7.3. Operationalisation of Community Smells

Sub-communities of the
Communication DSN

. Quantification
Communication DSN Comrgggitysigmells of detected
Y Community Smells

E Collaboration DSN

General functioning of the identification of Community Smells

Organisational Silo Effect Community Smell measures the number of col-
laboration links characterised by the absence of at least one of the two developers,
constituting the link, within the communication channel; therefore, the identification
of such Community Smell requires as input the collaboration and communication
Developer Social Networks. The list of non-communicative developers is obtained
performing the complement of the collaboration DSN with respect to the commu-
nication DSN and appropriate handling functions are implemented to consider a
collaboration between two non-communicative developers only once. When every
collaboration belonging to non-communicative developers are counted, the number
of total collaboration links in which one or both of the considered developers are ab-
sent in the communication DSN is returned as the measurement that characterises
the Organisational Silo Effect Community Smell. The R implementation of this
Community Smell in Codeface4Smells is proposed in Algorithm 7.1.

Algorithm 7.1 Operationalisation of Organisational Silo Effect identification pat-
tern

community . smell. organisational.silo <— function (mail.graph, code.graph) {
discover develpers not present in the communication DSN
non.communicative.ids <— setdiff(V(code.graph)$id, V(mail.graph)$id)
silos <— list ()
for each nmon communicative developer, save his collaborations
for (vert in non.communicative.ids) {
for (collab in neighbors(code.graph, V(code.graph) [V(code.graph)$id =— vert])$
id) {
if both are non—communicative count the collaboration only once
due to the undirected nature of the graph
if ((collab %in% non.communicative.ids) & (collab < vert)) {
next ()

organisational silo smell detected
silos [[length(silos) + 1]] <— c(vert, collab)
}

return(silos)

}

97

The Nechromancer

The Nechromancer

7. Operationalising our Quality Framework: Codeface4Smells

Missing Links Community Smell measures the number of collaboration links
that do not have a communication counterpart, therefore the identification of such
Community Smell requires as input the collaboration and communication Developer
Social Networks. The identification process considers every developer within the col-
laboration DSN and detects every collaboration link in which the two collaborating
developers are present within the communication DSN but they are not connected
through an edge in the communication Developer Social Network. The presence or
absence of a communication link between two collaborating developers is obtained
checking the presence of the other developer in the list of neighbors of the devel-
oper considered within the collaboration DSN. This initial identification phase does
not consider collaborations in which one or both of implicated developers are not
present in the communication channel due to optimisation reasons later explained
and it applies appropriate handling functions within the collaboration links analysis
in order to consider a Missing Links detection only once, due to the undirected na-
ture of the collaboration Developer Social Network. The information about Missing
Links related to non-communicative developers can be extracted from precomputed
Organisational Silo Effect Community Smell, that can be passed to this Commu-
nity Smell identification function as a parameter or otherwise it will be computed
directly. This optimisation is possible due to the fact that, as explained in Section
4.1, Organisational Silo Effect is contained in Missing Links Community Smell. This
Community Smell operationalisation returns the list of edges that were classified as
Missing Links and not the number of them, therefore to obtain the measurement
of Missing Links Community Smell it is necessary to count the number of elements
returned by this identification process. The R implementation of this Community

Smell in Codeface4Smells is proposed in Algorithm 7.2.

Black-cloud Effect Community Smell measures the number of communica-
tion links that identify unique communication points toward other sub-communities,
therefore the identification of such Community Smell requires as input the commu-
nication Developer Social Network and the subdivision of its community members in
different sub-communities. It is important to notice that Black-cloud Effect is a tem-
poral related Community Smell, since it needs to consider historical information in
order to identify actual Black-cloud Effect occurrences. Within every range analysis
every sub-community of the communication DSN is considered once at the time and
the number of outgoing edges from every sub-community are counted. If the num-
ber of outgoing communication edges is exactly one, then a “potential” Black-cloud
Effect Community Smell is detected. This Community Smell identification func-
tion returns the list of communication edges classified as “potential” Black-cloud
Effect Community Smell and, in order to be classified as actual Black-cloud Effect
Community Smell within a range analysis, a “potential” Black-cloud Effect has to

be present in the list of “potential” Black-cloud Effect of the previously analysed

