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Data from Peron, 

Freeman, Iyer, Guo, and 

Svoboda. 

A cellular resolution 

map of barrel cortex 

activity during tactile 

behavior. Neuron, 

86(3):783–799, May 2015.

Available on crcns.org
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Neural substrates of individual variability in 
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Neural substrates of individual variability in Drosophila’s innate 
fixation behaviour

Alexandre Javier | University of Cambridge, Dept. of Zoology #24

Langen et al. 2013 ELife 2013

Population WT Population Silenced

Individual 1 Individual 2

Individual 3 Individual 4

Linneweber et al. BioRxiv 2019



Neural substrates of individual variability in Drosophila’s innate 
fixation behaviour

Alexandre Javier | University of Cambridge, Dept. of Zoology #24

Seelig et al. Nature methods 2010

Thank you to Bassem Hassan & Mercedes Bengochea



Xizi Li

Inhibitory hebbian plasticity for robust 
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Can plasticity of inhibition maintain detailed, network-wide stability?
If so, how?

Poster #31



If the brain could precisely modulate its inhibitory synaptic pathways, how would it exploit this? 

Poster #31

Engineering: optimal systematic balancing rule

activity 
modes

as excitatory connections are strengthened as excitatory connections are strengthened

Biology: inhibitory Hebbian plasticity rule 

Mathematical link
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Neurochemical Topology of the Mammalian Suprachiasmatic Nucleus
Emma Morris

Dr Michael Hastings Lab, MRC LMB
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Brains as Bayesian Inference Machines
The brain represents sensory information in the form of probability distributions, updating by 
approximations of Bayes rule

Representing Uncertainty in Biological and Artificial Neural Networks

J. Smith, The study of animal metacognition, TiCS 2009

Behavioural studies show some awareness of uncertainty

Plausible computational mechanisms for how this 
could be implemented in the brain

Fiser et al., Statistically optimal perception and learning, TiCS 2010

Tim Pearce  @Tea_Pearce



Bayesian Artificial Neural Network 
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How can an intelligence operate with uncertainty 
over its perceptions and knowledge? 

Representing Uncertainty in Biological and Artificial Neural Networks
Tim Pearce  @Tea_Pearce
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Towards understanding one-shot place learning: 
reinforcement learning approaches

Charline Tessereau| Maths @Nottingham | #55

→ Can we build biologically plausible models that would allow to 
reproduce these behaviours?



Charline Tessereau| Maths @Nottingham | #55

Using Temporal-Difference learning :

Foster, D.J., Morris, R. G., and Dayan, P. (2000), Hippocampus.Corneil, D. S. and Gerstner, W. (2015). Advances in Neural Information Processing Systems.

Using a predictive representation of the locations :

TD learning : 
→ Quick, easy to compute
→ Low in flexibility

Predictive representation : 
→ Biologically realistic 
→ Long and costly to train

With :
Reuben O’Dea
Tobias Bast
Mark Van Rossum
Stephen Coombes

How to improve flexibility and biological realism?

Towards understanding one-shot place learning: 
reinforcement learning approaches

What is a good representation for learning? 
How do representations evolve with experience?
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An examination of stress responses and 
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Watson et al., 2019 Nature Genetics

Gut-brain axis
Eating disorders are serious psychiatric 

conditions with complex aetiology

Foerde et al., 2015 Nature Neuroscience

Cognitive

Metabolic

Stress



N = 85

Gut hormone disturbances in anorexia nervosa under stress

Response inhibition 



Thank you!

Please enjoy all the posters
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https://doi.org/10.6084/m9.figshare.9810551


