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Statistics used for gridded temperature analysis
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1 “Global” temperature trends

It is debatable if it is even possible to define a “global temperature” for the planet[1]. The
Earth has a very wide and variable temperature field - temperatures vary with latitude, alti-
tude/depth, season, time-of-day, etc. However, there is considerable evidence that over periods
of decades/centuries/millennia, the Earth can alternate between periods of “global warming” and
“global cooling”, during which the globally-averaged near ground temperature slightly increases or
decreases, e.g., the alternation between glacial maxima and interglacial periods during ice ages. One
approach to studying global temperature trends without defining an absolute “global temperature”
is to use “temperature anomaly records”

2 Temperature anomalies

The idea of a temperature anomaly record is quite simple. The mean temperature for a given
weather station record, T is calculated over a specific time period - the “anomaly period”. The
anomaly record is then determined by subtracting this mean value from each of the values in the
original record.

In this way, positive temperature anomalies correspond to temperatures that are “above-
average”, while negative anomalies are “below-average”. This means that the relative temperature
trends at different locations can be compared, even if the absolute temperatures at those locations
are completely different.

Ideally, the anomaly period should be as long as possible to improve the accuracy of T , and
it should also be fairly consistent between all records being studied, so that the records can be
directly compared.

The length of a weather record typically varies from a few decades to a few centuries. A 30
year period is often chosen as a length that is long enough to yield a reasonably accurate mean,
but short enough to allow most records to be analysed1. The anomaly period is often chosen to
correspond to a period when most of the records have data, e.g., the NASA GISS group have used
the 1951-1980 period[2], while the CRU group have used the 1961-1990 period[3]. In our analysis,
we typically use the 1961-1990 period.

3 Gridded means

A related problem with calculating “global temperature trends” from weather station records is
that weather stations are not evenly distributed across the globe. There are spatial differences, e.g.,
some regions (e.g., U.S. or Europe) have higher station densities than others (e.g., central Africa or

1E.g., the World Meteorological Organization defines “climate” as being the 30 year average weather conditions:
http://www.wmo.int/pages/prog/wcp/ccl/faqs.html
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Antarctica), and ∼ 70% of the Earth’s surface is water rather than land. There are also temporal
differences, e.g., the number of stations was much smaller in the 18th and 19th centuries than in the
20th century, the early 20th century had fewer stations than the later 20th century, and in NOAA
NCDC’s GHCN dataset and similar datasets, there is a dramatic decrease in station numbers after
1990. Finally, there are spatio-temporal differences, e.g., the vast majority of available mid-19th
century stations were European or American.

For this reason, a simple averaging of all available station anomalies in each year is inappropriate,
since it would over-represent regions of high station density and under-represent regions of low
station density. Hence, a number of different approaches have been taken to overcome this problem.
Initial approaches attempted to select a subset of the available station records which are reasonably
evenly distributed and of a similar length[4, 5]. However, this often means discarding a large amount
of data, which is undesirable considering the data is already quite limited as it is. Also, as the
decision to discard records is somewhat subjective, it could lead to unintentional cherry-picking,
potentially increasing the possibility of the researcher succumbing to confirmation bias.

To include all data, without biasing the “global” temperatures towards regions with higher
spatial densities, some groups have used spatial interpolation techniques[6, 7], e.g., kriging. A
simpler, though less sophisticated approach is to simply divide the globe into discrete grids, calculate
the mean temperature anomalies of the grids by averaging together all the station anomalies that are
in a given grid, and then average together the gridded anomalies to yield a “global” (or “regional”)
temperature anomaly.

NASA GISS adopt this approach by constructing the grid boxes so that they are all of uniform
area[2]. However, station locations are reported using (latitude, longitude) coordinates. So a
simpler approach taken by other groups[3] (including us) is to divide the globe into grid boxes
according to latitude and longitude. A common grid box size in this approach is 5◦ latitude ×5◦

longitude.
The problem with the latitude/longitude gridding approach is that the surface area of a latitude

× longitude box varies with latitude. High latitude grid boxes have a smaller surface area than
low latitude grid boxes. This can be easily visualised by comparing the relative area of the polar
regions on a globe to their relative area in a flat 2-D Mercator map of the world. Hence, if this
approach is taken, the temperature anomalies of the grid boxes are usually weighted by the area of
the grid boxes.

