Supporting Information

Pyridinium Salt Forming Rh(III)-Catalyzed Annulation Reaction of

 Secondary Allylamines with Internal Alkynes and Its Application to Surface Modification of a Mesoporous MaterialYe Ri Han, Su-Hyang Shim, Dong-Su Kim and Chul-Ho Jun*

*E-mail:junch@yonsei.ac.kr

Contents

1. General S2
2. Materials S2
3. Experimental S2
4. Compounds characterization data S6
5. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for new compounds S13

1. General

Flash column chromatography was performed using E. Merck 230-400 mesh silica gel. Column Chromatography were monitored using analytical thin-layer chromatography (TLC) carried out on 0.25 Merck silica gel plates ($60 \mathrm{~F}-254$) using UV light as a visualizing. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker Advance II/DPX $400\left(400 \mathrm{MHz}{ }^{1} \mathrm{H}\right.$, $100 \mathrm{MHz}{ }^{13} \mathrm{C}$) spectrometer with chemical shifts reported relative to residual deuterated solvent peaks. Infrared spectra were obtained using a Nicolet Impact 400 spectrometer. ${ }^{1} \mathrm{H}$ NMR spectra are reported as follows: chemical shift, multiplicity $(\mathrm{s}=\operatorname{singlet}, \mathrm{d}=\operatorname{doublet}, \mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{dd}=$ doublet of doublet). ${ }^{13} \mathrm{C}$ NMR spectra were referenced to the residual $\mathrm{CDCl}_{3}(77.26 \mathrm{ppm})$, DMSO (39.5 ppm). Fluorescence data were recorded on a Hitachi F-4500 spectrometer. Transmission Electron Microscope datas were recorded by JEM-F200. Elemental analyses were recorded by 2400 Series II CHNS/O and High resolution mass spectra (HRMS) were acquired on 1290 Infinity LC/ 6530 Accurate-Mass QTOF (Agilent) at YCRF of Yonsei University facility.

2. Materials

Commercially available reagent grade chemicals were used as received without further purification unless otherwise stated. $\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}{ }^{1}$ and functionalized internal alkynes ${ }^{2}$ were prepared according to literature procedures.

3. Experimental

- General procedure for the preparation of pyridinium salt (3a, 3c-3n)

5-methyl-1-phenethyl-2,3-diphenylpyridin-1-ium tetrafluoroborate (3a): To a 1 mL pressure vial were added N-phenethyl- N-methallyl-amine (0.2 mmol), diphenylacetylene (0.4 mmol), copper acetate $(0.4 \mathrm{mmol}),\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}(5 \mathrm{~mol} \%)$, tetrafluoroboric acid (48% in water, 0.3 mmol) and methanol. The resulting solution was stirred at $130{ }^{\circ} \mathrm{C}$ for 6 h , dried over
anhydrous MgSO_{4}, filtered, and the filtrate was concentrated in vacuo giving a residue that was subjected to silica gel column chromatography ($\mathrm{DCM}: \mathrm{MeOH}=1: 1$) to yield 5 -methyl-1-phenethyl-2,3-diphenylpyridin-1-ium tetrafluoroborate (3a) in 84% yield (white solid, 71 mg).

- Preparation of pyridinium salt 3i in 2 mmol scale

To a a 5 mL pressure vial were added N -phenethyl- N -methallyl-amine (2 mmol), 1,2-bis(4fluorophenyl)ethyne (4 mmol), copper acetate (4 mmol), $\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}(5 \mathrm{~mol} \%)$, tetrafluoroboric acid (48% in water, 3 mmol) and methanol. The resulting solution was stirred at $130{ }^{\circ} \mathrm{C}$ for 6 h , dried over anhydrous MgSO_{4}, filtered, and the filtrate was concentrated in vacuo giving a residue that was subjected to silica gel column chromatography (DCM:MeOH = 1:1) to yield 2,3-bis(4-fluorophenyl)-5-methyl-1-phenethylpyridin-1-ium tetrafluoroborate (3i) in 76% yield (white solid, 719 mg).