98

Tk W N —

N o

7.3. Operationalisation of Community Smells

Algorithm 7.2 Operationalisation of Missing Links identification pattern

community . smell . missing. links <— function (mail.graph, code.graph, precomputed.

silo=NA) {
missing <— list ()
for (vert in V(code.graph)$id) {
if (!(vert %in% V(mail.graph)8$id)) {
next () # the case of one dev not present in the mailing list is handled
later
}

for (coll in neighbors(code.graph, V(code.graph) [V(code.graph)$id = vert])$id

if (coll > vert) {
next () # avoid to check twice a graph due to its undirected nature

}
if (!(coll %in% V(mail.graph)$id)) {
next () # the case of one dev not present in the mailing list is handled
later
}

if a missing communication link is found, it is saved
if (!(coll %in% neighbors(mail.graph, V(mail.graph) [V(mail.graph)$id = vert

1)8id)) {
missing [[length (missing) + 1]] <— c(vert, coll)
}
}
}
if no precoumputed organisational silo, we are done
if (length(precomputed.silo) =— 0){
return (missing)
}

If organisational silo is mot pre—computed, calculate it
if (is.na(precomputed.silo)){
precomputed. silo <— community.smell.organisational.silo (mail.graph, code.graph

)

Add the missing links due to developers absence in the mailing lists
for (edge in precomputed.silo) {
missing [[length (missing) + 1]] <— edge

return (missing)

99

O © 00U WN

7. Operationalising our Quality Framework: Codeface4Smells

Algorithm 7.3 Operationalisation of Black-cloud Effect identification pattern

community . smell. potential.black.cloud <— function (mail.graph, clusters) {
black.links <— list ()
memships <— membership(clusters)
For every sub—community check how many edges connect it to another
sub—community. If there is just one extra—cluster edge, we have
a potential black cloud
for (clust in 1:length(clusters)) {
extra.clust.links <— list ()
for (vert in V(mail.graph)|[memships = clust|8$id) {
for (neigh in neighbors(mail.graph, V(mail.graph)[V(mail.graph)$id =— vert])
$id) {
if (memships[V(mail.graph)[V(mail.graph)$id = neigh]] != clust) {
extra.clust.links [[length(extra.clust.links) + 1]] <— c(vert, neigh)
}
}
if (length(extra.clust.links) = 1) {
Potential black cloud smell detected
black.links [[length(black.links) + 1]] <— extra.clust.links [[1]]
}
}
return(black.links)
}

range. Therefore, the measurement of Black-cloud Effect Community Smell is the
number of communication links resulting from the intersection of the list of “poten-
tial” Black-cloud Effect of the actual range in analysis with the list of “potential”
Black-cloud Effect of the previously analysed range, thus the Black-cloud Effect as-
sociated to the first analysed range will always be zero. The R implementation of
“potential” Black-cloud Effect Community Smell in Codeface4Smells is proposed in
Algorithm 7.3.

Prima-donnas Effect Community Smell measures the number of communica-
tion links that identify unique communication points toward other sub-communities
in a situation in which two analysed sub-communities can be considered collaborat-
ing within the software source code development, therefore the identification of such
Community Smell requires as input the collaboration and communication Developer
Social Networks, the subdivision of community members belonging to the commu-
nication DSN into different sub-communities and the threshold needed to consider
two distinct sub-communities as collaborating. The default value of the collaboration
threshold is setted to the 20% of total possible collaborations. As explained in Section
4.3, the identification process of communication links that are possibly involved in
a Prima-donnas Effect is the same as the “potential” Black-cloud Effect, thus in
order to enable a computational optimisation it is possible to specify a precomputed
list of “potential” Black-cloud Effect Community Smell, otherwise the related Com-
munity Smell identification function will be invoked. Every communication link
present in the “potential” Black-cloud Effect list is considered and the number of

collaborations between the two different sub-communities identified by a “potential”