If we represent latitude by φ and longitude by λ (both given in radians), define φ1 and φ2 as
the lowest and highest latitudes (respectively) of a box (in a given hemisphere), and λ1 and λ2 as
the most westerly and easterly (respectively) longitudes of the box, then the surface area (S) of
the box is2:

S =

∫ φ2

φ1
R

(∫ λ2

λ1
R cosφdλ

)
dφ (1)

= R2(λ2 − λ1)(sinφ2 − sinφ1) (2)

Where R ' 6371 km is the radius of the Earth. The relative weight of the anomaly for each box,
wbox i, to the global mean anomaly is then,

wbox i =
Sbox i∑N
k=1 Sbox k

(3)

2For a graphical representation, see British Atmospheric Data Centre Help pages in the “Coordinates” section,
for example.
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wbox i =
[R2(λ2 − λ1)(sinφ2 − sinφ1)]box i∑N
k=1[R2(λ2 − λ1)(sinφ2 − sinφ1)]box k

(4)

Where N is the number of grid boxes with data for that year.
One might argue that N should be the total number of all possible grid boxes (i.e., 2592 for

5◦ × 5◦ boxes). That is a reasonable argument. If a station (or set of stations) from a region
with a relatively large climatic variability are only available for some years of the analysis, then
it would create the impression that those years showed greater variability. E.g., when Jones et
al., 2012[8] updated Brohan et al., 2006[3]’s analysis, they introduced more stations for the Arctic
regions (e.g., Siberia) for recent years. This made the global temperature anomalies for recent years
appear slightly warmer in the new analysis[8]. But, perhaps earlier years would also have appeared
warmer if those stations had also been available then.

On the other hand, if “empty” grid boxes are included for a given year, then this has the effect of
implying that the grid box had a temperature anomaly of 0◦C for that year, artificially dampening
years with low station coverage towards the anomaly period mean, i.e., “cooling” positive anomalies,
and “warming” negative anomalies. Hence, while NASA GISS took this approach in an early
version of their analysis[2], most gridding approaches favour the approach of only including boxes
with available data, i.e., N = number of grid boxes with data for a given year.

If the grid boxes are all of the same size in degrees longitude, i.e., λ2 − λ1 = a constant, e.g.,
5◦, then this can be simplified,

wbox i =

(
R2(λ2 − λ1)

)
(sinφ2 − sinφ1)]box i

(R2(λ2 − λ1))
∑N
k=1[(sinφ2 − sinφ1)]box k

(5)

=
[sinφ2 − sinφ1]box i∑N
k=1[sinφ2 − sinφ1]box k

(6)

Eqn. 6 could therefore be used for weighting different grid boxes by their relative surface area.
However, another approach is to weight grid boxes by the cosine of the mid-latitude of the box[8].
This approach can be justified from Eqn. 6 in the following way:

We know that for two angles, A and B,

sinA− sinB = 2 cos

[
(A+B)

2

]
sin

[
(A−B)

2

]
(7)

Hence,

sinφ2 − sinφ1 = 2 cos

[
(φ2 + φ1)

2

]
sin

[
(φ2 − φ1)

2

]
(8)

Therefore,

wbox i =
2
[
cos

(
φ2+φ1

2

)
sin (φ2−φ1)

2

]
box i∑N

k=1

[
2 cos

(
φ2+φ1

2

)
sin (φ2−φ1)

2

]
box k

(9)

If φ2 − φ1 = a constant for all boxes, e.g., 5◦, then sin(φ2 − φ1) is also a constant. Therefore,

wbox i =

(
2 sin (φ2−φ1)

2

) [
cos

(
φ2+φ1

2

)]
box i(

2 sin (φ2−φ1)
2

)∑N
k=1

[
cos

(
φ2+φ1

2

)]
box k

(10)
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=

[
cos

(
φ2+φ1

2

)]
box i∑N

k=1

[
cos

(
φ2+φ1

2

)]
box k

(11)

In other words, the weight of a grid box is proportional to the cosine of the mid-latitude of the
box. The computational advantage of Eqn. 11 over Eqn. 6 is that it only requires the calculation
of one cosine, instead of two sines. However, Eqn. 6 is probably more straightforward, if you are
also interested in calculating the actual surface area of the grid (rather than just its ratio), as it is
simply related to Eqn. 2.

In our analysis, we used the weighting from the above equation (Eqn. 11).
Whichever approach is taken, a further step is necessary to calculate the weighting of an indi-

vidual station. Let xi be the anomaly for station i in a given year. Then, the weight that station
i’s anomaly contributes to the global mean,

wi =
wbox i

number of stations in grid box
(12)

Then, the global mean temperature anomaly for that year, x̄ is a weighted mean:

x̄ =

∑N
i=1(xiwi)∑N
k=1wk

(13)

There are several ways which could be used to estimate the confidence intervals (CI) for a given
year’s temperature anomaly, e.g., Rohde et al. (submitted 2011)[7] applied sub-sampling techniques
such as the “jackknife method”. Most approaches rely on the assumption that the temperature data
being averaged is relatively unbiased, or the biases are at least relatively “stationary” (i.e., constant
over time), in which case they will be reduced or eliminated by the anomaly process. In other words,
temperature variability is mostly due to either local weather fluctuations or long-term climatic
change. However, in the case of weather station data, that assumption is highly problematic[9], as
a number of non-climatic biases are known to affect station records, e.g., changes in station location,
observation practice, instrumentation, instrument surroundings (“microclimate”), urbanization or
change in the land use of the surrounding area.

Brohan et al., 2006 attempt to quantify the magnitude of the uncertainty introduced by some
of these biases[3]. But, as we discuss in several articles[10–13], this is a non-trivial problem, which
Brohan et al. appear to have substantially underestimated. Hence, we do not attempt to calculate
the confidence intervals of the “true” global temperature anomalies, but rather the confidence
intervals for the globally-averaged temperature anomalies of the available weather station data,
whether they may happen to be biased or not. In other words, it is the statistical significance of
the data which is being considered, rather than the climatological significance.

With that in mind, one approach is to first estimate the standard deviation of the mean, σ(x̄).
Researchers unfamiliar with sampling statistics should note that the “standard deviation of the
mean” or “standard error of the mean” (often abbreviated to “standard error”) is different from
the “standard deviation of the sample”. The former represents the precision to which the estimated
mean value of a sample is known, whereas the latter represents the distribution of values in the
sample[14, 15].

Since the global temperature anomaly is calculated as a weighted mean (Eqn. 13),

σ(x̄) =

√√√√ N∑
i=1

(
wi∑N
k=1wk

)2

σ2
i (14)
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Where σi is the standard deviation of the temperature anomalies for station i. If all weights were
equal, wi = w , then

w∑N
k=1w

=
1

N
(15)

σ(x̄) =

√√√√ N∑
i=1

σ2
i

N2
(16)

If all standard deviations were equal, then σi = σ, so

σ(x̄) =

√
N

(
σ2

N2

)
(17)

=
σ√
N

(18)

However, as different stations have different weights and standard deviations, Eqn. 14 is necessary.
For a given year, each station has only one annual value, so σi is unknown. One approximation to
overcome this would be to assume that the standard deviations of all stations are the same, i.e.,
σi = σall stations, which could be calculated from the anomalies for all stations in that year. But,
the temperature variability can vary significantly from region to region (e.g., equator to the poles, or
inland to coastal), so that approximation is rather crude. Hence, a less crude approximation would
be to calculate the standard deviation for a given grid box, i.e., from the temperature anomalies for
a given year in all stations in that box. However, if a particular grid box has a low station density
(perhaps only one or two stations), the standard deviation may be incalculable or unrealistic.

For these reasons, we calculate σi for each station over the entire temperature record for that
station, and then use those values for calculating the standard deviation of the global mean for a
given year. Note that this conflates the temporal variability of the temperature anomalies at each
station with the spatial variability of temperature anomalies in a given year. This is potentially
problematic as the estimates for the confidence intervals for the annual global temperatures are
no longer independent of temperature variability over time, but the confidence intervals are being
calculated specifically to assess that, i.e., global temperature trends over time.

As an aside, since the lengths of station records vary dramatically from a decade or two to a
few centuries, with different start and end dates, for the sake of standardization, one could argue
for calculating σi for all stations over the same period (e.g., the period used to calculate the station
anomalies). However, we use the entire record for each station.

Finally, once the standard deviations of the means are calculated for the global temperatures,
they are assumed to be normally distributed. In that case, the true value of the mean is ∼ 68.3%
likely to be within ±σ(x̄) of the estimated mean, x̄, while it is ∼ 95.4% likely to be within ±2σ(x̄)
of the estimated mean. Both of these ranges are sometimes used as confidence intervals. But, some
researchers prefer to define the 95.0% confidence interval, i.e., ±1.96σ(x̄). All of these ranges are
valid values for CI, provided it is noted which criteria is being applied [14, 15]. Hence, we use the
middle option,

CI = ±2σ(x̄) (19)

page 5 of 7



4 “Smoothing” data

Fundamentally, weather seems to be quite chaotic. Hence, much of the temperature variability in
a weather station record might include random fluctuations which are only temporary in nature.
Hence, in climate data analysis, it is quite common to apply some sort of averaging, or “smoothing”,
to the data series in order to remove the random short-term variability3.

Unfortunately, it is well-known in statistics that stochastic (i.e., random) processes can occa-
sionally produce spurious “trends”, e.g., see Wunsch, 1999[16]. So, if you are looking to see if
there are any “climatic trends” in a temperature series, then it is important to make sure you are
detecting “signal” rather than “noise”. That is, make sure the apparent trend is genuine, and not
just a spurious random trend, or a statistical artefact of the smoothing process.

The monthly weather records we use in our analysis already have been subjected to considerable
averaging/smoothing - each monthly temperature is the mean of all the daily temperatures for that
month, and each “daily temperature” is itself an estimate of the mean temperature for that day.

Most of our analysis is concerned with annual trends, so we apply a further smoothing, i.e., the
average annual temperature is the mean of the 12 monthly averages. However, there is considerable
year-to-year variability in most temperature records. So, if you are trying to identify long-term
trends, it can sometimes be useful to apply further smoothing to the records.

A common smoothing technique is to calculate a “running mean”4 using a fixed number of
years, e.g., a five year-running mean. Running means are calculated by replacing the value for a
given year with the mean value over the period starting a fixed number of years before the given
year and ending that same fixed number of years after the given year. This has the effect of making
consecutive years seem quite similar to each other, i.e., it reduces the inter-annual variability.
Hence, long-term trends are more apparent.

One problem with running means is that they can artificially create the appearance of long-term
trends which might not exist. For instance, if a few years had anomalously high (or low) mean
temperature, then this would increase (or decrease) the values of the temperatures for several years
before and after this anomalous period, creating the impression of a gradual trend over a long period.
In order to reduce the magnitude of this statistical artefact, while still reducing the inter-annual
variability enough to consider long-term trends, one approach is to apply “binomial smoothing”.
Like a running-mean, this approach also involves averaging all values over a fixed period. However,
in the binomial mean, the weights the neighbouring years contribute to the average are reduced
the further away in time they are from the target year. This approach accentuates long-term
trends (low-frequency information) without losing all the inter-annual variability (high-frequency
information).

The relative weights of each year are determined from the binomial distribution5 when the
probability of an event = 0.5. This particular binomial distribution is often referred to as “Pascal’s
triangle”.

For our analysis in this paper, we often consider the 11-point binomial means of temperature
trends. This uses weighting coefficients of [1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1], i.e., the central
value receiving 252 times the weight of the outer values.

3By the way, the smoothing of data series is quite analogous to the filtering of data series in the field of signal
analysis to improve the “signal-to-noise ratio”.

4This technique is sometimes called a “boxcar average”
5e.g., see http://en.wikipedia.org/wiki/Binomial_distribution for a summary.
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