- Procedure for the preparation of 1,5-dimethyl-2,3-diphenylpyridin-1-ium tetrafluoroborate (3b)

To a 1 mL pressure vial were added N,2-dimethylprop-2-en-1-aminium chloride (0.2 mmol), $\mathrm{NaHCO}_{3}(0.4 \mathrm{mmol})$, diphenylacetylene $(0.4 \mathrm{mmol})$, copper acetate $(0.4 \mathrm{mmol}),\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}$ ($5 \mathrm{~mol} \%$), tetrafluoroboric acid (48% in water, 0.3 mmol) and methanol. The resulting solution was stirred at $130{ }^{\circ} \mathrm{C}$ for 6 h , dried over anhydrous MgSO_{4}, filtered, and filtrate was concentrated in vacuo giving a residue that was subjected to silica gel column chromatography $(\mathrm{DCM}: \mathrm{MeOH}=1: 1$) to yield 1,5 -dimethyl-2,3-diphenylpyridin-1-ium tetrafluoroborate (3b) in 65% yield (yellow solid, 45 mg).

[^0]To a 5 mL pressure vial were added (11-chloroundecyl)(methyl)bis(2-methylallyl)silane (CAS No. 1027771-65-8, 3.67 mmol), methylallylamine (1.5 eq), TBAI (0.4 eq) and $\mathrm{Et}_{3} \mathrm{~N}$ (2 eq). The resulting solution was stirred at $100{ }^{\circ} \mathrm{C}$ for 12 h , filtered, and the filtrate was concentrated in vacuo. The residue was subjected to silica gel column chromatography (n hexane: $\mathrm{EA}=5: 1$) to give $\mathbf{1 h}$ as a yellow liquid (24% yield, 333 mg).

- Preparation of secodary allylamine-impregnated SBA-15 (10a)

A solution of pluronic P123 (500 mg) in distilled water (4 mL) was stirred at $35{ }^{\circ} \mathrm{C}$ for 4 h . Then, 2 M HCl solution (15 mL) was added, and the mixture was stirred vigorously for 1 h at ambient temperature and $40^{\circ} \mathrm{C}$ for additional 1 h . After adding 1.11 mL of TEOS (5 mmol) dropwise, the mixture was stirred for 3 h . Secondary allylamine-linked methallylsilane ($\mathbf{1 h}$, $0.05 \mathrm{mmol}, 18.8 \mathrm{mg}$) was added slowly and the mixture was stirred vigorously for 21 h , transferred to a hydrothermal reactor, and let stand at $100{ }^{\circ} \mathrm{C}$ for 48 h . The mixture was washed with excess $\mathrm{H}_{2} \mathrm{O}$, ethanol, acetone and diethyl ether thoroughly to give solid powder, which was dispersed in ethanol, and the resulting slurry was stirred at $80^{\circ} \mathrm{C}$ for 24 h . The mixture was filtered, and the filter cake was washed with ethanol and acetone thoroughly, and dried in vacuo to give 10a.

- Preparation of pyridinium salt modified SBA-15, 11a by surface modification

To a 1 mL pressure vial were added $\mathbf{1 0 a}(30 \mathrm{mg}$), diphenylacetylene (2 eq), copper acetate (5 eq), $\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}(5 \mathrm{~mol} \%)$, tetrafluoroboric acid (48% in water, 1.5 eq) and methanol. The resulting slurry was stirred at $100^{\circ} \mathrm{C} 2 \mathrm{~h}$ and filtered. The precipitate was washed thoroughly with methanol, $\mathrm{H}_{2} \mathrm{O}$, acetone and DCM and then dispersed in $\mathrm{Et}_{2} \mathrm{NCS}_{2} \mathrm{Na}$ solution (0.1 M). The resulting slurry was stirred at RT for 1 h and filtered, giving a precipitate that was washed
with methanol, a NaOAc solution $(0.01 \mathrm{M}, \mathrm{MeOH})$, acetone and DCM . The resulting precipitate was dried in vacuo to give 11a.