100

7.4. Socio-technical Quality Framework implementation

Black-cloud Effect is computed. Then, the number of total possible collaborations
is computed multiplying the numbers of community members constituting the two
sub-communities and if the percentage of actual inter-collaborations, thus the result
of the number of collaborations between the two sub-communities over the total
number of possible collaborations, is greater than the given threshold then the two
sub-communities are considered collaborating within the software development ac-
tivity and a Prima-donnas Effect is effectively detected. Therefore, Prima-donnas
Effect identification function returns the list of communication links of the commu-
nication DSN that identify the occurrence of such Community Smell and in order
to obtain the related measurement it is necessary to count the number of elements
that constitute the returned list. The R implementation of this Community Smell
in Codeface4Smells is proposed in Algorithm 7.4.

Radio Silence Community Smell measures the number of unique knowledge
brokers toward different sub-communities, therefore the identification of such Com-
munity Smell requires as input the communication Developer Social Network and
the subdivision of its community members into different sub-communities. The iden-
tification process considers one by one every sub-community of the communication
Developer Social Network and considers every outgoing communication link toward
other sub-communities. If a sub-community is composed by only one community
member, he or she is considered a unique boundary spanner without further com-
putations, otherwise the analysis continues considering two sub-communities at the
time and, if one sub-community communicates with the other one through only one
community member, him or her is identified as a knowledge broker and a Radio Si-
lence Community Smell is detected. Therefore, Radio Silence identification function
returns the list of unique knowledge brokers within the sub-communities belonging to
the communication Developer Social Network and in order to compute its associate
measurement it is necessary to count the number of elements that constitute the
returned list. The R implementation of this Community Smell in Codeface4Smells

is proposed in Algorithm 7.5.

7.4 Socio-technical Quality Framework implementation

This section explains how the 40 socio-technical quality factors that constitute
our Socio-technical Quality Framework proposed in Chapter 5 are implemented in
CodeFace4Smells. The complete set of socio-technical quality factors is summarised
in Table 5.1 and it is computed for every analysed range and obtained measurements
are summarised in a socio-technical analysis report generated at the end of the global
analysis performed by Codeface4Smells.

Community dimensions. Some community dimensions that consider the

number of developers and members who are involved within the software project

101

Tk W N —

[0l e

11
12
13
14
15

39

41
42
43
44
45
46
47

7. Operationalising our Quality Framework: Codeface4Smells

Algorithm 7.4 Operationalisation of Prima-donnas Effect identification pattern

community . smell . primadonnas <— function (mail.graph, clusters, code.graph,

}

collaboration=0.2, precomputed.black=NA) {
primadonnas <— list ()
memships <— membership(clusters)
comms <— communities(clusters)
For every potential black—cloud, check collaborations of involved sub—
communities ;
if it is greater than the threshold, we have two prima—donnas

if no potential black—cloud, we are done

if (length(precomputed.black) 0){
return(primadonnas)

}

if (is.na(precomputed.black)) {
If potential black—cloud is not pre—computed, calculate it
precomputed . black <— community.smell.potential.black.cloud (mail.graph,
clusters)

for (black.link in precomputed.black) {
sub.comm. connections <— 0
retrieve cluster identifier of the two sub—communities
id.clustl <— memships[V(mail.graph) [V(mail.graph)$id = black.link [1]]]
id. clust2 <— memships[V(mail.graph) [V(mail.graph)8$id = black.link [2]]]
count inter—collaborations of the two sub—communities
for (dev.clustl in V(mail.graph)|[memships = id.clustl]8$id) {
if (!(dev.clustl %in% V(code.graph)$id)) {
next () # ignore devs present only in the communication graph

for (dev.clust2 in V(mail.graph)|[memships = id.clust2]8id) {
if (!(dev.clust2 %in% V(code.graph)8$id)) {
next () # ignore devs present only in the communication graph

if (dev.clustl %in% neighbors(mail.graph, V(mail.graph) [V(mail.graph)$id
=— dev.clust2])8id) {
sub.comm. connections <— sub.comm.connections + 1

