*-BINAP instead of L21, and the reaction was stirred under room temperature.)

(3R,3aS,7aS)-7a-methyl-3-vinyl-2,3,3a,7a-tetrahydrobenzofuran-5(4H)-one (3a)

Light yellow oil. 15.2 mg, 43% yield. $[\alpha]_D^{23.0}$ +26.7 (c 0.55, CHCl₃) 95% *ee*; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 6.63 (dd, J = 10.3, 1.2 Hz, 1H), 5.99 (d, J = 10.3 Hz, 1H), 5.54 (dt, J = 17.0, 9.8 Hz, 1H), 5.08 (dd, J = 13.6, 6.3 Hz, 2H), 4.09 (dd, J = 9.0, 7.7 Hz, 1H), 3.56 (dd, J = 9.1, 6.7 Hz, 1H), 3.17 – 3.06 (m, 1H), 2.65 – 2.56 (m, 2H), 2.51 (dd, J = 17.7, 7.1 Hz, 1H), 1.48 (s, 3H). ¹³C NMR (100MHz, CDCl₃) δ (ppm) 197.61, 152.72, 135.75, 129.59, 118.85, 78.83, 71.15, 47.61, 46.33, 35.67, 25.27; ESI-MS: [M+Na]^{\oplus} 201.1; HRMS (ESI): [M+H]^{\oplus} calcd for C₁₁H₁₅O₂^{\oplus}

179.1067, found 179.1066; IR (KBr) v (cm⁻¹) 2971, 2927, 2857, 1684, 1653, 1648, 1637, 1457, 1384, 1286, 1232, 1154, 1090, 1046, 1030, 924, 864, 810; HPLC: Chiracel AD-H Column (250 mm); detected at 214 nm; *n*-hexane/*i*-propanol = 95/5; flow rate = 0.7 mL/min; Retention time: 10.9 min (minor), 13.5 min (major).

(3R,3aS,7aS)-7a-ethyl-3-vinyl-2,3,3a,7a-tetrahydrobenzofuran-5(4H)-one (3b)

n-Pr 3c Light yellow oil. 20 mg, 52% yield. $[\alpha]_D^{23.3}$ +25.5 (c 0.64, CHCl₃) for 96% *ee*; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 6.63 (dd, J = 10.4, 1.2 Hz, 1H), 6.04 (d, J = 10.4 Hz, 1H), 5.56 (dt, J = 17.0, 9.8 Hz, 1H), 5.12 – 5.02 (m, 2H), 4.03 (dd, J = 9.0, 7.2 Hz, 1H), 3.58 (dd, J = 9.0, 6.1 Hz, 1H), 3.12 – 3.01 (m, 1H), 2.72 – 2.64 (m, 1H), 2.59 (dd, J = 17.7, 2.8 Hz, 1H), 2.49 (dd, J = 17.7, 7.0 Hz, 1H), 1.89 – 1.71 (m, 2H), 1.01 (t, J = 7.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 197.89, 151.87, 135.80, 130.19, 118.74, 81.16, 71.01, 48.13, 43.81, 36.03, 31.90, 8.29; ESI-MS:

 $[M+H]^{\oplus}$ 193.0; HRMS (ESI): $[M+H]^{\oplus}$ calcd for $C_{12}H_{17}O_2^{\oplus}$ 193.1223, found 193.1224; IR (KBr) v (cm⁻¹) 3078, 2969, 2936, 2881, 1682, 1639, 1462, 1384, 1249, 1130, 1065, 1045, 966, 923, 735; HPLC: Chiracel AD-H Column (250 mm); detected at 214 nm; *n*-hexane/*i*-propanol = 90/10; flow rate = 0.7 mL/min; Retention time: 8.2 min (minor), 9.1 min (major).

(3R,3aS,7aS)-7a-propyl-3-vinyl-2,3,3a,7a-tetrahydrobenzofuran-5(4H)-one (3c)

Light yellow oil. 17.6 mg, 43% yield. $[\alpha]_D^{24.1}$ +25.0 (c 0.75, CHCl₃) for 99% *ee*; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 6.64 (dd, J = 10.4, 1.4 Hz, 1H), 6.02 (d, J = 10.4 Hz, 1H), 5.55 (dt, J = 17.0, 9.8 Hz, 1H), 5.12 – 5.02 (m, 2H), 4.03 (dd, J = 9.0, 7.2 Hz, 1H), 3.56 (dd, J = 9.0, 6.1 Hz, 1H), 3.12 – 2.98 (m, 1H), 2.70 – 2.63 (m, 1H), 2.54 (qd, J = 17.7, 4.9 Hz, 2H), 1.72 (qdd, J = 13.7, 10.3, 6.5 Hz, 2H), 1.51 – 1.40 (m, 2H), 0.97 (t, J = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 197.79, 152.06, 135.79, 129.95, 118.68, 80.90, 70.94, 47.98, 44.37, 41.50, 35.91, 17.32,

14.55.; ESI-MS: $[M+Na]^{\oplus}$ 229.1; HRMS (ESI): $[M+H]^{\oplus}$ calcd for $C_{13}H_{19}O_2^{\oplus}$ 207.1380, found 207.1378; IR (KBr) v (cm⁻¹) 3086, 2958, 2242, 1683, 1413, 1384, 1360, 1260, 1057, 1025, 924, 796, 740; HPLC: Chiracel AD-H Column (250 mm); detected at 214 nm; *n*-hexane/*i*-propanol = 95/5; flow rate = 0.7 mL/min; Retention time: 8.9 min (minor), 9.9 min (major).

(3R,3aS,7aS)-7a-butyl-3-vinyl-2,3,3a,7a-tetrahydrobenzofuran-5(4H)-one (3d)

Light yellow oil. 18 mg, 41% yield. $[\alpha]_D^{20.9}$ +16.2 (c 0.53, CHCl₃) for 97% *ee*; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 6.64 (dd, J = 10.4, 1.2 Hz, 1H), 6.02 (d, J = 10.4 Hz, 1H), 5.55 (dt, J = 17.0, 9.8 Hz, 1H), 5.12 – 5.01 (m, 2H), 4.03 (dd, J = 9.0, 7.3 Hz, 1H), 3.57 (dd, J = 9.0, 6.2 Hz, 1H), 3.12 – 3.00 (m, 1H), 2.71 – 2.63 (m, 1H), 2.54 (qd, J = 17.7, 4.8 Hz, 2H), 1.80 (dt, J = 16.4, 7.4 Hz, 1H), 1.73 – 1.64 (m, 1H), 1.44 – 1.30 (m, 4H), 0.92 (t, J = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 197.83, 152.09, 135.79, 129.98, 118.70, 80.92, 70.94, 48.00, 44.34, 39.01, 35.95,

26.11, 23.17, 13.96.; ESI-MS: $[M+H]^{\oplus}$ 221.1; HRMS (ESI): $[M+H]^{\oplus}$ calcd for $C_{14}H_{21}O_2^{\oplus}$ 221.1537, found 221.1535; IR (KBr) v (cm⁻¹) 2957, 2933, 1684,1638, 1466, 1384, 1241, 1061, 983, 922, 875; HPLC: Chiracel AS-H Column (250 mm); detected at 214 nm; *n*-hexane/*i*-propanol = 95/5; flow rate = 0.7 mL/min; Retention time: 14.1min (major), 23.1 min (minor).

