
Appendix to Visualizing Complex Data with
Embedded Plots

Garrett Grolemund∗

RStudio
and

Hadley Wickham†

Department of Statistics, Rice University

December 23, 2013

A ADVANCED IMPLEMENTATION

The layered grammar of graphics includes more than just geoms and aesthetic mappings. It also

uses stats, parameters, position adjustments, and coordinate axes to describe and build graphs

(Wickham, 2010). This appendix discusses how each of these can be used to create a useful

interface for building embedded plots. We illustrate our ideas with code from the ggsubplot

package.

A.1 Geoms

Software that creates embedded plots should provide a quick way to build glyph-like geoms. Glyph-

like geoms can be built in current implementations of the grammar of graphics by combining

traditional geoms with polar coordinates. For example, an analyst can build a star geom by

combining a line geom with polar coordinates, Figure 1.a, or a frequency polygon geom with polar

coordinates, Figure 1.b. He or she can build a coxcomb geom by combining a bar geom with polar

coordinates, Figure 1.c.

∗Garrett Grolemund is Statistician, RStudio, Boston, Massachusetts 02210 (email: grolemund@rstudio.com)
†Hadley Wickham is Adjunct Professor, Rice University, Houston, TX 77005 (email: hadley@rice.com)

1

library(ggplot2)

library(ggsubplot)

one_nasa <- nasa[nasa$id == "1-1",]

Figure A1.a, a star geom

ggplot(one_nasa) +

geom_line(aes(x = date, y = fahrenheit)) +

coord_polar()

Figure A1.b, a star geom

ggplot(one_nasa) +

geom_freqpoly(aes(x = ozone)) +

coord_polar()

Figure A1.c, a coxcomb geom

ggplot(diamonds) +

geom_bar(aes(x = color, fill = color)) +

coord_polar()

This two step process is fine for traditional plots, where glyph-like geoms are rarely used.

Embedded plots, however, use glyph-like subplots frequently. These subplots will be easier to

create if glyph-like objects are already available as pre-made geoms. For example, an analyst can

use ggsubplot to draw a star, Figure 1.d; freqstar, Figure 1.e; or coxcomb geom, Figure 1.f. Each

is called with a standard geom syntax like below and is analogous to the polar version.

Figure A1.d, star geom

ggplot(one_nasa) +

geom_star(aes(angle = date, r = fahrenheit,

fill = mean(fahrenheit)), r.zero = FALSE)

Figure A1.e, freqstar geom

ggplot(one_nasa) +

2

geom_freqstar(aes(angle = ozone, fill = mean(ozone)))

Figure A1.f, coxcomb geom

ggplot(diamonds) +

geom_coxcomb(aes(angle = color, fill = color))

−0.4

0.0

0.4

−1.0 −0.5 0.0 0.5 1.0
0

0

star geom

−0.5

0.0

0.5

−0.5 0.0 0.5
ozone

co
un

t

freqstar geom

−10000

−5000

0

5000

10000

DEFGHIJ
color

co
un

t
color

D
E
F
G
H
I
J

coxcomb geom

1995

1996

1997

1998

1999

2000

70.0

72.5

75.0

77.5

80.0

date

fa
hr

en
he

it

line geom with polar coordinates
240

250

260
270

280

0

2

4

6

ozone

co
un

t

freqpoly geom with polar coordinates

D

E

F

G

H

I

J

0

3000

6000

9000

color

co
un

t

color
D
E
F
G
H
I
J

bar geom with polar coordinates

Figure 1: In the layered grammar of graphics, glyph-like objects can be built by combining common

geoms with polar coordinates (A, B, C - top row). However, this arrangement can be cumbersome

when building subplots. In that case, it is more convenient to create glyph-like objects with their

own geoms (D, E, F - bottom row)

A.2 Mapping and Stats

Aesthetic mappings for subplots must behave differently than aesthetic mappings for simple geoms.