- TEM images of 10a, 11a

- Fluorescent detection of nitrobenzene

Before addition of nitrobenzene, the fluorescent spectra of $\mathbf{1 1 a}$ (1.5 mg in 2 mL DCM) was recorded (excitation at 300 nm). Then, $20 \mu \mathrm{~L}$ to $280 \mu \mathrm{~L}$ of a solution of nitrobenzene (0.02 M) in DCM was added and fluorescent spectra of the mixture was recorded (Figure 3). This procedure was repeated using $280 \mu \mathrm{~L}$ of the nitrobenzene solution. After use in the fluorescence quenching experiment, 11a was subjected to centrifugation and washed thoroughly with DCM (1 mL for 5 times) and acetone (1 mL for 2 times) to give recovered 11a, which was monitored by fluorometer. This procedure was repeated three times (Figure 4).

- Quenching efficiency of 11a with nitrobenzene

It is very hard to compare the quenching effect of $\mathbf{1 1 a}$ (1.5 mg dispersed in $\mathrm{CH}_{2} \mathrm{Cl}_{2} 2 \mathrm{~mL}$) with nitrobenzene compared with others due to the different conditions. But this method shows following efficiency as 99% at 2.8 mM of nitrobenzene (NB).

$$
\frac{\mathrm{I}_{0}-\mathrm{I}}{\mathrm{I}_{0}} \times 100=\text { quenching rate }(\%)
$$

I_{0} : fluorescence intensity in the absence of the analyte
I: fluorescence intensity in the presence of the analyte

4. Compounds characterization data

5-methyl-1-phenethyl-2,3-diphenylpyridin-1-ium tetrafluoroborate (3a, CAS No. 2097667-91-7) ${ }^{3}$ Obtained as a white solid (84% yield, 71.1 mg); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.84(\mathrm{~s}, 1 \mathrm{H}), 8.09(\mathrm{~s}, 1 \mathrm{H}), 7.40(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.19-7.12(\mathrm{~m}$, $8 \mathrm{H}), 7.05-7.04(\mathrm{~m}, 2 \mathrm{H}), 6.81-6.79(\mathrm{~m}, 2 \mathrm{H}), 4.62(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.05(\mathrm{t}, J=8 \mathrm{~Hz}, 2 \mathrm{H})$, 2.57 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.3,146.8,145.0,142.6,138.7,135.5,135.4$, $130.8,130.09,130.04,129.4,129.2,129.0,128.8,128.7,128.6,127.5,60.7,37.2,18.4$.

1,5-Dimethyl-2,3-diphenylpyridin-1-ium tetrafluoroborate (3b) Obtained as a yellow solid (65% yield, 45.1 mg); m.p. $158-160{ }^{\circ} \mathrm{C},{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.77(\mathrm{~s}, 1 \mathrm{H}), 8.12(\mathrm{~s}$, $1 \mathrm{H}), 7.39-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.29-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.13(\mathrm{~m}, 3 \mathrm{H}), 7.06-7.04(\mathrm{~m}, 2 \mathrm{H}), 4.07(\mathrm{~s}$,

3 H), 2.60 ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) 151.2, 146.5, 145.7, 141.9, 137.9, 135.2, 130.5, 130.2, 129.6, 129.3, 129.0, 128.5, 128.3, 48.1, 18.3; IR (neat): $3645,3559,3447,3352$, 3067, 2970, 2934, 1969, 1897, 1821, 1770,1700, 1620, 1578, 1513, 1484, 1445, 1398, 1328, $1290,1259,1039\left(v_{\text {B-F }}\right), 888,777,732,704,606,576 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}^{+}$ 260.1434 , found 260.1477 .