}

If the fraction of present collaborations over the total possible
collaborations
(Number of devs of clustl * Number of devs of clust2) is greater than
the given threshold then we have two prima—donnas
tot.possible.collaborations <— length(comms[[id.clustl]]) * length(comms]|[id
.clust2]])
if ((sub.comm.connections / tot.possible.collaborations) > collaboration) {
prima—donnas effect detected
primadonnas [[length (primadonnas) + 1]] <— c(id.clustl, id.clust2)

}
}
}

return (primadonnas)

102

19
20

21
22
23
24
25

27
28
29
30
31
32

34
35
36
37
38

7.4. Socio-technical Quality Framework implementation

Algorithm 7.5 Operationalisation of Radio Silence identification pattern

community . smell.radio.silence <— function (mail.graph, clusters) {

}

brockers <— c()
memships <— membership(clusters)
consider every communication outside each cluster and if there is just one
communication edge from a sub—community toward another one, we have a
radio silence smell (unique boundary spanner)
for (clust in 1l:length(clusters)) {
If a cluster has only one dev, he is an unique boundary spanner
if (length(V(mail.graph) [memships = clust|$id) = 1) {
brockers [length(brockers) + 1] <— V(mail.graph) [memships = clust]8$id
next ()

extra.clust.links <— list ()
for (vert in V(mail.graph)[memships = clust][$id) {
for (neigh in neighbors(mail.graph, V(mail.graph) [V(mail.graph)$id = vert])
) 1
Note: neigh is the local graph vertex id, not the developer id
if (clust != memships|[neigh]) {
for each outgoing edge, save the cluster developer id and the
destination
sub—community id
extra.clust.links [[length(extra.clust.links) + 1]] <— c(vert, memships|
neighl)

}
}

for each outgoing edge, substitute destination wvertex with its community
if (length(extra.clust.links) > 0) {
change format to enable comparisons
extra.clust.links <— matrix(unlist (extra.clust.links), ncol=2, byrow=TRUE)
for (outClust in unique(extra.clust.links[, 2])) {
from.dev <— which(extra.clust.links[, 2] = outClust)
if (length(from.dev) =— 1) {
radio silence community smell detected
brockers [length(brockers) + 1] <— extra.clust.links [from.dev, 1]
}
}
}
}

return (unique(brockers))

103

7. Operationalising our Quality Framework: Codeface4Smells

are retrieved considering the number of nodes that constitute the global, commu-
nication and collaboration Developer Social Networks. The total number of people
involved in any possible and analysable way within the considered community in
a specific range (dev) is obtained counting the number of nodes that constitute
the Global DSN, while the number of members who are present in every aspect
of a FLOSS project development (ml.code.devs) is obtained counting the number
of nodes that constitute the intersection of the collaboration and communication
Developer Social Networks. Finally, the number of developers who contribute to a
project’s source code development but do not participate in the communication chan-
nel (code.only.devs) and the number of members who participate to every activi-
ties of a community with the exception of the development phase (ml.only.devs) are
retrieved respectively, subtracting the number of members present in every commu-
nity phase (ml.code.devs) to the number of nodes that constitute the collaboration
DSN and subtracting the number of members present in every community phase
(ml.code.devs) to the number of nodes that constitute the communication DSN.
Therefore, given the measured dimensional characteristics of a FLOSS community,
it is possible to retrieve the dimensions of the communication or collaboration De-
veloper Social Networks summing two different available metrics (ml.code.devs and
ml.only.devs; ml.code.devs and code.only.devs); these aggregate dimensions were not
considered within this master thesis study because we considered previously listed
dimensions in their disaggregate and finer grain details level. Other insights that
could help a researcher to understand how a community is structured and subdi-
vided between communication and collaboration activities, can be the identification
of how community members are spread into previously classified participation ty-
pologies. In order to capture such community’s characteristics, it is calculated the
percentage of people involved in code source development who communicate on the
project’s mailing list (perc.ml.code.devs), people present in the mailing list but
that do not commit code contributions (perc.ml.only.devs) and developers that
contribute to the community only by committing contributions to a project’s source

code (perc.code.only.devs).