When you place a simple geom, like a point, in the coordinate plane, you map a single data value

3

to a single x coordinate, and a single data value to a single y coordinate, Figure 2.a. Each subplot,

however, describes a group of points. To place a subplot in the x and y coordinate field, you must

map a group of data values to a single x value and a group of data values to a single y value,

Figure 2.b. This can easily be done by taking the max, min, mean, median, mode, etc. of the

group of values.

●

●

●

●

●
●

●

●

●

●

●

●

0

3

6

9

0 3 6 9
so2

co
2

4.79

7.83

co2 so2 station

11.06 0.38 A

10.10 1.68 A

9.32 2.86 A

8.45 3.46 A

7.83 4.79 B

6.31 5.15 B

5.37 6.94 B

4.86 7.37 B

3.94 8.66 C

2.49 9.85 C

1.63 10.59 C

0.26 11.29 C

mean(co2) mean(so2) station

9.73 2.09 A

6.09 6.06 B

2.08 10.10 C

1

0

3

6

9

12

0.0 2.5 5.0 7.5 10.0 12.5
so2

co
2

10.10

2.08

0

3

6

9

12

0.0 2.5 5.0 7.5 10.0 12.5
so2

co
2

0

3

6

9

12

0.0 2.5 5.0 7.5 10.0 12.5
so2

co
2

0

3

6

9

12

0.0 2.5 5.0 7.5 10.0 12.5
so2

co
2

co2 so2 station

11.06 0.38 A

10.10 1.68 A

9.32 2.86 A

8.45 3.46 A

7.83 4.79 B

6.31 5.15 B

5.37 6.94 B

4.86 7.37 B

3.94 8.66 C

2.49 9.85 C

1.63 10.59 C

0.26 11.29 C

mean(co2) mean(so2) station

9.73 2.09 A

6.09 6.06 B

2.08 10.10 C

1

co2 so2 station

11.06 0.38 A

10.10 1.68 A

9.32 2.86 A

8.45 3.46 A

7.83 4.79 B

6.31 5.15 B

5.37 6.94 B

4.86 7.37 B

3.94 8.66 C

2.49 9.85 C

1.63 10.59 C

0.26 11.29 C

mean(co2) mean(so2) station

9.73 2.09 A

6.09 6.06 B

2.08 10.10 C

1

Mapping simple geoms

Mapping subplots

Figure 2: Simple geoms map one point to one object. A subplot maps a group of points to one

subplot. To place a subplot, a user must map a group of values to a single x or y point. One way

to do this intermediate transformation is with a stat.

In the layered grammar of graphics, such group-wise summaries are done with a stat. A stat

4

is a specific transformation that transforms a user’s data set into a new data set that can be

used to draw geoms. For example, in ggplot2, the boxplot geom uses a stat. Boxplots behave

like subplots, they describe multiple data points with a single geom object. To place a boxplot,

ggplot2 first uses a stat to transform the group of values to a set of five numbers (a median, a

25th percentile, a 75th percentile, etc.). These numbers are then used to draw the boxplot. The

histogram geom does something similar. It uses a stat to transform a group of values into a set

of bins and counts. ggplot2 then uses these bins and counts to draw the histogram. In ggplot2

stats come pre-packaged with names like stat boxplot, stat bin, and stat quantile. Every

geom is associated with a default stat, so users usually do not need to worry about transforming

their data with a stat to build their graph; ggplot2 takes care of it automatically.

A programmer can add a stat that positions subplots to their software. However, a user

would then be limited to positioning subplots with the transformations provided by the stat. In

ggsubplot, we demonstrate an alternative approach. Mappings for subplots are automatically

calculated on a group-wise basis. If a user passes a mapping such as x = mean(surftemp),

ggsubplot does not use the entire data set to calculate mean(surftemp) (which would result in

a single value). ggsubplot first divides the data set into groups according to the subplot geom’s

group mapping. Then ggsubplot calculates mean(surftemp) once for each group, which results in

a separate value for each subplot. This procedure is analogous to the split-apply-combine strategy

described by Wickham (2011).