1-Butyl-5-methyl-2,3-diphenylpyridin-1-ium tetrafluoroborate (3c) Obtained as a yellow liquid (56% yield, 43.6 mg); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.87(\mathrm{~s}, 1 \mathrm{H}), 8.16(\mathrm{~s}, 1 \mathrm{H}), 7.42-$ $7.37(\mathrm{~m}, 3 \mathrm{H}), 7.31-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.17(\mathrm{~m}, 3 \mathrm{H}), 7.09-7.06(\mathrm{~m}, 2 \mathrm{H}), 4.45(\mathrm{t}, J=8 \mathrm{~Hz}, 2 \mathrm{H})$, $2.681(\mathrm{~s}, 3 \mathrm{H}), 1.83-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.25-1.16(\mathrm{~m}, 2 \mathrm{H}) 0.72(\mathrm{t}, J=8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) 151.1, 146.7, 144.7, 142.6, 138.7, 135.3, 130.7, 130.1, 129.8, 129.4, 129.1, $128.8,128.5,59.5,33.3,19.5,18.4,13.2$; IR (neat): $3764,3644,3553,3064,2963,2935$, 2873, 1976, 1904, 1826, 1762, 1729, 1668, 1615, 1507, 1475, 1446, 1384, 1327, 1278, 1243, 1058(v в-f), 890, 772, 734, 704, 599, 576, $519 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}^{+}$ 302.1903, found 302.1955.

5-Methyl-2,3-diphenyl-1-(3-phenylpropyl)pyridin-1-ium tetrafluoroborate (3d) Obtained as a yellow liquid (89% yield, 80.3 mg); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.94(\mathrm{~s}, 1 \mathrm{H}), 8.09(\mathrm{~s}$, $1 \mathrm{H}), 7.39-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.24-7.10(\mathrm{~m}, 8 \mathrm{H}), 7.03-7.01(\mathrm{~m}, 2 \mathrm{H}), 6.93-6.91(\mathrm{~m}, 2 \mathrm{H}), 4.49(\mathrm{t}, J=$ $8 \mathrm{~Hz}, 2 \mathrm{H}), 2.65(\mathrm{~s}, 3 \mathrm{H}), 2.57(\mathrm{t}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 2.12(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) 151.0,146.8,145.1,142.6,139.6,138.8,135.3,130.7,129.9,129.7,129.4,129.1$, 128.8, 128.7, 128.6, 128.3, 126.4, 59.4, 32.5, 32.4, 18.4; IR (neat): 3765, 3660, 3552, 3062, 3029, 2924, 2855, 1964, 1894, 1817, 1719, 1668, 1608, 1579, 1475, 1446, 1382, 1326, 1281,

1241, 1058(v в-F), 763, 702, $631 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{~N}^{+} 364.2060$, found 364.2088.

1-Cyclohexyl-5-methyl-2,3-diphenylpyridin-1-ium tetrafluoroborate (3e) Obtained as a yellow solid (72% yield, 59.8 mg); m.p. $91-93{ }^{\circ} \mathrm{C},{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.89(\mathrm{~s}, 1 \mathrm{H})$, $8.12(\mathrm{~s}, 1 \mathrm{H}), 7.42-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.25-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.15(\mathrm{~m}, 3 \mathrm{H}), 7.09-7.06(\mathrm{~m}, 2 \mathrm{H})$, 4.36-4.29 (m, 1H), 2.71($\mathrm{s}, 3 \mathrm{H}), 2.12-2.06(\mathrm{~m}, 4 \mathrm{H}), 1.88-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.58-1.55(\mathrm{~m}, 1 \mathrm{H})$, 1.41-1.31 (m, 1H), 1.08-0.97 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 151.1, 146.7, 142.6, 141.1, 139.3, 135.6, 130.8, 130.4, 129.4, 129.3, 128.7, 128.5, 68.5, 33.3, 25.7, 24.2, 18.6; IR (neat): $3651,3556,3063,2938,2861,1972,1902,1824,1664,1614,1580,1501,1475,1448$, 1384, 1338, 1272, 1227, 1056($v_{\text {в-F }}$), 947, 887, 843, 774, 733, 703, $626 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}^{+} 328.2060$, found 328.2095.

5-Methyl-1,2,3-triphenylpyridin-1-ium tetrafluoroborate (3f) Obtained as a purple solid (72% yield, 58.9 mg); m.p. $116-118{ }^{\circ} \mathrm{C},{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.52(\mathrm{~s}, 1 \mathrm{H}), 8.33$ (s, $1 \mathrm{H})$, 7.48-7.46 (m, 2H), 7.34-7.28 (m, 3H), 7.24-7.19 (m, 5H), 7.13-7.01 (m, 5H), $2.68(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 152.0, 148.7, 144.7, 142.6, 142.4, 138.2, 135.5, 130.9, 130.57, 130.54, 129.9, 129.75, 129.71, 128.8, 128.5, 128.3, 126.7, 18.6; IR (neat): 3765, 3661, 3552, 3379, 3063, 2965, 2925, 1970, 1902, 1816, 1760, 1730. 1682, 1592, 1494, 1468, 1445, 1331, 1286, 1247, 1178, 1056(v в-f), 771, 731, 700, $605 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~N}^{+} 322.1590$, found 322.1661.