Sponsored developers. The list of developers whom are supposed to be spon-
sored by commercial companies or whom can be considered self-sponsored developers
with respect to the project in analysis, is retrieved applying an approach proposed
by Riehle et al. [8], that considers information related to every commit pushed
into a project’s source code within the range in analysis. A developer is associated
with a sponsored status if at least the 95% of his or her commits are erecuted in
working time, from 9am to 5pm (local time) and from Mondays to Fridays. In their
research Riehle et al. tried different threshold combinations in order to model differ-
ent working habits present world-wide and concluded that the considered definition

of working time provided an accurate approximation of the concept on a global work-

104

7.4. Socio-technical Quality Framework implementation

ing scale. The computed list of sponsored developers is used to compute the total
number of sponsored developers within the window of analysis (sponsored.devs)
and its related ratio with respect to the total number of developers whom contribute

to a project’s source code (ratio.sponsored.devs).

Core community members. The identification of core community members of
the global, communication and collaboration Developer Social Networks is founded
on a methodological approach proposed in 2016 by Joblin et al. [60]. Such iden-
tification methodology considers the degree centrality measure of every developer
since, in their research, it was demonstrated that core developers exhibit a higher
global centrality in the developer network and that they are likely to coordinate with
other core developers, while peripheral developers are likely to coordinate with core
developers. The method proposed by Joblin et al. uses social network analysis
methodologies and it was proven to provide a better reflection of developer percep-
tion rather than count-based approaches (e.g. commit count, LOC count and mail
count) [60]. Codeface was already able to classify as core or peripheral a developer
belonging to the collaboration Developer Social Network, but this functionality was
applied only within the collaboration analysis to developers whom contributed to a
project’s source code and it supported only directed graphs. Since the methodologies
we proposed are based on undirected graph topologies, the preexistent solution to
identify core and peripheral community members involved in a project was extended
to support undirected graphs and the ability to apply such classification functionality
to communication, collaboration and global Developer Social Networks. Once that
core community members of the collaboration, communication and global Developer
Social Networks are identified, it is possible to count the number of core members
present in a community for each typology of analysed network (core.global.devs,
mail.global.devs, core.code.devs). Since the list of developers sponsored by com-
mercial companies or self-employed is retrieved from the collaboration DSN, it is
possible to compute the number of sponsored developers whom are classified as core
developers within the collaboration DSN (sponsored.core.devs), intersecting the
two relative information and computing its related ratio (ratio.sponsored.core)
with respect to the total number of core developers present in the collaboration
Developer Social Network. A deeper understanding of how core members behave
within different community activities can be achieved counting how many commu-
nity members are characterised by core status both in the collaboration and in the
communication Developer Social Networks (ml.code.core.devs), how many core
members of the communication DSN are not core developers in the collaboration
DSN (mail.only.core.devs) and how many core developers of the collaboration
DSN are not core members in the communication DSN (core.only.core.devs).
These three dimensional metrics related to core members distributions within con-

sidered Developer Social Networks are then used to compute the related ratio with

105

7. Operationalising our Quality Framework: Codeface4Smells

respect to the total number of unique core members presents in the communication
and in the collaboration Developer Social Networks and in the two different gener-
ated Developer Social Networks alone (ratio.ml.code.core, ratio.mail.only.core,
ratio.core.only.core).

Truck number. The truck number represents the ratio of people that an
activity can lose without entering into a stagnation phase. It does not exist a
formal definition to calculate truck number (truck factor) [57] but within a FLOSS
development community we can define as vital members associated with a core status
with respect to each generated network typology. The number of core members
present in the communication, collaboration and global developer Developer Social
Networks previously obtained are then used to calculate the truck number relative
to each network typology (mail.truck, code.truck and global.truck), using the

following formula:

#peripheral members __ (#Fmembers — #core members)
#members - #members

Truck number =

Turnover. Different typologies of turnover are calculated using the number of
community members of the current and of the previously analysed ranges. Therefore,
the turnover of the first range of an analysis will always be zero. The following

formula is applied to compute turnover:

NEEDLY
BY + NEEY)/2 * 100%

Turnover = NE
Where:

e NELDY is the number of members who left the project in the analysed range.
It is obtained counting the number of members resulting from the intersection
of members of previously analysed range and members of the actual range in

analysis;

e NEBY is the total number of members who constituted the community in the

previously considered range;

e NEFEY is the total number of members who constitute the actual range in

analysis.