This arrangement offers two advantages over supplying the user with a stat. First, the user

can use any function they wish to position subplots; the user is not limited to transformations

that exist as a stat. The only constraint is that the user must choose a function that takes a

group of values and returns a single value. Second, the method can be abstracted to use with non-

embedded plots. For example ggsubplot provides the ply aes function, which takes a ggplot2

layer object and modifies it so the layer’s mappings are calculated by group according to the layer’s

group aesthetic. ply aes enforces summarization by subsetting the output of each mapping to

just its first value. A warning message is given if the mapping would have otherwise returned

multiple values. geom subplot automatically uses ply aes. Figure 3 shows how this technique

can remarkably reduce overplotting to reveal structure.

Figure A3.a overplotted ozone vs. temperature

5

ggplot(nasa) +

geom_point(aes(x = atmos.fahrenheit, y = ozone, color = lat))

Figure A3.b. Combine like points, plot their means

ggplot(nasa) +

ply_aes(geom_point(aes(x = mean(atmos.fahrenheit), y = mean(ozone),

color = lat[1], group = interaction(long, lat))))

Figure 3: ply aes offers a new strategy for overplotted graphs, like the one on the left. Groups of

geoms are combined into single geoms that display summary information. This approach reveals

that mean(ozone) has a different linear relationship with temperature in the southern hemisphere

than it does in the northern hemisphere (right). Each collection of points that share the same

latitude and longitude on the left is represented by a single point on the right.

A.3 Parameters

The layered grammar of graphics allows users to control the visual appearance of geoms with

parameters. Both parameters and aesthetic mappings can influence visual aspects of a geom, such

6

as size, shape, and color. However, parameters and mappings influence the geom in different ways.

An aesthetic mapping will use values in the data set to choose the specific size, shape, and color

of a specific geom. As a result, variations in the size, shape, and color will mirror variations in

the values of the data set. In contrast, parameters set the size, shape, and colors of every geom in

a layer to the same user-supplied value. In other words, parameters let the user manually tweak

the appearance of geoms in a plot.

The two most useful parts of a subplot to tweak are the width and height of the subplot.

ggsubplot allows users to manually adjust these dimensions with width and height parameters,

Figure 4. Each is measured in the units of the respective major x (or y) axis.

Default width and height

ggplot(nasa) +

geom_subplot(aes(long, lat, group = id,

subplot = geom_star(aes(r = fahrenheit, angle = date,

fill = mean(fahrenheit)), r.zero = FALSE)))

Decreased width and height

ggplot(nasa) +

geom_subplot(aes(long, lat, group = id,

subplot = geom_star(aes(r = fahrenheit, angle = date,

fill = mean(fahrenheit)), r.zero = FALSE)),

width = 1, height = 1)

ggsubplot also provides a relational system that can simplify setting width and height.

ggsubplot identifies the smallest distance between any two subplots on the x axis and uses this

as the default width. ggsubplot identifies the smallest distance between any two subplots on the

y axis and uses this as the default height. A user can set the height or width to a proportion of

these defaults with the rel function, Figure 4.

Relative widths and heights

ggplot(nasa) +

geom_subplot(aes(long, lat, group = id,

7

subplot = geom_star(aes(r = fahrenheit, angle = date,

fill = mean(fahrenheit)), r.zero = FALSE)),

width = rel(1.5), height = rel(1.5))

long

la
t

Average
Temp (F)

55
60
65
70
75
80

Glyphs with default width and heights

long

la
t

Average
Temp (F)

55
60
65
70
75
80

Increased width and heights, set with rel()

long

la
t

Average
Temp (F)

55
60
65
70
75
80

Glyphs with decreased width and heights

Figure 4: A user can control the width and height of subplots with the width and height param-

eters. Width is measured in the units of the major x axis, height in the units of the major y axis.

Alternatively, a user can use the rel function to set width and height to proportions of the default

width and height. The plot on the right uses a width and height equal to 1.5 times the default

width and height. This is accomplished by setting width = rel(1.5), height = rel(1,5).