1,2,3,5-Tetraphenylpyridin-1-ium tetrafluoroborate ($\mathbf{3 g}$) Obtained as a brown solid (82% yield, 77.3 mg); m.p. $148-150{ }^{\circ} \mathrm{C},{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.67(\mathrm{~d}, J=2 \mathrm{~Hz}, 1 \mathrm{H}), 8.56$ $(\mathrm{d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.74-7.71(\mathrm{~m}, 2 \mathrm{H}), 7.59-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.37-7.35(\mathrm{~m}$, 3H), 7.30-7.27 (m, 3H), 7.23-7.05 (m, 7H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 153.2, 145.9, 143.2, $142.75,142.73,140.1,135.7,133.6,131.0,130.6,130.5,130.2,129.9,129.8,129.7,129.6$, 128.8, 128.5, 128.25, 128.22, 126.8; IR (neat): 3764, 3661, 3552, 3062, 1968, 1900, 1817, 1731, 1594, 1491, 1463, 1445, 1391, 1344, 1244, 1182, 1056($\nu_{\text {b-ғ }}$), $924,894,762,733,699$ cm^{-1}; HRMS (ESI) calcd for $\mathrm{C}_{29} \mathrm{H}_{22} \mathrm{~N}^{+}$384.1747, found 384.1783.

5-Methyl-1-phenethyl-2,3-dipropylpyridin-1-ium tetrafluoroborate (3h) Obtained as a yellow liquid (70% yield, 51.7 mg), ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.44(\mathrm{~s}, 1 \mathrm{H}), 7.89(\mathrm{~s}, 1 \mathrm{H})$, 7.24-7.21 (m, 3H), 7.06-7.04 (m, 2H), 4.77 (t, $J=8 \mathrm{~Hz}, 2 \mathrm{H}), 3.26(\mathrm{t}, J=8 \mathrm{~Hz}, 2 \mathrm{H}) 2.73-2.64$ $(\mathrm{m}, 4 \mathrm{H}), 1.66-1.53(\mathrm{~m}, 4 \mathrm{H}), 1.04(\mathrm{t}, J=8 \mathrm{~Hz}, 3 \mathrm{H}), 0.99(\mathrm{t}, J=8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, CDCl_{3}) 153.3, 146.5, 143.6, 141.7, 136.7, 135.5, 129.2, 129.0, 127.7, 59.3, 37.6, 34.1, 30.4, 23.6, 22.4, 17.9, 14.3, 13.9; IR (neat): 3765, 3655, 3552, 3067, 3030, 2964, 2932, 2874, 1958, $1816,1668,1628,1598,1496,1460,1383,1351,1286,1220,1058\left(v_{\text {в-ғ }}\right), 886,752,704,625$ $\mathrm{cm}^{-1} ;$ HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{~N}^{+}$282.2216, found 282.2233 .

2,3-bis(4-fluorophenyl)-5-methyl-1-phenethylpyridin-1-ium tetrafluoroborate (3i, CAS No. 2097667-94-0) ${ }^{3}$ Obtained as a yellow solid (78% yield, 73.8 mg); ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO) $\delta 9.18(\mathrm{~s}, 1 \mathrm{H}), 8.56(\mathrm{~s}, 1 \mathrm{H}), 7.45(\mathrm{dd}, J=8.6,5.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{t}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$, 7.29-7.23 (m, 3H), 7.22-7.13 (m, 4H), $6.92(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.50(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.07$ $(\mathrm{t}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 2.59(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}, \mathrm{DMSO}) \delta 162.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=247.6 \mathrm{~Hz}\right)$, $161.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=245.1 \mathrm{~Hz}\right), 149.9,146.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=5.1 \mathrm{~Hz}\right), 144.2,140.5,137.4,135.8$, 132.4

```
(d, J}\mp@subsup{J}{\textrm{C}-\textrm{F}}{}=9.1 Hz),131.7 (d, \mp@subsup{J}{\textrm{C}-\textrm{F}}{}=3.2 Hz),131.4(d, J J-F = 8.4 Hz), 128.6, 128.4, 127.0, 126.2
(d, J}\mp@subsup{J}{\textrm{C}-\textrm{F}}{}=3.4 Hz),115.8(d,\mp@subsup{J}{\textrm{C}-\textrm{F}}{}=22 Hz),115.1(d, J J-F =21.7 Hz), 59.4, 35.9, 17.4.
```

