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Mat Evans

Limits on the capacity for independent neural
population codes in somatosensory cortex
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Neural substrates of individual variability in
Drosophila’s innate fixation behaviour
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Neural substrates of individual variability in Drosophila’s innate —
fixation behaviour
Alexandre Javier | University of Cambridge, Dept. of Zoology #24
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Neural substrates of individual variability in Drosophila’s innate
fixation behaviour
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Xizl LI

Inhibitory hebbian plasticity for robust
stabilisation of recurrent circuits
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Can plasticity of inhibition maintain detailed, network-wide stability?
If so, how?



Poster #31

If the brain could precisely modulate its inhibitory synaptic pathways, how would it exploit this?

Engineering: optimal systematic balancing rule Biology: inhibitory Hebbian plasticity rule
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Neurochemical topology of the mammalian
suprachiasmatic nucleus
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Neurochemical Topology of the Mammalian Suprachiasmatic Nucleus .

Emma Morris MRC Molecular Biology
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a) molecular elements defining functional network components
b) signaling molecules connecting SCN network components
c) shift in neurochemical topology across circadian time
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Representing uncertainty in biological and
artificial neural networks
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B8 UNIVERSITY OF Representing Uncertainty in Biological and Artificial Neural Networks
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Brains as Bayesian Inference Machines
The brain represents sensory information in the form of probability distributions, updating by
approximations of Bayes rule

C Plausible computational mechanisms for how this\
could be implemented in the brain

Behavioural studies show some awareness of uncertainty
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How can an intelligence operate with uncertainty
over its perceptions and knowledge?
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Towards understanding one-shot place
learning in spatial navigation:
A reinforcement learning approach
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Towards understanding one-shot place learning:

reinforcement learning approaches
Charline Tessereau| Maths @Nottingham | #55
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— Can we build biologically plausible models that would allow to
reproduce these behaviours?
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Using Temporal-Difference learning : Towards understanding one-shot place learning:
- reinforcement learning approaches

] Trajectory Charline Tessereau| Maths @Nottingham | #55
generated
from the model: TD learning : Predictive representation :
- Quick, easy to compute —> Biologically realistic

What is a good representation for learning?
How do representations evolve with experience?

- Low in flexibility — Long and costly to train
\ \ \ @ How to improve flexibility and biological realism?
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An examination of stress responses and
inhibitory control in women with eating disorders
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Eating disorders are serious psychiatric — _ _
conditions with complex aetiology Gut-brain axis
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Gut hormone disturbances in anorexia nervosa under stress
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