A.4 Position adjustments

The geoms in a plot will often overlap, or “collide”, with each other. In this case, a user may wish

to alter the positions of the geoms so that they do not interfere with each other. In the layered

grammar of graphics, each layer of a graphic contains a position adjustment that determines how

to plot graphical elements that interfere with one another. Wilkinson and Wills (2005) refer to this

concept as a collision modifier. The ggplot2 implementation of the grammar of graphics contains

four possible position adjustments. Overlapping elements can be adjusted to appear above each

other (stacking), next to each other (dodging), in random nearby locations (jittering), or left as

they are to overlap (identity).

A user may feel that these arrangements do not work well for embedded plots, because subplots

often use position in a special way. The location of a subplot signals which data points have been

8

included in the subplot. Adjusting the location of the subplot would disrupt this relationship.

A programmer can attempt to handle overplotting without moving subplots by merging over-

lapping subplots into a single subplot. However, this tactic presents difficult programming chal-

lenges: software must identify which subplots overlap, decide how many subplots should be used

to display a cluster of overlapping subplots, and determine the size and the location of merged

subplots. ggsubplot provides the merge position adjustment, which implements this approach

with limited success, Figure 5.b.

ggplot(seasons) +

geom_subplot(aes(lon, lat, group = stn,

subplot = geom_line(aes(x = time, y = pred))),

height = 1, width = 2, position = "merge")

The same problem can be solved in a far simpler manner, by first binning the data into a 2D

grid, and then drawing a separate subplot for each bin in the grid, Figure 5.c. ggsubpot provides

a specific geom, geom subplot2d, to do just this.

ggplot(seasons) +

geom_subplot2d(aes(lon, lat,

subplot = geom_line(aes(x = time, y = pred))),

binwidth = c(2, 1))

A.5 Reference objects

Graphs usually come with a set of coordinate axes that act as a reference object for the plot. Users

can judge values by scanning the axes, and users can use the axes to make comparisons across

multiple plots. However, axes are difficult to read at the small scales used in subplots. Boxes

and lines can also allow comparison and scale better to the smaller sizes of subplots. ggsubplot

creates these objects with a reference parameter in the subplot layer, see Figure 6.

These reference objects allow viewers to judge the position of geoms inside the subplot and to

make comparisons against the position of geoms in other subplots. The dimensions of reference ob-

jects do not vary across subplots, which facilitates accurate comparisons. However, other features

9

Figure 5: Temperature changes from 2000 to 2001 for multiple locations. The position of a subplot

is often related to which points the subplot shows. Position = merge and geom subplot2d provide

two ways to avoid overlapping subplots without disrupting this relationship.

10

0.5

1.0

1.5

2.0

M
date

tr
en

d
co

m
po

ne
nt

ref = ref_box()

0.5

1.0

1.5

2.0

M
date

tr
en

d
co

m
po

ne
nt

ref = ref_hline()

0.5

1.0

1.5

2.0

M
date

tr
en

d
co

m
po

ne
nt

ref = ref_vline()

Figure 6: Reference objects allow comparison across subplots and can be more easily read at

small scales than coordinate axes. In ggsubplot, users can add one of three types of reference

objects to subplots by adding ref = ref box(), ref = ref hline(), or ref = ref vline() to

geom subplot and geom subplot2d calls.

of the reference object can vary to provide additional information about a subplot. For example,

the fill, color, and transparency of a reference object can display group level information about

the data in a subplot. The ggsubplot reference parameter allows users to set these aesthetics

with the functions ref box, ref vline and ref hline, see Figure 6. By default, ref box displays

with a grey background and white border. This matches the color scheme of ggplot2’s default

background, while still delineating the dimensions of the subplot. Reference objects provide a

quick way to compare across subplots. However, if users require a precise judgement they should

still plot the subplot in its own graph with a pair of axes.

References

Wickham, H. (2010), “A layered grammar of graphics,” Journal of Computational and Graphical

Statistics, 19, 3–28.

— (2011), “The split-apply-combine strategy for data analysis,” Journal of Statistical Software,

40, 1–29.

Wilkinson, L. and Wills, G. (2005), The Grammar of Graphics, Springer Verlag.

11