2,3-Bis(4-chlorophenyl)-5-methyl-1-phenethylpyridin-1-ium tetrafluoroborate
Obtained as a yellow solid (60% yield, 60.7 mg); m.p. 128-130 ${ }^{\circ} \mathrm{C},{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO) $\delta 9.16(\mathrm{~s}, 1 \mathrm{H}), 8.56(\mathrm{~s}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{dd}, J=8.8,2.4 \mathrm{~Hz}, 4 \mathrm{H})$, 7.28-7.23 (m, 3H), $7.17(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{~d}, J=4 \mathrm{~Hz}, 2 \mathrm{H}), 4.49(\mathrm{t}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 3.06$ $(\mathrm{t}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO) 149.7, 146.9, 144.6, 140.3, 137.7, $135.9,135.5,134.2,133.6,131.8,131.1,128.9,128.7,128.69,128.65,128.3,127.2,59.6$, 17.5; IR (neat): 3645, 3066, 2923, 1906, 1861, 1816, 1788, 1766, 1732, 1703, 1686, 1670, 1640, 1591, 1462, 1392, 1311, 1259, 1178, 1024(v в-ғ), 827, 755, 736, $705 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{Cl}_{2} \mathrm{~N}^{+} 418.1124$, found 418.1157 .

5-Methyl-1-phenethyl-2,3-di-p-tolylpyridin-1-ium tetrafluoroborate (3k) Obtained as a yellow solid (61% yield, 56.8 mg); m.p. $191-193{ }^{\circ} \mathrm{C},{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.74$ (s, $1 \mathrm{H}), 8.16(\mathrm{~s}, 1 \mathrm{H}), 7.24-7.22(\mathrm{~m}, 5 \mathrm{H}), 7.045(\mathrm{dd}, J=12,8 \mathrm{~Hz}, 4 \mathrm{H}), 6.97-6.95(\mathrm{~m}, 2 \mathrm{H}), 6.88(\mathrm{t}$, $J=4 \mathrm{~Hz}, 2 \mathrm{H}), 4.64(\mathrm{t}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 3.06(\mathrm{t}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{~s}$, $3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 152.0, 147.5, 144.5, 143.2, 141.8, 139.4, 138.8, 135.8, $132.8,130.2,130.0,129.64,129.60,129.4,129.3,127.9,127.3,60.9,37.5,21.6,21.3,18.4$; IR (neat): 3064, 3032, 2926, 2865, 1932, 1823, 1733, 1671, 1611, 1485, 1455, 1410, 1325, 1264, 1187, 1066(v в-ғ), 968, 895, 822, 739, $701 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{~N}^{+}$ 378.2216, found 378.2248.

2,3-Bis(4-methoxyphenyl)-5-methyl-1-phenethylpyridin-1-ium tetrafluoroborate (31)