Turnover metrics are characterised by a temporal nature because in order to be com-
puted they need to have access to historical development analysis information. The

following typologies of turnover are calculated using previously explained formula:
1. turnover of global members (global.turnover);

2. turnover of collaboration members (code.turnover);

106

7.4. Socio-technical Quality Framework implementation

3. turnover of global core members (core.global.turnover);
4. turnover of communication core members (core.mail.turnover);

5. turnover of collaboration core members (core.code.turnover).

Temporal and geographic dispersion. The temporal and geographic dispersion
of a software project is calculated as the number of different and unique time-zones
involved in every source code contribution to the source code within the range in
analysis (num.tz). Codeface’s collaboration analysis populates a database table
with all retrievable details of commits and their relative author, hour, date and time-
zone. Codeface4dSmells comes with a functionality capable to query such database
table in order to retrieve all the commits information related to the range in analysis,
extract their associated time-zones and return the number of unique different time-
zones that were involved within the project development in the considered range.
Socio-technical congruence. Socio-technical congruence (st.congruence)
is measured as the number of development collaborations that do have a commu-
nication counterpart over the total number of collaboration links present in the
collaboration Developer Social Network. Development collaborations that do have
a communication counterpart are identified analysing one by one the collaboration
links that connect different developers present in the collaboration Developer So-
cial Network and check within the communication Developer Social Network if such
developers are present and connected through a communication link. Therefore,
socio-technical congruence can be computed using Missing Links Community Smell

metric as follows:

F#collaborations — #missingLinks

Socio-technical congruence = Fcollaborations

Communicability. Each collaboration between two developers (A and B) in the
software development network is considered as a possible source of architectural and
design decision, therefore a developer is considered aware of a decision if he or she is
strongly connected to at least one of the two developers whom generated the decision.
In-communicability is related to every collaboration within the collaboration DSN

and it is based on Tamburri et al’s formulation [DEBT-2]:

MAI = DEM — DAM

__ #collaborators of the two developers
DEM = #developers

DAM = F#collaborators of the two developers whom communicate with them
- Fdevelopers

Therefore, global in-communicability can be defined as the mean MAI over the

entire collaboration network. Communicability is a global indicator which consists

107

7. Operationalising our Quality Framework: Codeface4Smells

in the mean of all local communicability measures, calculated for every collaboration
between two developers within the collaboration Developer Social Network in the
range in analysis. Communicability was preferred to in-communicability in order
to simplify measurement comprehension, because in-communicability tend to be

characterised by measurements that tend to zero. Communicability is computed as:

Communicability = 1 — incommunicability = 1 — %Z MAI

Social Network Analysis metrics. We used some Social Network Analysis

methodologies available in R language to calculate the following factors:

« centrality of the global Developer Social Network computed considering close-

ness (closeness.centr), betweenness (betweenness.centr) and degree (degree.centr);
o density of the global Developer Social Network (density);

o modularity of the global Developer Social Network (global.mod), commu-
nication Developer Social Network (mail.mod) and collaboration Developer

Social Network (code.mod).

Smelly developers and smelly quitters. Two socio-technical quality metrics
related to the outcome of Community Smells identification analysis, specifically
computed using the list of unique community members involved within at least one
Community Smell, are the ratio of smelly developers and the ratio of smelly quitters.
The ratio of smelly developers (ratio.smelly.devs) is the ratio of community mem-
bers who are involved in at least one Community Smell with respect to the total
number of unique members who constitute the global Developer Social Network.
The ratio of smelly quitters (ratio.smelly.quitters) represents the ratio of devel-
opers who were involved in at least one Community Smell in the previously analysed
range that left the software development community within the range in analysis.
The ratio of smelly quitters is characterised by a temporal characteristic because
in order to be computed it needs to have access to historical development analysis
information, therefore a list of every community member and of smelly developers

of the previously analysed range is kept and passed to the next range analysis.

108