(3R,3aS,7aS)-7a-isopropyl-3-vinyl-2,3,3a,7a-tetrahydrobenzofuran-5(4H)-one (3e)

H H O *i*-Pr 3e Light yellow oil. 19.0 mg, 46% yield. $[\alpha]_D^{23.3} + 32.7$ (c 0.59, CHCl₃) for 99% *ee*; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 6.61 (dd, J = 10.5, 1.3 Hz, 1H), 6.10 (d, J = 10.5 Hz, 1H), 5.56 (dt, J = 16.8, 9.8 Hz, 1H), 5.07 (dd, J = 9.1, 7.7 Hz, 2H), 3.95 (dd, J = 8.9, 6.6 Hz, 1H), 3.57 (dd, J = 8.9, 5.6 Hz, 1H), 3.01 (tt, J = 9.4, 6.2 Hz, 1H), 2.75 (td, J = 7.3, 1.5 Hz, 1H), 2.60 (dd, J = 17.9, 2.1 Hz, 1H), 2.49 (dd, J = 17.9, 7.3 Hz, 1H), 2.07 – 1.94 (m, 1H), 1.02 (dd, J = 6.9, 3.7 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 198.10, 150.44, 135.69, 130.65, 118.62, 83.08, 70.65, 49.09,

41.55, 36.88, 36.62, 17.74, 16.90; ESI-MS: $[M+H]^{\oplus}$ 207.1; HRMS (ESI): $[M+H]^{\oplus}$ calcd for $C_{13}H_{19}O_2^{\oplus}$ 207.1380, found 207.1379; IR (KBr) v (cm⁻¹) 3077, 2963, 2876, 1683, 1639, 1470, 1385, 1259, 1063, 996, 923, 781; HPLC: Chiracel AD-H Column (250 mm); detected at 214 nm; *n*-hexane/*i*-propanol = 99/1; flow rate = 0.5 mL/min; Retention time: 15.8 min (minor), 17.1 min (major).

(3R,3aS,7aS)-7a-isopropyl-3-vinyl-2,3,3a,7a-tetrahydrobenzofuran-5(4H)-one (3e)

H H O *i*-Pr 3e For 1 mmol scale, A dried Schlenk flask was charged with CuCl (4.95 mg, 5 mol%), ligand L21 (25.0 mg, 6 mol%), *t*-BuONa (7.2 mg, 7.5 mol%) and anhydrous THF (10 mL) under argon atmosphere. After the mixture was stirred at -40 °C for 10 min, DEMS (351 µL, 2.2 equiv) was added, and then stirred at -40 °C for another 10 min. A solution of substrate 1e (1.0 mmol, 1.0 equiv) in anhydrous THF (10 mL) was added, followed by anhydrous MeOH (101 µL, 2.5 equiv). The resulting mixture was stirred at -40 °C for 24 hours. Then the reaction mixture was filtered,

washed with EtOAc (50 mL × 3) and concentrated in vacuo. The residue was purified by flash silica gel (300–400 mesh) chromatography to afford the desired products **3e**. Light yellow oil. 104 mg, 50% yield. $[\alpha]_D^{21.4}$ +29.2 (c 1.50, CHCl₃) for 98% *ee*; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 6.61 (dd, *J* = 10.5, 1.3 Hz, 1H), 6.10 (d, *J* = 10.5 Hz, 1H), 5.56 (dt, *J* = 16.8, 9.8 Hz, 1H), 5.07 (dd, *J* = 9.1, 7.7 Hz, 2H), 3.95 (dd, *J* = 8.9, 6.6 Hz, 1H), 3.57 (dd, *J* = 8.9, 5.6 Hz, 1H), 3.01 (tt, *J* = 9.4, 6.2 Hz, 1H), 2.75 (td, *J* = 7.3, 1.5 Hz, 1H), 2.60 (dd, *J* = 17.9, 2.1 Hz, 1H), 2.49 (dd, *J* = 17.9, 7.3 Hz, 1H), 2.07 – 1.94 (m, 1H), 1.02 (dd, *J* = 6.9, 3.7 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 198.10, 150.44, 135.69, 130.65, 118.62, 83.08, 70.65, 49.09, 41.55, 36.88, 36.62, 17.74, 16.90; ESI-MS: [M+H][⊕] 207.1; HRMS (ESI): [M+H][⊕] calcd for C₁₃H₁₉O₂[⊕] 207.1380, found 207.1379; IR (KBr) v (cm⁻¹) 3077, 2963, 2876, 1683, 1639, 1470, 1385, 1259, 1063, 996, 923, 781; HPLC: Chiracel AD-H Column (250 mm); detected at 214 nm; *n*-hexane/*i*-propanol = 99/1; flow rate = 0.5 mL/min; Retention time: 23.5 min (minor), 27.5 min (major).

(3R,3aS,7aS)-7a-cyclohexyl-3-vinyl-2,3,3a,7a-tetrahydrobenzofuran-5(4H)-one (3f)

Light yellow oil. 27.1 mg, 55% yield. $[\alpha]_D^{25.3}$ +10.4 (*c* 0.75 CHCl₃) for 95% *ee*;¹H NMR (400 MHz, CDCl₃) δ (ppm) 6.60 (dd, J = 10.5, 1.3 Hz, 1H), 6.07 (d, J = 10.5 Hz, 1H), 5.56 (dt, J = 16.9, 9.9 Hz, 1H), 5.06 (dd, J = 9.4, 7.8 Hz, 2H), 3.92 (dd, J = 8.9, 6.5 Hz, 1H), 3.57 (dd, J = 8.9, 5.4 Hz, 1H), 2.98 (tt, J = 9.4, 6.0 Hz, 1H), 2.78

(td, J = 7.1, 1.5 Hz, 1H), 2.54 (qd, J = 17.9, 4.8 Hz, 2H), 1.92 – 1.75 (m, 4H), 1.72 – 1.61 (m, 2H), 1.30 – 1.21 (m, 2H), 1.19 – 1.04 (m, 3H); ¹³C NMR (10 0 MHz, CDCl₃) δ (ppm) δ 198.25, 151.07, 135.74, 130.27, 118.60, 82.70, 70.66, 49.09, 47.09, 41.66, 36.88, 27.88, 26.94, 26.46, 26.37, 26.28; ESI-MS: [M+H]^{\oplus} 247.2; HRMS (ESI): [M+H]^{\oplus} calcd for C₁₆H₂₃O₂^{\oplus} 247.1693, found 247.1690; IR (KBr) v (cm⁻¹) 3077, 3032, 2925, 2852, 1682, 1639, 1450, 1411, 1386, 1300, 1261, 1244, 1180, 1046, 995, 919, 820, 732; HPLC: Chiracel OJ-H Column (250 mm); detected at 214 nm; *n*-hexane/*i*-propanol = 95/5; flow rate = 0.7 mL/min; Retention time: 9.3 min (major), 10.5min (minor).

H H O 3g Light yellow oil. 14.0 mg, 37% yield. $[\alpha]_D^{23.3}$ –23.1 (c 0.385, CHCl₃) for 93% *ee*; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 6.56 (dd, J = 10.3, 1.2 Hz, 1H), 6.11 (d, J = 10.3 Hz, 1H), 5.95 (dd, J = 17.4, 10.6 Hz, 1H), 5.64 – 5.52 (m, 1H), 5.28 (ddd, J = 14.0, 11.4, 0.7 Hz, 2H), 5.13 – 5.06 (m, 2H), 4.14 (dd, J = 9.0, 7.5 Hz, 1H), 3.71 (dd, J = 9.0, 6.4 Hz, 1H), 3.17 – 3.07 (m, 1H), 2.72 – 2.65 (m, 1H), 2.53 (qd, J = 17.3, 5.3 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 197.65, 149.21, 139.02, 135.35, 130.60, 118.86, 115.74, 81.29, 71.53, 47.05, 45.89, 34.95; ESI-MS:

 $[M+H]^{\oplus}191.1$; HRMS (ESI): $[M+H]^{\oplus}$ calcd for $C_{12}H_{15}O_2^{\oplus}$ 191.1067, found 191.1066; IR (KBr) v (cm⁻¹) 3081, 2924, 2856, 1685, 1638, 1409, 1383, 1260, 1065, 1027, 998, 928, 791; HPLC: Chiracel AD-H Column (250 mm); detected at 214 nm; *n*-hexane/*i*-propanol = 95/5; flow rate = 0.7 mL/min; Retention time: 9.7 min (minor), 11.3 min (major).

(3R,3aS,7aS)-7a-allyl-3-vinyl-2,3,3a,7a-tetrahydrobenzofuran-5(4H)-one (3h)

Light yellow oil. 18.5 mg, 45% yield. $[\alpha]_D^{21.9}$ +12.0 (*c* 0.75, CHCl₃) for 98% *ee*; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 6.63 (dd, J = 10.4, 1.4 Hz, 1H), 6.04 (d, J = 10.4 Hz, 1H), 5.90 – 5.77 (m, 1H), 5.55 (dt, J = 17.0, 9.8 Hz, 1H), 5.17 (m, 2H), 5.07 (m, 2H), 4.04 (dd, J = 9.0, 7.1 Hz, 1H), 3.60 (dd, J = 9.0, 5.9 Hz, 1H), 3.06

(m, 1H), 2.74 – 2.67 (m, 1H), 2.60 – 2.44 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 197.62, 151.38, 135.67, 132.14, 130.15, 119.29, 118.73, 80.27, 71.04, 47.96, 43.87, 43.56, 35.84; ESI-MS: $[M+H]^{\oplus}$ 205.0; HRMS (ESI): $[M+H]^{\oplus}$ calcd for C₁₃H₁₇O₂^{\oplus} 205.1223, found 205.1223; IR (KBr) v (cm⁻¹) 3077, 2977, 2918, 2857, 1628, 1639, 1507, 1427, 1411, 1385, 1244, 1124, 1082, 997, 922, 851; HPLC: Chiracel AD-H Column (250 mm); detected at 214 nm; *n*-hexane/*i*-propanol = 99/1; flow rate = 0.7 mL/min; Retention time: 20.0 min (major), 17.6 min (minor).

(3R,3aS,7aS)-7a-benzyl-3-vinyl-2,3,3a,7a-tetrahydrobenzofuran-5(4H)-one (3i)

Light yellow oil. 21.3 mg, 42% yield. $[\alpha]_D^{26.3}$ –5.6 (*c* 0.79, CH₃OH) for 96% *ee*; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.32 – 7.20 (m, 5H), 6.58 (dd, J = 10.4, 1.5 Hz, 1H), 6.00 (d, J = 10.4 Hz, 1H), 5.52 (dt, J = 16.9, 9.9 Hz, 1H), 5.03 (dd, J = 9.4, 8.1 Hz, 2H), 3.96 (dd, J = 9.0, 7.0 Hz, 1H), 3.57 (dd, J = 9.0, 5.5 Hz, 1H), 3.08 – 2.91 (m, 3H), 2.75 – 2.65 (m, 1H), 2.47 (dd, J = 17.7, 1.7 Hz, 1H), 2.15 (dd, J = 17.7, 7.1 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 197.57, 151.51, 135.83, 135.63, 130.31, 129.99, 128.29, 126.98, 118.67, 80.85, 70.99, 47.97, 45.14, 43.90,

35.64; ESI-MS: $[M+H]^{\oplus}$ 255.0; HRMS (ESI): $[M+H]^{\oplus}$ calcd for $C_{17}H_{19}O_2^{\oplus}$ 255.1380, found 255.1376; IR (KBr) v (cm⁻¹)3062, 3028, 2936, 2858, 1620, 1638, 1603, 1493, 1454, 1424, 1385, 1238, 1117, 1079, 1030, 999, 923, 849, 761, 736; HPLC: Chiracel AD-H Column (250 mm); detected at 214 nm; *n*-hexane/*i*-propanol = 90/10; flow rate = 0.7 mL/min; Retention time: 7.0 min (minor), 7.9 min (major).

(3R,3aS,7aS)-7a-(4-bromophenyl)-3-vinyl-2,3,3a,7a-tetrahydrobenzofuran-5(4H)-one (3j)

Colorless solid. m.p. 81–82 °C, 27.3 mg, 43% yield. $[\alpha]_D^{26.5}$ –38.8 (*c* 0.90, CH₃OH) for 75% *ee*; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.51 (d, *J* = 8.4 Hz, 2H), 7.30 (d, *J* = 8.4 Hz, 2H), 6.60 (d, *J* = 10.2 Hz, 1H), 6.19 (d, *J* = 10.2 Hz, 1H), 5.64 (dt, *J* = 16.8, 9.7 Hz, 1H), 5.16 – 5.06 (m, 2H), 4.28 (t, *J* = 8.2 Hz, 1H), 3.95 – 3.87 (m, 1H),

3.17 – 3.06 (m, 1H), 2.80 (dd, J = 13.9, 6.3 Hz, 1H), 2.57 (qd, J = 17.2, 5.9 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 197.64, 148.78, 142.04, 134.59, 131.86, 130.09, 126.79, 121.97, 119.19, 82.31, 71.81, 48.79, 47.25, 35.31; EI-MS: [M]^{\oplus} 318.0; HRMS (EI): [M]^{\oplus} calcd for C₁₆H₁₅O₂Br^{\oplus} 318.0250, found 318.0259; IR (KBr) v (cm⁻¹) 3078, 2970, 2868, 1683, 1640, 1587, 1485, 1394, 1234, 1123, 1069, 1008, 926, 824, 772; HPLC: Chiracel OD-H Column (250 mm); detected at 214 nm; *n*-hexane/*i*-propanol = 90/10; flow rate = 0.7 mL/min; Retention time: 11.8 min (minor), 12.8 min (major).

2-((3R,3aS,7aS)-5-oxo-3-vinyl-3,3a,4,5-tetrahydrobenzofuran-7a(2H)-yl)ethyl acetate (3k)

Light yellow oil. 27.2 mg, 55% yield. $[\alpha]_D^{26.2}$ –10.0 (*c* 1.5, CH₃OH) for 99% *ee*; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 6.64 (dd, *J* = 10.4, 1.4 Hz, 1H), 6.04 (d, *J* = 10.4 Hz, 1H), 5.53 (dt, *J* = 17.0, 9.8 Hz, 1H), 5.13 – 5.03 (m, 2H), 4.34 – 4.18 (m, 2H), 4.05 (dd, *J* = 9.1, 7.4 Hz, 1H), 3.58 (dd, *J* = 9.1, 6.2 Hz, 1H), 3.08 (ddd, *J* = 16.2, 9.5, 6.9 Hz, 1H), 2.77 – 2.69 (m, 1H), 2.61 (dd, *J* = 17.7, 2.7 Hz, 1H), 2.53 (dd, *J* = 17.7, 6.7 Hz, 1H), 2.19 – 2.01 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 197.18, 170.75, 150.88, 135.51, 130.24, 118.99, 79.56, 71.10, 60.10, 47.65, 44.71,

37.54, 35.45, 20.93; ESI-MS: $[M+Na]^{\oplus}$ 273.2; HRMS (ESI): $[M+H]^{\oplus}$ calcd for $C_{14}H_{19}O_4^{\oplus}$ 251.1278, found 251.1276; IR (KBr) v (cm⁻¹) 3079, 2939, 1736, 1682, 1640, 1424, 1387, 1367, 1241, 1037, 925, 803; HPLC: Chiracel AD-H Column (250 mm); detected at 214 nm; *n*-hexane/*i*-propanol = 90/10; flow rate = 0.7 mL/min; Retention time: 13.4 min (minor), 16.7 min (major).

(3*R*,3a*S*,7a*S*)-7a-(2-((tert-butyldimethylsilyl)oxy)ethyl)-3-vinyl-2,3,3a,7a-tetrahydrobenzofuran-5(4*H*)-one (3m)

Light yellow oil. 38.6 mg, 60% yield. $[\alpha]_D^{24.1}$ +54.4 (*c* 0.25, CHCl₃) for 99% *ee*; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 6.63 (dd, J = 10.4, 1.4 Hz, 1H), 6.00 (d, J = 10.4 Hz, 1H), 5.54 (dt, J = 17.0, 9.8 Hz, 1H), 5.11 –

5.01 (m, 2H), 4.04 (dd, J = 9.0, 7.3 Hz, 1H), 3.85 – 3.73 (m, 2H), 3.56 (dd, J = 9.0, 6.2 Hz, 1H), 3.06 (ddd, J = 16.2, 9.4, 6.9 Hz, 1H), 2.89 – 2.80 (m, 1H), 2.58 (qd, J = 17.6, 4.8 Hz, 2H), 2.02 (ddd, J = 13.1, 7.2, 5.9 Hz, 1H), 1.93 (dt, J = 14.2, 5.7 Hz, 1H), 0.87 (s, 9H), 0.04 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 198.02, 151.95, 135.89, 129.82, 118.64, 80.30, 70.94, 58.67, 47.82, 44.53, 41.75, 35.64, 25.83, 18.13, -5.44, -5.46; ESI-MS: [M+H]^{\oplus} 323.1; HRMS (ESI): [M+H]^{\oplus} calcd for C₁₈H₃₁O₃Si^{\oplus} 323.2037, found 323.2036; IR (KBr) v (cm⁻¹) 3079, 2953, 2929,

2856, 1685, 1471, 1387, 1255, 1092, 999, 920, 837, 811; HPLC: Chiracel AD-H Column (250 mm); detected at 214 nm; *n*-hexane/*i*-propanol = 99/1; flow rate = 0.7 mL/min; Retention time: 10.1 min (major), 12.8 min (minor).

Ethyl 3-((3R,3aS,7aS)-5-oxo-3-vinyl-3,3a,4,5-tetrahydrobenzofuran-7a(2H)-yl)propanoate (3n)

 $H = \begin{pmatrix} 400 \\ 400 \\ 1H \\ 0 \\ 3n \end{pmatrix}$

Colorless oil. 23.0 mg, 44% yield. $[\alpha]_D^{23.4}$ +7.2 (c 0.84, CHCl₃) 97% *ee*; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 6.62 (dd, J = 10.4, 1.3 Hz, 1H), 6.03 (d, J = 10.4 Hz, 1H), 5.54 (dt, J = 17.0, 9.8 Hz, 1H), 5.07 (dd, J = 13.5, 7.3 Hz, 2H), 4.14 (q, J = 7.1 Hz, 2H), 4.03 (dd, J = 9.0, 7.3 Hz, 1H), 3.58 (dd, J = 9.0, 6.0 Hz, 1H), 3.13 – 3.02 (m, 1H), 2.70 – 2.44 (m, 5H), 2.18 – 2.01 (m, 2H), 1.26 (t, J = 7.1 Hz, 3H).¹³C NMR (100MHz, CDCl₃) δ (ppm) 197.32, 173.05, 150.88, 135.59, 130.31, 118.93, 79.96, 71.20, 60.66, 47.79, 44.22, 35.60, 33.49, 28.91, 14.21; ESI-MS: [M+H]^{\oplus} 265;

HRMS (ESI): $[M+H]^{\oplus}$ calcd for $C_{15}H_{21}O_4^{\oplus}$ 265.1434, found 265.1432; IR (KBr) v (cm⁻¹) 3358, 2921, 2852, 1730, 1681, 1632, 1469, 1445, 1424, 1382, 1266, 1179, 1029, 923, 864, 797, 737, 703; HPLC: Chiracel AD-H Column (250 mm); detected at 214 nm; *n*-hexane/*i*-propanol = 90/10; flow rate = 0.7 mL/min; Retention time: 14.7 min (minor), 17.0 min (major).

Tert-butyl(2-((3*R*,3a*S*,7a*S*)-5-oxo-3-vinyl-3,3a,4,5-tetrahydrobenzofuran-7a(2*H*)-yl)ethyl)carbamate (3p)

Colorless oil. 14.5 mg, 47% yield (0.1 mmol). $[\alpha]_D^{23.3}$ +8.3 (c 0.71, CHCl₃) >99% *ee*; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 6.67 (dd, J = 10.4, 1.2 Hz, 1H), 6.03 (d, J = 10.4 Hz, 1H), 5.51 (dt, J = 17.0, 9.8 Hz, 1H), 5.14 – 4.93 (m, 3H), 4.07 (dd, J = 9.0, 7.6 Hz, 1H), 3.56 (dd, J = 9.1, 6.2 Hz, 1H), 3.32 (d, J = 5.9 Hz, 2H), 3.12 – 3.00 (m, 1H), 2.70 (t, J = 7.6 Hz, 1H), 2.61 (dd, J = 17.8, 2.2 Hz, 1H), 2.50 (dd, J = 17.8, 6.8 Hz, 1H), 2.03 (dt, J = 13.3, 4.9 Hz, 1H), 1.90 (dt, J = 14.3, 7.2 Hz, 1H), 1.45 (s, 9H).¹³C NMR (100MHz, CDCl₃) δ (ppm) 197.15, 155.90, 150.84, 135.65, 130.44,

119.08, 80.48, 79.37, 71.31, 47.41, 44.80, 38.20, 36.35, 35.53, 28.44; ESI-MS: $[M+Na]^{\oplus}$ 330; HRMS (ESI): $[M+H]^{\oplus}$ calcd for C₁₇H₂₆NO₄^{\oplus} 308.1856, found 308.1854; IR (KBr) v (cm⁻¹) 3356, 2975, 2929, 1684, 1516, 1390, 1365, 1270, 1250, 1171, 1039, 998, 923, 866, 781; HPLC: Chiracel AD-H Column (250 mm); detected at 214 nm; *n*-hexane/*i*-propanol = 90/10; flow rate = 0.7 mL/min; Retention time: 13.7 min (minor), 15.7 min (major).

(3R,3aS,7aS)-7a-(3-bromopropyl)-3-vinyl-2,3,3a,7a-tetrahydrobenzofuran-5(4H)-one (3q)

H H O 3q Br Light yellow oil. 23.1 mg, 41% yield. $[\alpha]_D^{20.6}$ +1.9 (*c* 0.47, CHCl₃) for 98% *ee*; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 6.63 (dd, J = 10.4, 1.4 Hz, 1H), 6.04 (dd, J = 10.4, 0.6 Hz, 1H), 5.54 (dt, J = 17.0, 9.8 Hz, 1H), 5.08 (ddd, J = 8.5, 2.0, 1.2 Hz, 2H), 4.04 (dd, J = 9.1, 7.3 Hz, 1H), 3.58 (dd, J = 9.1, 6.1 Hz, 1H), 3.46 (t, J = 6.4 Hz, 2H), 3.08 (ddd, J = 16.1, 9.4, 6.9 Hz, 1H), 2.72 – 2.44 (m, 3H), 2.08 – 1.91 (m, 3H), 1.84 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 197.32, 151.17, 135.57, 130.31, 118.95, 80.28, 71.13, 47.77, 44.45, 37.51, 35.69, 33.59, 27.28;

ESI-MS: $[M+H]^{\oplus}$ 285.0; HRMS (ESI): $[M+H]^{\oplus}$ calcd for $C_{13}H_{18}O_2Br^{\oplus}$ 285.0485, found 285.0485; IR (KBr) v (cm⁻¹) 3076, 2927, 2855, 1688, 1638, 1438, 1410, 1385, 1256, 1063, 921, 792; HPLC: Chiracel AD-H Column (250 mm); detected at 214 nm; *n*-hexane/*i*-propanol = 90/10; flow rate = 0.7 mL/min; Retention time: 10.3 min (minor), 11.6 min (major).

S18

(3R,3aS,7aS)-7a-(3-iodopropyl)-3-vinyl-2,3,3a,7a-tetrahydrobenzofuran-5(4H)-one (3r)

Light yellow oil. 33.8 mg, 51% yield. $[\alpha]_D^{26.0}$ –27.3 (*c* 0.8, CHCl₃) for 99% *ee*; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 6.62 (dd, *J* = 10.4, 1.3 Hz, 1H), 6.03 (d, *J* = 10.4 Hz, 1H), 5.53 (dt, *J* = 17.0, 9.8 Hz, 1H), 5.08 (dd, *J* = 13.9, 5.1 Hz, 2H), 4.04 (dd, *J* = 9.0, 7.3 Hz, 1H), 3.57 (dd, *J* = 9.1, 6.1 Hz, 1H), 3.23 (t, *J* = 6.7 Hz, 2H), 3.07 (ddd, *J* = 16.1, 9.4, 6.9 Hz, 1H), 2.71 – 2.45 (m, 3H), 2.04 – 1.74 (m, 4H).; ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 197.31, 151.18, 135.55, 130.27, 118.92, 80.19, 71.11, 47.75, 44.44, 39.78, 35.68, 27.99, 6.36; EI-MS: [M] [⊕] 332.0; HRMS (EI):

 $[M]^{\oplus}$ calcd for $C_{13}H_{17}O_2I^{\oplus}$ 332.0268, found 332.0269; IR (KBr) v (cm⁻¹) 3078, 2959, 2932, 2872, 1683, 1639,1466, 1384, 1245, 1122, 1085, 998, 922, 792; HPLC: Chiracel AD-H Column (250 mm); detected at 214 nm; *n*-hexane/*i*-propanol = 95/5; flow rate = 0.7 mL/min; Retention time: 19.9 min (minor), 22.1 min (major).

(3R,3aR,4R,7aR)-4,6,7a-trimethyl-3-vinyl-2,3,3a,7a-tetrahydrobenzofuran-5(4H)-one (3s)

Light yellow oil. 39.0 mg, 95% yield. $[\alpha]_D^{23.4}$ +26.6 (*c* 0.96, CHCl₃) for 79% *ee*; ¹H NMR (400 MHz, CDCl₃) δ 6.33 (s, 1H), 5.52 (dt, *J* = 17.0, 10.0 Hz, 1H), 5.09 – 4.90 (m, 2H), 4.00 (dd, *J* = 8.7, 6.5 Hz, 1H), 3.58 (dd, *J* = 8.8, 3.3 Hz, 1H), 3.11 – 2.99 (m, 1H), 2.71 – 2.50 (m, 2H), 1.78 (s, 3H), 1.45 (s, 3H), 1.29 (d, *J* = 6.7 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 200.07, 146.79, 136.51, 134.59, 118.10, 79.89, 71.58, 54.24, 46.83, 40.55, 24.87, 15.76, 12.87.; ESI-MS: [M+H]^{\oplus} 207.2; HRMS (ESI): [M+H]^{\oplus} calcd for C₁₃H₁₉O₂^{\oplus} 207.1380, found 207.1378; IR (KBr) v (cm⁻¹)

2973, 2925, 2855, 1682, 1639, 1446, 1373, 1352, 1193, 1125, 1086, 1036, 998, 918, 876; HPLC: Chiracel IC-H Column (250 mm); detected at 214 nm; *n*-hexane/*i*-propanol = 95/5; flow rate = 0.5 mL/min; Retention time: 15.6 min (minor), 17.6 min (major).

(3*S*,3*a*R,7a*R*)-7a-methyl-3-vinyloctahydrobenzofuran-5-ol (5a)

¹H NMR (400 MHz, CDCl₃) δ (ppm) 5.84 – 5.73 (m, 1H), 5.10 (dd, J = 13.6, 7.8 Hz, 2H), 3.99 (t, J = 8.8 Hz, 1H), 3.76 (t, J = 9.0 Hz, 1H), 3.61 – 3.52 (m, 1H), 3.40 – 3.31 (m, 1H), 1.95 (ddd, J = 18.4, 11.5, 4.3 Hz, 2H), 1.82 – 1.65 (m, 4H), 1.58 – 1.45 (m, 2H), 1.17 (s, 3H);¹³C NMR (100 MHz, CDCl₃) δ (ppm) 135.58, 117.15, 80.80, 69.97, 68.72, 46.66, 46.20, 34.23, 33.74, 30.93, 26.88; ESI-MS: [M+H]^{\oplus} 182.9; HRMS (ESI): [M+H]^{\oplus} calcd for C₁₁H₁₉O₂^{\oplus} 183.1380, found 183.1379;IR (KBr) v (cm⁻¹) 3385, 3071, 2967, 2934, 2869, 1639, 1481,1367, 1300,

1265, 1140, 1054, 1029, 998, 917, 884, 793;

5. THE KINETIC RESOLUTION of (±)-3a

A dried Schlenk flask was charged with CuCl (2.0 mg, 0.02 mmol, 10 mol%), ligand L21 (10.0 mg, 0.024 mmol, 12 mol%), *t*-BuONa (3.0 mg, 0.030 mmol, 15 mol%) and anhydrous THF (2 mL) under argon atmosphere. After the mixture was stirred at -40 °C for 10 min, DEMS (32 μ L, 0.2 mmol, 1.0 equiv) was added, and then stirred at -40 °C for another 10 min. A solution of substrate (±)-3a (0.20 mmol) in anhydrous THF (2 mL) was added, followed by anhydrous MeOH (20 μ L, 0.5 mmol, 2.5 equiv). The resulting mixture was stirred at -40 °C for 48 hours. Then the reaction mixture was filtered, washed with EtOAc (10 mL × 3) and concentrated in vacuo. The residue was purified by flash silica gel (300–400 mesh) chromatography to afford the desired products (+)-3a and (+)-4a. (Notice: The racemic 4a were prepared according to the same procedure above except for using rac-BINAP instead of L21, and the reaction was stirred under room temperature.)

(3R,3aS,7aS)-7a-methyl-3-vinyl-2,3,3a,7a-tetrahydrobenzofuran-5(4H)-one ((+)-3a)

Light yellow oil. 12 mg, 34% yield. $[\alpha]_D^{24.0}$ +41.3 (c 0.4, CHCl₃) 82% *ee*; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 6.63 (dd, J = 10.3, 1.2 Hz, 1H), 5.99 (d, J = 10.3 Hz, 1H), 5.54 (dt, J = 17.0, 9.8 Hz, 1H), 5.08 (dd, J = 13.6, 6.3 Hz, 2H), 4.09 (dd, J = 9.0, 7.7 Hz, 1H), 3.56 (dd, J = 9.1, 6.7 Hz, 1H), 3.17 – 3.06 (m, 1H), 2.65 – 2.56 (m, 2H), 2.51 (dd, J = 17.7, 7.1 Hz, 1H), 1.48 (s, 3H).¹³C NMR (100MHz, CDCl₃) δ (ppm) 197.61, 152.72, 135.75, 129.59, 118.85, 78.83, 71.15, 47.61, 46.33, 35.67, 25.27; ESI-MS: [M+Na]^{\oplus} 201.1; HRMS (ESI): [M+H]^{\oplus} calcd for C₁₁H₁₅O₂^{\oplus}

179.1067, found 179.1066; IR (KBr) v (cm⁻¹) 2971, 2927, 2857, 1684, 1653, 1648, 1637, 1457, 1384, 1286, 1232, 1154, 1090, 1046, 1030, 924, 864, 810; HPLC: Chiracel AD-H Column (250 mm); detected at 214 nm; *n*-hexane/*i*-propanol = 95/5; flow rate = 0.7 mL/min; Retention time: 9.4 min (minor), 11.5 min (major).

(3S,3aR,7aR)-7a-methyl-3-vinylhexahydrobenzofuran-5(4H)-one ((+)4a)

Colorless oil. 16 mg, 45% yield. $[\alpha]_D^{24.0}$ +22.1 (*c* 0.52, CHCl₃) for 44% *ee*. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 5.75 – 5.63 (m, 1H), 5.12 (t, *J* = 13.5 Hz, 2H), 4.02 (dd, *J* = 8.8, 7.5 Hz, 1H), 3.73 (t, *J* = 8.8 Hz, 1H), 3.26 – 3.16 (m, 1H), 2.54 – 2.43 (m, 1H), 2.42 – 2.25 (m, 3H), 2.15 (tdd, *J* = 12.5, 8.0, 4.6 Hz, 2H), 2.02 – 1.92 (m, 1H), 1.33 (s, 3H).;¹³C NMR (100 MHz, CDCl₃) δ (ppm) 212.85, 134.42, 118.05, 81.58, 69.80, 47.00, 46.81, 38.86, 35.66, 33.85, 27.17.; ESI-MS: [M+Na][⊕] 203.1; HRMS (ESI): [M+H][⊕] calcd for C₁₁H₁₇O₂[⊕] 181.1223, found 181.1224; IR

(KBr) v (cm⁻¹) 3087, 2967, 2870, 1717, 1639, 1514, 1375, 1420, 1246, 1180, 1052, 919, 685; Chiral GC Cyclosil-B(30×0.25×0.25, 15min, 150 °C), Retention time: 11.8 min (minor), 11.4 min (major).

6. TRANSFORMATION OF THE CYCLIZATION PRODUCTS

6.1 The Transformation of Cyclization Product 3r.

(3*R*,3a*S*,6a*R*,9a*S*)-3-vinyloctahydroindeno[3a,4-b]furan-5(6*H*)-one (6r)To a solution of 3r (66 mg, 0.2 mmol) in dry THF (4 mL) was added *t*-BuLi(1.3M in pentane, 0.20 mL, 1.3 equiv) in 10 minutes at -78 °C. The resulting mixture was stirred for 10 min. The reaction mixture was quenched by MeOH (0.2 mL) and water (10 mL), extracted with EtOAc (10 mL × 3), dried over anhydrous Na₂SO₄, filtered and concentrated in vacuo. The residue was purified by flash column chromatography (petroleum ether/EtOAc = 15/1) to afford 6r (17.7 mg, 43%) as colorless oil. $[\alpha]_D^{27.5}$ –51.7 (*c* 0.20, CHCl₃) for 99% *ee*; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 5.78 – 5.61 (m, 1H), 5.18 – 5.07 (m, 2H), 4.00 (t, *J* = 8.6 Hz, 1H), 3.76 (t, *J* = 9.0 Hz, 1H), 3.34 – 3.18 (m, 1H), 2.45 (dd, *J* = 16.2, 5.3 Hz, 1H), 2.42 – 2.31 (m, 2H), 2.30 – 2.17 (m, 2H), 2.17 – 2.05 (m, 1H), 2.03 – 1.91 (m, 2H), 1.73 (qdd, *J* = 12.2, 8.5, 4.4 Hz, 2H), 1.60 – 1.54 (m, 1H), 1.32 – 1.22 (m, 1H);

¹³C NMR (100 MHz, CDCl₃) δ (ppm) 212.77, 134.60, 117.83, 93.05, 68.93, 46.35, 45.22, 43.65, 42.41, 38.04, 37.64, 31.21, 22.90; ESI-MS: [M+Na]^{\oplus} 229.2; HRMS (ESI): [M+H]^{\oplus} calcd for C₁₃H₁₉O₂^{\oplus} 207.1380, found 207.1378; IR (KBr) v (cm⁻¹) 3078, 2924, 2868, 1716, 1653, 1418, 1261, 1030, 918, 901. Chiral GC Cyclosil-B(30×0.25×0.25, 25min, 150 °C), Retention time: 21.1 min (minor), 21.4 min (major).

(3*R*,3*a*,4*R*,7*aS*)-3-vinyl-2,3,3a,4-tetrahydro-5*H*-4,7a-propanobenzofuran-5-one (7r) To a solution of 3r (66 mg, 0.2 mmol) in dry THF (4 mL) was added a solution of LiHMDS (1 M THF solution, 0.24 ml, 1.0 equiv) at 0 °C. The resulting mixture was stirred at 0 °C for 12 h. The reaction mixture was quenched by aqueous saturated NH₄Cl (10 mL) and extracted with EtOAc (10 mL × 3). The combined organic phases were dried over anhydrous Na₂SO₄, filtered and concentrated in vacuo. The residue was purified by flash column chromatography (petroleum ether/EtOAc = 15/1) to afford 7r (34.7 mg, 85%) as white solid . White solid. m. p. 52–54°C. [*a*]_D^{27.5} –14.0 (*c* 0.45, CHCl₃) for 99% *ee*; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 6.65 (dd, *J* = 10.1, 2.0 Hz, 1H), 6.17 (dd, *J* = 10.1, 1.0 Hz, 1H), 5.62 – 5.48 (m, 1H), 4.98 (dd, *J* = 19.7, 13.6 Hz, 2H), 4.25 (dd, *J* = 9.4, 8.5 Hz, 1H), 3.60 (dd, *J* = 9.5, 5.9 Hz, 1H), 3.13 – 3.02 (m, 1H), 2.83 (s, 1H), 2.13 (dt, *J* = 10.4, 2.0 Hz, 1H), 1.89 (dd, *J* = 12.3, 4.6 Hz, 1H), 1.84 – 1.77 (m, 2H), 1.65 – 1.57 (m, 2H), 1.50 – 1.39 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 200.64, 152.89, 137.44, 133.67, 118.07, 80.27, 72.68, 54.11, 45.76, 44.01, 31.81, 29.64, 19.78; ESI-MS: [M+H][⊕] 205.1; HRMS (ESI): [M+H][⊕] calcd for C₁₃H₁₇O₂[⊕] 205.1224, found 205.1223; IR (KBr) v (cm⁻¹) 3068, 3043, 2930, 2857, 1670, 1634, 1616, 1470, 1284, 1254, 1064, 1051, 995, 929, 829, 821, 755; HPLC: Chiracel OJ-H Column (250 mm); detected at 214 nm; *n*-hexane/*i*-propanol = 95/5; flow rate = 0.7 mL/min; Retention time:11.0 min (major), 12.1 min (minor).

6.2 The Transformation of Cyclization Product 3a.

(*R*)-3-(1-hydroxybut-3-en-2-yl)-4-methylphenol (8a) *p*-Toluenesulfonic acid monohydrate (45.6 mg, 0.24mmol) was added to a solution of **3a** (21.4mg, 0.12mmol) in DCM/acetone (0.5 mL/0.5 mL). The mixture was stirred at room temperature overnight. Then it was quenched by aqueous saturated NaHCO₃ (10 mL), extracted with EtOAc (10 mL × 3), dried over anhydrous Na₂SO₄, filtered and concentrated in vacuo. The residue was purified by flash column chromatography (petroleum ether/EtOAc = 2/1) to afford **8a** (13 mg, 61%) as light yellow solid, m.p. 46-47°C. $[\alpha]_D^{23.8}$ –40.8 (c 0.45, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.02 (d, *J* = 8.2 Hz, 1H), 6.68 (d, *J* = 2.6 Hz, 1H), 6.62 (dd, *J* = 8.2, 2.6 Hz, 1H), 5.88 (ddd, *J* = 17.4, 10.3, 7.2 Hz, 1H), 5.63 (s, 1H), 5.15 (dd, *J* = 21.7, 13.7 Hz, 2H), 3.81 (d, *J* = 6.7 Hz, 2H), 3.73 (dd, *J* = 13.7, 7.1 Hz, 1H), 2.25 (s, 3H), 1.84 (s, 1H). ¹³C NMR (100MHz, CDCl₃) δ (ppm) 154.16, 139.81, 137.76, 131.70, 128.53, 117.17, 113.66, 113.59, 65.16, 47.75, 18.67; ESI-MS: [M-H]⁻ 177; HRMS (ESI): [M-H]⁻ calcd for C₁₁H₁₃O₂⁻ 177.0921, found 177.0921; IR (KBr) v (cm⁻¹) 3362, 3145, 3023, 2921, 2882, 2359, 1659, 1638, 1612, 1510, 1469, 1388, 1262, 1060, 1021, 997, 915, 868, 810, 738. HPLC: Chiracel AD-H Column (250 mm); detected at 214 nm; *n*-hexane/*i*-propanol = 90/10; flow rate = 0.7 mL/min; Retention time: 19.4 min (minor), 24.5 min (major).

7. ASYMMETRIC DEAROMATIZATION MODIFICATION Of 9 And 13

7.1 ASMMETRIC DEAROMATIZATION MODIFICATION OF 9

(2R,3R,4S,5R,6R)-2-(acetoxymethyl)-6-(2-(4-oxo-1-(prop-2-yn-1-yloxy)cyclohexa-2,5-dien-1-yl)ethoxy) tetrahydro-2H-pyran-3,4,5-triyl triacetate (10) Salidroside tetraacetate 9 (7.0 mmol, 1.0 eq) was dissolved in 4 mL DCM, then 4mL propargyl alcohol (10 eq) was added, the mixture was cooled to 0 °C and treated with phenyliodine (III) diacetate (PIDA, 3.38g, 1.5 eq) in several portions. The resulting mixture was warmed to room temperature and stirred 1.5h. Then it was diluted with water (30 mL) and extracted with DCM (30 mL \times 3). The combined organic phases were washed with brine (30 mL), dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by flash column chromatography (petroleum ether/EtOAc = 1/1) to afford the desired product 10. yellow oil, 46% yield, $\left[\alpha\right]_{D}^{30.3}$ -9.0 (c 2.75, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ (ppm) 6.86 – 6.76 (m, 2H), 6.37 – 6.30 (m, 2H), 5.17 (t, J = 9.5 Hz, 1H), 5.07 (t, J = 9.7 Hz, 1H), 4.95 (dd, J = 9.4, 8.0 Hz, 1H), 4.45 (d, J = 7.9 Hz, 1H), 4.25 (dd, J = 12.3, 4.7 Hz, 1H), 4.13 (dd, J = 12.3, 2.3 Hz, 1H), 4.01 – 3.90 (m, 3H), 3.70 – 3.56 (m, 2H), 2.46 (t, J = 2.4 Hz, 1H), 2.10 – 1.98 (m, 14H). ¹³C NMR (100 MHz, CDCl₃) δ(ppm) 184.87, 170.57, 170.16, 169.34, 169.14, 149.31, 149.29, 131.21, 131.18, 100.39, 80.26, 75.09, 74.64, 72.76, 71.75, 71.18, 68.31, 64.29, 61.82, 53.34, 39.40, 20.67, 20.62, 20.52. ESI-MS: [M+Na][⊕] 545.2; HRMS (ESI): [M+H][⊕] calcd for C₂₅H₃₁O₁₂[⊕] 523.1810, found 523.1803; IR (KBr) v (cm⁻¹) 2940, 2383, 2348, 2328, 1755, 1670, 1631, 1431, 1369, 1228, 1040, 906, 860, 757, 600.

(2R,3R,4S,5R,6R)-2-(acetoxymethyl)-6-(2-(1-(buta-2,3-dien-1-yloxy)-4-oxocyclohexa-2,5-dien-1-yl)etho xy)tetrahydro-2*H*-pyran-3,4,5-triyl triacetate (11) To a well-stirred solution of 10 (0.2 mmol, 1.0 eq) in dioxane (2 mL) was added paraformaldehyde (30 mg, 1.0 mmol, 5 eq), CuBr (14.3 mg, 0.1 mmol, 0.5 eq) and diisopropylamine (56 ul, 0.4 mmol, 2.0 eq) under argon atmosphere. The resulting mixture was stirred at 110 °C for 30min. After cooled to room temperature, the reaction mixture was filtered and washed with

DCM (10 mL ×3). The combined organic phases were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by flash column chromatography (petroleum ether/EtOAc = 2/1) to afford the pure substrates **11**. yellow oil, 43.6% yield, $[\alpha]_D^{30.3}$ -10.6 (c 1.825, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ (ppm) 6.80 – 6.70 (m, 2H), 6.27 (ddd, *J* = 10.2, 4.4, 1.8 Hz, 2H), 5.19 – 5.09 (m, 2H), 5.02 (t, *J* = 9.7 Hz, 1H), 4.91 (dd, *J* = 9.5, 8.0 Hz, 1H), 4.73 (dt, *J* = 6.5, 2.5 Hz, 2H), 4.41 (d, *J* = 7.9 Hz, 1H), 4.20 (dd, *J* = 12.3, 4.7 Hz, 1H), 4.08 (dd, *J* = 12.3, 2.4 Hz, 1H), 3.90 (dt, *J* = 10.1, 6.2 Hz, 1H), 3.82 (dt, *J* = 6.8, 2.5 Hz, 2H), 3.63 (ddd, *J* = 9.9, 4.7, 2.4 Hz, 1H), 3.55 (dt, *J* = 10.1, 6.4 Hz, 1H), 2.04 (s, 3H), 2.02 – 1.94 (m, 11H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 209.18, 185.15, 170.61, 170.22, 169.37, 169.17, 150.48, 150.43, 130.75, 130.69, 100.48, 88.48, 76.19, 74.04, 72.81, 71.80, 71.22, 68.34, 64.46, 63.55, 61.85, 39.53, 20.71, 20.67, 20.57. ESI-MS: [M+Na][⊕] 559.2; HRMS (ESI): [M+H][⊕] calcd for C₂₆H₃₃O₁₂[⊕] 537.1967, found 537.1958; IR (KBr) v (cm⁻¹) 2958, 2860, 2376, 2348, 2315, 1755, 1670, 1630, 1432, 1368, 1226, 1038, 906, 860, 672, 665, 600.

(2*R*,3*R*,4*S*,5*R*,6*R*)-2-(acetoxymethyl)-6-(2-((3*R*,3a*S*,7a*S*)-5-oxo-3-vinyl-3,3a,4,5-tetrahydrobenzofuran-7a(2H)-yl)ethoxy)tetrahydro-2*H*-pyran-3,4,5-triyl triacetate (12) The reaction was carried out in 0.1mmol accroding to general procedure to afford 12 (23 mg, 43% yield) as yellow oil. $[\alpha]_D^{30.4}$ -8.2 (c 0.84, CHCl₃) for d.r. = 97:3; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 6.57 (dd, *J* = 10.4, 1.1 Hz, 1H), 6.00 (d, *J* = 10.4 Hz, 1H), 5.53 (dt, *J* = 17.0, 9.8 Hz, 1H), 5.19 (t, *J* = 9.5 Hz, 1H), 5.11 – 5.04 (m, 3H), 4.97 (dd, *J* = 9.4, 8.0 Hz, 1H), 4.51 (d, *J* = 7.9 Hz, 1H), 4.26 (dd, *J* = 12.3, 4.7 Hz, 1H), 4.15 (dd, *J* = 12.3, 2.3 Hz, 1H), 4.05 (m, 2H), 3.73 – 3.66 (m, 2H), 3.57 (dd, *J* = 9.0, 6.1 Hz, 1H), 3.11 – 3.01 (m, 1H), 2.78 (m, 1H), 2.57 – 2.51 (m, 2H), 2.09 (s, 3H), 2.06 – 1.99 (m, 11H). ¹³C NMR (100 MHz, CDCl₃) δ 197.72, 170.74, 170.36, 169.52, 169.36, 151.30, 135.80, 130.17, 118.95, 100.68, 79.96, 72.98, 72.02, 71.40, 71.18, 68.53, 65.36, 62.02, 47.92, 44.57, 38.59, 35.63, 20.85, 20.81, 20.71. ESI-MS: [M+Na][⊕] 561.2; HRMS (ESI): [M+H][⊕] calcd for C₂₆H₃₅O_{12[⊕]} 539.2123, found 539.2117; IR (KBr) v (cm⁻¹) 2920, 2851, 2378, 2348, 2302, 1755, 1679, 1631, 1368, 1224, 1038, 906, 676, 664. HPLC: Chiracel OD-H Column (250 mm); detected at 214 nm; *n*-hexane/*i*-propanol = 90/10; flow rate = 0.7 mL/min; Retention time: 27.7 min (minor), 30.3 min (major).

7.2 ASMMETRIC DEAROMATIZATION MODIFICATION Of 13

(8S,9S,10S,13S,14S)-13-methyl-10-(prop-2-yn-1-yloxy)-7,8,9,10,11,12,13,14,15,16-decahydro-3H-cyclop enta[a]phenanthrene-3,17(6H)-dione (16) Estrone 13 (8.0 mmol, 1.0 eq) was dissolved in 5 mL DCM, then 4.65mL propargyl alcohol (10 eq) was added, the mixture was cooled to 0 °C and treated with phenyliodine (III) diacetate (PIDA, 3.86g, 1.5 eq) in several portions. The resulting mixture was warmed to room temperature and stirred 2h. Then it was diluted with water (30 mL) and extracted with DCM (30 mL \times 3). The combined organic phases were washed with brine (30 mL), dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by flash column chromatography (petroleum ether/EtOAc = 2/1) to afford the desired product 16. light yellow solid, m.p. 137-138 °C, 38.5% yield, d.r.= 91:9. $[\alpha]_D^{24.2}$ +24.8 (c 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.06 (d, J = 10.3 Hz, 1H), 6.36 (dd, J = 10.3, 1.7 Hz, 1H), 6.20 (s, 1H), 3.86 (d, J = 2.2 Hz, 2H), 2.62 (td, J = 12.7, 4.3 Hz, 1H), 2.53 – 2.34 (m, 3H), 2.26 - 2.02 (m, 4H), 2.00 - 1.91 (m, 1H), 1.90 - 1.83 (m, 1H), 1.82 - 1.74 (m, 1H), 1.69 - 1.56 (m, 1H), 1.31 – 1.11 (m, 4H), 0.98 (s, 3H).¹³C NMR (100MHz, CDCl₃) δ(ppm) 220.23, 185.07, 163.26, 149.35, 131.62, 126.61, 80.13, 76.40, 74.64, 55.31, 52.78, 50.20, 47.80, 35.65, 34.63, 32.55, 32.19, 31.13, 22.17, 22.01, 13.87; EI-MS: $[M]^{\oplus}$ 324; HRMS (ESI): $[M+H]^{\oplus}$ calcd for $C_{21}H_{25}O_3^{\oplus}$ 325.1798, found 325,1799; IR (KBr) v (cm⁻¹) 2943, 2856, 2374, 2348, 2301, 1737, 1632, 1610, 1453, 1374, 1289, 1074, 1019, 890, 753, 663.

(8*S*,9*S*,10*S*,13*S*,14*S*)-10-(buta-2,3-dien-1-yloxy)-13-methyl-7,8,9,10,11,12,13,14,15,16-decahydro-3*H*-cy clopenta[a]phenanthrene-3,17(6*H*)-dione (14) To a well-stirred solution of 16 (3.0 mmol, 1.0 eq) in dioxane (25 mL) was added paraformaldehyde (450 mg, 15 mmol, 5 eq), CuBr (219 mg, 1.5 mmol, 0.5 eq) and diisopropylamine (840 ul, 6.0 mmol, 2.0 eq) under argon atmosphere. The resulting mixture was stirred at 110 °C for 1 h. After cooled to room temperature, the reaction mixture was filtered and washed with DCM (30 mL ×3). The combined organic phases were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by flash column chromatography (petroleum ether/EtOAc

= 2/1) to afford the pure substrates **14**. yellow oil, 38.8% yield, d.r.=91:9. $[α]_D^{24.2}$ +22.1 (c 1.375, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ(ppm) 7.03 (d, *J* = 10.3 Hz, 1H), 6.34 (d, *J* = 10.1 Hz, 1H), 6.18 (s, 1H), 5.26 – 5.15 (m, 1H), 4.84 – 4.74 (m, 2H), 3.78 – 3.63 (m, 2H), 2.61 – 2.33 (m, 3H), 2.22 (m, 1H), 2.16 – 2.02 (m, 3H), 1.95 (dd, *J* = 15.7, 10.9 Hz, 1H), 1.86 (d, *J* = 13.1 Hz, 1H), 1.76 (d, *J* = 13.7 Hz, 1H), 1.64 – 1.52 (m, 1H), 1.29 – 1.12 (m, 4H), 0.96 (s, 3H).¹³C NMR (100MHz, CDCl₃) δ(ppm) 220.47, 208.86, 185.38, 164.53, 150.63, 131.06, 126.08, 88.52, 76.30, 75.78, 62.22, 55.56, 50.12, 47.83, 35.67, 34.63, 32.59, 32.17, 31.14, 22.24, 22.04, 13.76; EI-MS: $[M]^{\oplus}$ 338; HRMS (ESI): $[M+H]^{\oplus}$ calcd for C₂₂H₂₇O₃[⊕] 339.1955, found 339.1955; IR (KBr) v (cm⁻¹) 2936, 2856, 2349, 1957, 1738, 1669, 1608, 1455, 1374, 1288, 1076, 1049, 1030, 890, 855, 754.

(3aS,5aS,5bR,8R,8aS,13aS,13bS)-3a-methyl-8-vinyl-1,2,3a,4,5,5a,7,8,8a,9,12,13,13a,13b-tetradecahydr ocyclopenta[7,8]phenanthro[4a,4-b]furan-3,10-dione (15) The reaction was carried out accroding to general procedure to afford 15 (46.2 mg, 68% yield) as light yellow solid, m.p. 144-145 °C, d.r.=95:5(the d.r. was determined by ¹H-NMR (400 MHz)). $[\alpha]_D^{24.1}$ +46.4 (c 0.4, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ (ppm) 5.87 (s, 1H), 5.53 (dt, *J* = 17.0, 9.8 Hz, 1H), 5.10 – 5.00 (m, 2H), 4.00 (dd, *J* = 8.8, 7.3 Hz, 1H), 3.46 (dd, *J* = 8.9, 6.1 Hz, 1H), 3.03 (ddd, *J* = 16.1, 9.5, 6.9 Hz, 1H), 2.96 – 2.87 (m, 1H), 2.76 (td, *J* = 12.3, 3.6 Hz, 1H), 2.60 – 2.37 (m, 3H), 2.26 – 2.18 (m, 1H), 2.16 – 2.01 (m, 3H), 2.00 – 1.84 (m, 2H), 1.83 – 1.67 (m, 2H), 1.61 – 1.52 (m, 1H), 1.41 – 1.26 (m, 3H), 1.20 – 1.07 (m, 1H), 0.95 (s, 3H). ¹³C NMR (100MHz, CDCl₃) δ (ppm) 220.36, 197.27, 166.39, 136.27, 125.48, 118.68, 82.71, 70.93, 50.78, 50.40, 47.93, 47.89, 40.03, 36.59, 35.91, 35.82, 32.13, 32.07, 31.13, 21.79, 21.27, 13.90; ESI-MS: [M+H][⊕] 341.2; HRMS (ESI): [M+H][⊕] calcd for C₂₂H₂₇O₃[⊕] 341.2111, found 341.2111; IR (KBr) v (cm⁻¹) 2925, 2853, 2381, 1738, 1672, 1640, 1630, 1564, 1468, 1452, 1263, 1123, 1040, 1000, 915, 758.

8. Absolute Configuration Confirmation Of 3j And 15

8.1 The Single Crystal Data of 3j (CCDC 1572373).

Table S3: Crystal data and structure refinement for mo_dm15677_0m.

Identification code	mo_dm15677_0m		
Empirical formula	C ₁₆ H ₁₅ Br O ₂		
Formula weight	319.19		
Temperature	296(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	P 21		
Unit cell dimensions	a = 7.1968(15) Å	α= 90°.	
	b = 6.4943(14) Å	β=96.738(4)°.	
	c = 15.208(3) Å	$\gamma = 90^{\circ}$.	
Volume	705.9(3) Å ³		
Ζ	2		
Density (calculated)	1.202 Mg/m ³		
Absorption coefficient	2.907 mm ⁻¹		
F(000)	324		
Crystal size	0.230 x 0.160 x 0.110 mm ³		
Theta range for data collection	2.697 to 25.982°.		
Index ranges	-7<=h<=8, -7<=k<=8, -18<=l<=18		
Reflections collected	5161		
Independent reflections	2643 [R(int) = 0.0266]		
Completeness to theta = 25.242°	99.9 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.7456 and 0.5630		
Refinement method	Full-matrix least-squares on F ²	2	
Data / restraints / parameters	2643 / 1 / 172		
Goodness-of-fit on F ²	1.018		
Final R indices [I>2sigma(I)]	R1 = 0.0394, wR2 = 0.0810		
R indices (all data)	R1 = 0.0610, wR2 = 0.0887		
Absolute structure parameter	0.032(11)		
Extinction coefficient	n/a		
Largest diff. peak and hole	0.195 and -0.439 e.Å ⁻³		

8.2 The Single Crystal Data of 15 (CCDC 1572374).

Table S4: Crystal data and structure refinement for 15

Identification code	cd16742		
Empirical formula	C22 H28 O3		
Formula weight	340.44		
Temperature	293(2) K		
Wavelength	0.71073 Å		
Crystal system	Orthorhombic		
Space group	P 21 21 21		
Unit cell dimensions	a = 6.1385(5) Å	α= 90°.	
	b = 12.6387(10) Å	β=90°.	
	c = 24.081(2) Å	$\gamma = 90^{\circ}$.	
Volume	1868.3(3) Å ³		
Ζ	4		
Density (calculated)	1.210 Mg/m ³		
Absorption coefficient	0.079 mm ⁻¹		
F(000)	736		
Crystal size	0.150 x 0.100 x 0.060 mm ³		
Theta range for data collection	1.820 to 24.993°.		
Index ranges	-7<=h<=6, -14<=k<=15, -28<=l<=28		
Reflections collected	10334		
Independent reflections	3286 [R(int) = 0.0835]		
Completeness to theta = 25.242°	97.3 %		
Absorption correction	Multi-scam		
Max. and min. transmission	0.7456 and 0.5860		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	3286 / 0 / 227		
Goodness-of-fit on F ²	1.040		
Final R indices [I>2sigma(I)]	R1 = 0.0636, wR2 = 0.1387		
R indices (all data)	R1 = 0.1092, $wR2 = 0.1542$		
Absolute structure parameter	-0.5(10)		
Extinction coefficient	n/a		
Largest diff. peak and hole	0.280 and -0.266 e.Å ⁻³		

9. ¹H NMR, ¹³C NMR, HSQC , COSY, NOSEY, HMBC, DEPT90, DEPT135 COPIES

S34

~47.556 ~46.277

---0.00