 Obtained as a yellow solid (80% yield, 79.6 mg); m.p. $91-93{ }^{\circ} \mathrm{C},{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.72(\mathrm{~s}, 1 \mathrm{H}), 8.04(\mathrm{~s}, 1 \mathrm{H}), 7.15-7.13(\mathrm{~m}, 3 \mathrm{H}), 7.03(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.94(\mathrm{~d}, J=4 \mathrm{~Hz}, 2 \mathrm{H})$, 6.86-6.84 (m, 4H), 6.69 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.63(\mathrm{t}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H})$, $3.02(\mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}, 2 \mathrm{H}), 2.53(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 161.1, 159.8, 151.3, 146.7, 144.1, 142.5, 138.1, 135.6, 131.4, 130.7, 129.0, 128.9, 127.7, 127.4, 122.0, 114.6, 114.0, 60.4, 55.5, 55.3, 37.0, 18.2; IR (neat): 3765, 3658, 3553, 3070, 2962, 2937, 2841, 1896, 1720, 1609, 1578, 1515, 1482, 1296, 1253, 1181, 1059($v_{\text {b-F }}$) $836,733,703 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{~N}_{1} \mathrm{O}_{2}{ }^{+} 410.2115$, found 410.2122 .2,3-bis(4-(dimethylamino)phenyl)-5-methyl-1-phenethylpyridin-1-ium tetrafluoroborate (3m, CAS No. 2097667-96-2) ${ }^{\mathbf{3}}$ Obtained as a brown solid (94% yield, 98.4 mg); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.73(\mathrm{~s}, 1 \mathrm{H}), 7.99(\mathrm{~s}, 1 \mathrm{H}), 7.20-7.16(\mathrm{~m}, 3 \mathrm{H}), 6.93-6.85(\mathrm{~m}, 6 \mathrm{H}), 6.64(\mathrm{~d}$, $J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.52(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.75(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.07-3.03(\mathrm{~m}, 2 \mathrm{H}), 3.01(\mathrm{~s}$, $6 \mathrm{H}), 2.92$ (s, 6H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 151.9, 151.3, 150.3, 146.1, 143.0, 137.4, 135.7, 130.9, 130.4, 129.1, 129.0, 127.4, 122.7, 116.6, 112.0, 111.9, 60.4, 40.3, 40.2, 37.1, 18.3. $\delta 8.87(\mathrm{~s}, 1 \mathrm{H}), 8.30(\mathrm{~s}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.26(\mathrm{~m}$, $1 \mathrm{H}), 7.23-7.20(\mathrm{~m}, 4 \mathrm{H}), 7.08(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.99-6.95(\mathrm{~m}, 3 \mathrm{H}), 4.71(\mathrm{t}, J=8 \mathrm{~Hz}, 2 \mathrm{H})$, $6 \mathrm{H}), 3.17(\mathrm{t}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 2.59(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta 145.6,143.1,139.8$, 137.7, 135.6, 135.4, 134.0, 131.7, 131.6, 130.3, 129.1, 128.6, 128.3, 127.8, 127.6, 61.0, 37.7,
18.4; IR (neat): $3765,3661,3553,3416,3064,3034,2896,2861,2810,1735,1662,1609$, $1528,1486,1448,1363,1272,1229,1199,1170,1057\left(v_{\text {в-ғ }}\right), 945,889,820,732,702,631$ $\mathrm{cm}^{-1} ;$ HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{NS}_{2}{ }^{+} 362.1032$, found 362.1055.

N-(2-Methaylallyl)-11-((2-methylallyl)(3-methylbut-3-en-2-yl)silyl)undecan-1-amine (1h)

 Obtained as a yellow liquid (24% yield, 333 mg) ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.84(\mathrm{~s}, 1 \mathrm{H})$, $4.81(\mathrm{~s}, 1 \mathrm{H}), 4.59(\mathrm{~s}, 2 \mathrm{H}), 4.48(\mathrm{~s}, 2 \mathrm{H}), 3.16(\mathrm{~s}, 2 \mathrm{H}), 2.55(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H})$, $1.71(\mathrm{~s}, 6 \mathrm{H}), 1.56(\mathrm{~s}, 4 \mathrm{H}), 1.48-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.27-1.25(\mathrm{~m}, 16 \mathrm{H}), 0.57-0.54(\mathrm{~m}, 2 \mathrm{H}), 0.02(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta 144.36,144.32,143.8,143.7,110.6,108.8,56.0,49.6$, 33.9, 30.3, 29.8, 29.5, 27.6, 25.9, 25.6, 23.9, 21.0, 14.2, -4.2; IR (neat): 3073, 2967, 2920, 2851, 2815, 1732, 1637, 1450, 1372, 1278, 1250, 1161, 1121, 1030, 1000, 971, 893, 868, 839, 817, 720, $512 \mathrm{~cm}^{-1}$; Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{47} \mathrm{NSi}$ C, $76.31 ; \mathrm{H}, 12.54$; $\mathrm{N}, 3.71$; found: $\mathrm{C}, 74.78$; H, 13.35; N, 3.59.
References

(1) Fujita, K.-I.; Takahashi, Y.; Owaki, M.; Yamamoto, K.; Yamaguchi, R. Org.Lett. 2004, 6, 2785.
(2) Chen, Z.-W.; Zhu, Y.-Z.; Ou, J.-W.; Wang, Y.-P.; Zheng, J.-Y. J. Org. Chem. 2014, 79, 10988.
(3) Han, Y. R.; Shim, S.-H.; Kim, D.-S.; Jun, C.-H. Org. Lett. 2017, 19, 2941.

5. ${ }^{\mathbf{1}} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for new compounds

$-{ }^{1} \mathrm{H}$ NMR of 3a

$-{ }^{13} \mathrm{C}$ NMR of 3a
-

$-{ }^{1}$ H NMR of 3b

$-{ }^{13} \mathrm{C}$ NMR of 3b

$-{ }^{1}$ H NMR of 3c

$-{ }^{13} \mathrm{C}$ NMR of 3c

(

$-{ }^{1}$ H NMR of 3d

$-{ }^{13} \mathrm{C}$ NMR of 3d

$\stackrel{\text { 栄 }}{\text { in }}$
$<_{232937}^{32503}$
-10.481
${ }_{-1} \mathrm{E}_{4}$

[^1]$-{ }^{1} \mathrm{H}$ NMR of 3 e

$-{ }^{13} \mathrm{C}$ NMR of 3e

$-{ }^{1}$ H NMR of $3 f$

$-{ }^{13} \mathrm{C}$ NMR of $3 \mathrm{3f}$

$-{ }^{1} \mathrm{H}$ NMR of $\mathbf{3 g}$

(\%)
$-{ }^{13} \mathrm{C}$ NMR of $\mathbf{3 g}$

$-{ }^{1}$ H NMR of 3h

$-{ }^{13}$ C NMR of 3h

 	 下Rํ	¢్ल్య	
\ \／VV＇	V	｜	$11 / 1 V$

$-{ }^{1} \mathrm{H}$ NMR of 3 Bi

$-{ }^{13}$ C NMR of $3 \mathbf{3 i}$

$-{ }^{1}$ H NMR of $\mathbf{3 j}$

$-{ }^{13} \mathrm{C}$ NMR of $\mathbf{3 j}$

$$
\begin{aligned}
& \text { 守 }
\end{aligned}
$$

$-{ }^{1} \mathrm{H}$ NMR of $\mathbf{3 k}$
K

$-{ }^{13} \mathrm{C}$ NMR of $\mathbf{3 k}$

[^2]$-{ }^{1} \mathrm{H}$ NMR of 31

$-{ }^{13} \mathrm{C}$ NMR of 31
\[

$$
\begin{aligned}
& \text { - }
\end{aligned}
$$
\]

長贺哭		¢
FR\％	8	¢

[^3]$-{ }^{1} \mathrm{H}$ NMR of $\mathbf{3 m}$

$-{ }^{13} \mathrm{C}$ NMR of $\mathbf{3 m}$

[^4]$-{ }^{1} \mathrm{H}$ NMR of $3 n$

$-{ }^{13} \mathrm{C}$ NMR of 3 n

$-{ }^{1} \mathrm{H}$ NMR of $\mathbf{1 h}$

$$
\underset{=1}{\Longrightarrow}
$$

$-{ }^{13} \mathrm{C}$ NMR of $\mathbf{1 h}$

$\begin{array}{lllllllllllllllllllllll} \\ 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & \end{array}$

[^0]: - Procedure for the preparation of N-(2-methaylallyl)-11-((2-methylallyl)(3-methylbut-3-en-2-yl)silyl)undecan-1-amine (1h)

[^1]:

[^2]:

[^3]:

[^4]:

