
Web-based Appendix for

Stable estimation in dimension reduction

Wenbo Wu and Xiangrong Yin∗

February 14, 2014

Abstract

In this web appendix file, we provide the proofs of theorems, algorithms and

additional simulation results and comparisons. Appendix A describes the proofs

of Lemma 1 and Lemma 2 which are related to the Sparse Riesz Condition. The

two lemmas will be used in proofs of Theorem 1 and Theorem 3. Appendix B

provides the proof of Theorem 1, Appendix C includes the proof of Theorem 2.

Appendix D provides a detailed explanation of the Grassmann Manifold and its

relations with eigen-decomposition, and the link between a Grassmann Manifold

and a dimension reduction matrix. Appendix E describes the proof of Theorem

3. Appendix F shows how the values of δ have little influence on the results of

the proposed GMSE and SGMSE methods. Appendix G compares the proposed

GMSE procedure to the sparse sufficient dimension reduction (SSDR) method

(Li 2007), and discusses the differences and connections. Appendix H contains

simulation results for showing the sensitivity of SED to the choice of the number

of slices in sliced inverse dimension reduction methods. It also contains simula-

tion results of the ensemble method proposed in Section 2.3.2 in the paper. In

order to avoid confusing the equation numbers, all equations, tables, and figures

in the this appendix file begin with “A.”.
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Appendix A

The Sparse Riesz Condition controls the range of eigenvalues of covariance matrices of

subsets of a fixed number of design vectors. We will show in Lemma 1 below that for

design X̃w
A of rank m, in model (2.4), the Sparse Riesz Condition is satisfied, and in

Lemma 2 that the Sparse Riesz Condition guarantees a finite bound.

Lemma 1 and Lemma 2 are needed to prove Theorem 1 and Theorem 3.

Lemma 1. For model (2.4), for any X̃w
A of rank m ≤ p, where A ⊆ {1, 2, · · · , p} with

|A| = p, the Sparse Riesz Condition (2.10) is satisfied.

Proof: In model (2.4), for design X̃w
A of rank m, we have

‖ X̃w
Av ‖2

p2 ‖ v ‖2
=

(X̃w
Av)′X̃w

Av

p2v′v
=

v′DAv

p2v′v
=

m∑
i=1

W 2
Aiv

2
i

p2
m∑
i=1

v2
i

.

The Sparse Riesz Condition is satisfied, because

φmin(m) = min
|A|=m,v∈Rm

‖ X̃w
Av ‖2

p2 ‖ v ‖2
= min
|A|=m,v∈Rm

m∑
i=1

W 2
Aiv

2
i

p2
m∑
i=1

v2
i

≥ min
|A|=m,v∈Rm

m∑
i=1

u2v2
i

p2
m∑
i=1

v2
i

=
u2

p2
,

since WAi are generated from [u, 1] for some u > 0. For the same reason,

φmax(m) = max
|A|=m,v∈Rm

‖ X̃w
Av ‖2

p2 ‖ v ‖2
= max
|A|=m,v∈Rm

m∑
i=1

W 2
Aiv

2
i

p2
m∑
i=1

v2
i

≤ max
|A|=m,v∈Rm

m∑
i=1

v2
i

p2
m∑
i=1

v2
i

=
1

p2
.

Therefore, 0 < u2

p2
≤ φmin(m) ≤ φmax(m) ≤ 1

p2
<∞ for all m ≤ p. 2

Lemma 2. Let φmin(m) and φmax(m) be defined as in (2.9) and the Sparse Riesz Con-

dition (2.10) holds. Let Sk ⊂ {1, · · · , p}, X̃w
k = (x̃j, j ∈ Sk) and Σ1k = (X̃w

1 )′X̃w
k /n,

Then

‖ v ‖2

φZmax(|S1|)
≤‖ Σ

−1/2
11 v ‖2≤ ‖ v ‖2

φZmin(|S1|)
, (A.1)
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for all v of proper dimension, and that

‖ βk ‖2
1≤
‖ X̃w

k βk ‖2 |Sk|
nφZmin(|Sk|)

. (A.2)

Proof: Let v,h ∈ R|S1| and v = Σ
1/2
11 h. Hence, Σ

−1/2
11 v = h. By Lemma 1, since the

Sparse Riesz Condition (2.10) holds, we have that φmin(|S1|) ≤ ‖X̃w
1 h‖2

n‖h‖2 ≤ φmax(|S1|).
Note that ‖ X̃w

1 h ‖2= n ‖ v ‖2 and ‖ h ‖2=‖ Σ
−1/2
11 v ‖2.

So φmin(|S1|) ≤ ‖v‖2

‖Σ−1/2

11 v‖2
≤ φmax(|S1|), and 1

φmax(|S1|) ≤
‖Σ−1/2

11 v‖2
‖v‖2 ≤ 1

φmin(|S1|) ,

which yields (A.1). The Cauchy-Schwarz inequality implies that ‖ βk ‖2
1≤‖ βk ‖2 |Sk|.

By the Sparse Riesz Condition, φmin(|Sk|) ≤
‖X̃w

k βk‖
2

n‖βk‖2
=⇒‖ βk ‖2≤ ‖X̃w

k βk‖
2

nφmin(|Sk|)
, which

yields (A.2). 2

Appendix B

Proof of Theorem 1. The goal of Theorem 1 is to find upper bounds of (2.12),

(2.13), and (2.14). Since S = {k : βk 6= 0} is the set of important predictors in the

true model, we define the following sets in Table A.1 to facilitate our proof.

nonzero βj : j ∈ S zero βj : j 6∈ S
S1: selected j S3 S4

S2 = Sc1 S5 S6

Table A.1: Definitions of sets

In our case, q̂ = q1 = |S1|. Define Qkj to be the selection of variables in Sk from Sj:

Qkjβj = βk, β′1 = β′3Q31, βk = {βj, j ∈ Sk}.

Let X̃w
i = (x̃j, j ∈ Si), define

Σjk =
1

n
(X̃w

j )′X̃w
k , fj = (X̃w

Sj
)′(Y − X̃wβ)/λ, j = 1, 3, 4. (A.3)
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By (2.5), we have

Σjk =

 Di/p2 j = k,

0 j 6= k.
(A.4)

where Di = diag(W 2
ij), j = 1, · · · , qi. So

Σ−1
ii = p2D−1

i = p2diag(W−2
ij ). (A.5)

With P1 be the projection from Rn to the span of {x̃j : j ∈ S1}, we define,

v1j =
λ√
n

Σ
−1/2
11 Q′j1fj, wk = (I−P1)X̃w

k βk. (A.6)

Since X̃wβ = X̃w
1 β1 + X̃w

2 β2 and (I−P1)X̃w
1 β1 = 0, then by (A.4),

‖ w2 ‖2=‖ (I−P1)X̃wβ ‖2=‖ (I−P1)X̃w
2 β2 ‖2=‖ X̃w

2 β2 ‖2=‖ W2β2 ‖2,

whereWi = D1/2
i = diag(Wij). The Karush-Kuhn-Tucker condition (KKT) states that

a vector β̂ = (β̂1, · · · , β̂p)′ is the solution of (2.6) if and only if x̃′j(Y − X̃wβ̂) = sgn(β̂j)λ, |β̂j| > 0;

|x̃′j(Y − X̃wβ̂)| ≤ λ, β̂j = 0.
(A.7)

In our case, the Karush-Kuhn-Tucker condition reduces to: x̃′j(Y − X̃wβ̂β̂) = λ, β̂j > 0;

|x̃′j(Y − X̃wβ̂β̂)| ≤ λ, β̂j = 0,

because β̂j’s are eigenvalues which are non-negative. Since S4 ∈ S1 contains variables of

nonzero estimates, by the Karush-Kuhn-Tucker condition and (A.3), each component

of |f4| is 1. Hence, ‖ f4 ‖2= |S4| = q4. Since |S| = q, S3 = S1∩S, we have |S3| ≤ |S| = q.

So q1 = |S1| = |S3| + |S4| ≤ q+ ‖ f4 ‖2=⇒‖ f4 ‖2≥ q1 − q. Then by (A.6) and the
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property of Q41,

‖ v14 ‖2 =
λ2

p2
f′4Q41(Σ

−1/2
11 )′Σ

−1/2
11 Q′41f4 =

λ2

p2
‖ Σ

−1/2
11 v ‖2

≥ λ2 ‖ v ‖2

nφmax(|S1|)
=
λ2f′4Q41Q

′
41f4

p2φmax(|S1|)
=

λ2 ‖ f4 ‖2

p2φmax(|S1|)
,

where the inequality follows (A.1) by setting v = Q′41f4. Hence, we have

‖ v14 ‖2≥ λ2(q1 − q)
p2φmax(|S1|)

. (A.8)

Next, we will establish the results in Theorem 1 in three steps.

Step 1: Establish an upper bound for ‖ v14 ‖2 + ‖ w2 ‖2.

Note that S2 = {j : β̂j = 0}. Hence, β̂2 = 0 implies that X̃wβ̂ = X̃w
1 β̂1 + X̃w

2 β̂2 =

X̃w
1 β̂1. From (A.3) we have, f1λ = (X̃w

1 )′(Y − X̃wβ̂) = (X̃w
1 )′(Y − X̃w

1 β̂1) =⇒
(X̃w

1 )′X̃w
1 β̂1 = (X̃w

1 )′Y − f1λ. Since Y = X̃wβ = X̃w
1 β1 + X̃w

2 β2,

(X̃w
1 )′X̃w

1 β̂1 = (X̃w
1 )′X̃w

1 β1 + (X̃w
1 )′X̃w

2 β2 − f1λ,

D1β̂1 = D1β1 − f1λ,

D−1
1 f1λ = β1 − β̂1.

Now, (X̃w
2 )′(Y−X̃wβ̂) = (X̃w

2 )′y−(X̃w
2 )′X̃wβ̂ = (X̃w

2 )′X̃w
1 β1+(X̃w

2 )′X̃w
2 β2−(X̃w

2 )′X̃w
1 β̂1 =

D2β2. By the Karush-Kuhn-Tucker condition, |(X̃w
2 )′(y−X̃wβ̂)| is bounded above com-

ponentwise by λ, then |D2β2| is bounded above componentwise by λ. Moreover, since

D2β2 is positive in our case, D2β2 is bounded above componentwise by λ. In other

words, W 2
i β2i ≤ λ for i = 1, · · · , q2. Therefore,

‖ w2 ‖2=‖ W2β2 ‖2= β′2W ′2W2β2 = β′2D2β2 =

q2∑
i=1

β2iW
2
i β2i ≤

q2∑
i=1

β2iλ =‖ β2 ‖1 λ.
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Next, we have,

v′14(v13 + v14) =
λ√
p2

f′4Q41(Σ
−1/2
11 )′

(
λ√
p2

Σ
−1/2
11 Q′31f3 +

λ√
p2

Σ
−1/2
11 Q′41f4

)

=
λ√
p2

f′4Q41(Σ
−1/2
11 )′

[
λ√
p2

Σ
−1/2
11 (Q′31f3 + Q′41f4)

]

=
λ√
p2

f′4Q41(Σ
−1/2
11 )′

(
λ√
p2

Σ
−1/2
11 f1

)

=
λ2

p2
f′4Q41Σ

−1
11 f1 = λ2f′4Q41D−1

1 f1

= λf′4Q41(β1 − β̂1) = λf′4(β4 − β̂4),

where the second to the last equality holds by D−1
1 f1λ = β1 − β̂1. In our case, f4 is a

vector of 1’s and β̂4 ≥ 0 componentwise. So f′4β̂4 ≥ 0 implies that v′14(v13 + v14) ≤
λf′4β4. Combining v′14(v13 + v14) and ‖ w2 ‖2, we have

‖ v14 ‖2 +v′14v13+ ‖ w2 ‖2≤‖ β2 ‖1 λ+ f′4β4λ.

By the definitions of sets Ai in Table A.1, we have

‖ β2 ‖1 +f′4β4 =‖ β2 ‖1 + ‖ β4 ‖1=‖ β5 ‖1 + ‖ β0 ‖1≤‖ β5 ‖1 .

Hence, ‖ v14 ‖2 + ‖ w2 ‖2≤‖ β5 ‖1 λ + (−v14)′v13 ≤‖ β5 ‖1 λ+ ‖ v14 ‖‖ v13 ‖, where

the last inequality is obtained by the Cauchy-Schwarz inequality.

Again by the Karush-Kuhn-Tucker condition, since S3 ∈ S1 contains variables of

nonzero estimates, each component of |f3| is 1. So ‖ f3 ‖2= |S3| = q3. By the property
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of Q31, we have

‖ v13 ‖2 =
λ2

p2
f′3Q31Σ

−1
11 Q′31f3 =

λ2

p2
‖ Σ

−1/2
11 v ‖2

≤ λ2 ‖ v ‖2

p2φmin(|S1|)
=
λ2f′3Q31Q

′
31f3

p2φmin(|S1|)
=

λ2 ‖ f3 ‖2

p2φmin(|S1|)

=
λ2|S3|

p2φmin(|S1|)
,

where the inequality follows (A.1) by setting v = Q′31s3. Therefore, we have

‖ v14 ‖2 + ‖ w2 ‖2≤‖ β5 ‖1 λ+ ‖ v14 ‖
(

λ2|S3|
p2φmin(S1)

)1/2

. (A.9)

Define,

B1 =

(
qλ2

p2φ∗

)1/2

, B2 =

(
qλ2

p2φ∗

)1/2

, B2
2 = CB2

1 ,

where φ∗ = minm≤p φmin(m) and φ∗ = maxm≤p φmax(m).

Step 2: Establish (2.12).

Assume S1 contains all labels j for nonzero βj:

S1 = {j : β̂j 6= 0 or j ∈ S}. (A.10)

In this case, S5 = ∅. So ‖ β5 ‖1= 0, S3 = S, and thus |S3| = q ≤ q1. Because(
λ2|S3|

p2φmin(S1)

)1/2

≤ B2 and ‖ w2 ‖2≥ 0, together with (A.9), we have that ‖ v14 ‖2 + ‖
w2 ‖2≤‖ v14 ‖ B2, which implies ‖ v14 ‖2≤‖ v14 ‖ B2, and ‖ v14 ‖≤ B2. Combining

with (A.8), we have,

(q1 − q)λ2

p2φ∗
≤ λ2(q1 − q)
p2φmax(|S1|)

≤‖ v14 ‖2≤ B2
2 ,

(q1 − q) ≤
qφ∗

φ∗
,

q1 ≤
φ∗

φ∗
q + q = Cq + q = r1q,

where r1 is defined in (2.11). Under assumption (A.10), S1 is taken as the largest
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possible set which contains q̃ elements. In general, S1 doesn’t necessarily select all the

variables with nonzero coefficients in the true model. Hence,

q̂ = q1 = |S1| ≤ q̃ = #{j : β̂j 6= 0 or j ∈ S} ≤ r1q,

which is (2.12).

Step 3: Establish (2.13) and (2.14).

By Lemma 2, we have that

‖ β5 ‖2
1≤
‖ X̃w

5 β5 ‖2 |S5|
p2φmin(|S5|)

≤ ‖ X̃w
5 β5 ‖2 q

p2φ∗
,

because by Table A.1 |S3| + |S5| = |S| = q =⇒ |S5| ≤ q and |S3| ≤ q. Note that

S5 ⊆ S2,

‖ X̃w
5 β5 ‖2≤‖ X̃w

2 β2 ‖2=‖ w2 ‖2 .

Combining the above two inequalities,

‖ β5 ‖1 λ ≤

(
‖ X̃w

5 β5 ‖2 qλ

p2φ∗

) 1
2

≤
(
‖ w2 ‖2 qλ

p2φ∗

) 1
2

≤‖ w2 ‖ B2.

By the Cauchy-Schwarz inequality, ‖ v14 ‖ B2 ≤‖ v14 ‖2 +
B2

2

4
. So based on (A.9) we

have

‖ v14 ‖2 + ‖ w2 ‖2 ≤‖ v14 ‖2 +
B2

2

4
+ ‖ w2 ‖ B2,

‖ w2 ‖2 ≤ B2
2

4
+ ‖ w2 ‖ B2.

One can easily show that x2 ≤ c+ 2bx implies x2 ≤ (b+
√
b2 + c)2 ≤ 2c+ 4b2. Setting

x =‖ w2 ‖, c =
B2

2

4
, 2b = B2, we obtain the result in (2.13),

‖ w2 ‖2≤ B2
2

2
+B2

2 =
3B2

2

2
=

3C

2
B2

1 = r2

(
qλ2

p2φ∗

)
, (A.11)

where r2 is defined in (2.11).
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By the Sparse Riesz Condition, φmin(|S5|) ≤
‖X̃w

5 β5‖
2

p2‖β5‖2
=⇒‖ β5 ‖2≤ ‖X̃w

5 β5‖
2

p2φmin(|S5|) .

Since ‖ X̃w
5 β5 ‖2≤‖ w2 ‖2, we have ‖ β5 ‖2≤ ‖w2‖2

p2φ∗
, which directly gives the result in

(2.14) after combining with (A.11): ‖ β5 ‖2≤ r2

(
qλ2

p4φ∗φ∗

)
. 2

Appendix C

Proof of Theorem 2. Since we have shown that in model (2.4), the covariates Z

satisfy the Sparse Riesz Condition, it follows directly from the result (2.14) of Theorem

1,

∑
j∈S

|βj|21{β̂j=0} ≤ r2
qλ2

φ∗φ∗p4
= 1.5

φ∗

φ∗

qλ2

φ∗φ∗p4
=

1.5qλ2

φ2
∗p

4
≤ 1.5qλ2

u4
,

because 0 < u2

p2
≤ φ∗ ≤ φ∗ ≤ 1

p2
<∞. Hence, ∀j ∈ Ŝλ, βj >

√
1.5qλ/u2. By definition

of Ssmall, we can conclude that (S \ Ssmall) ⊆ Ŝλ, which verifies (2.16).

By Lemma 1 of Meinshausen and Bühlmann (2006), a variable j 6∈ S is in the

selected set Ŝλ only if

|z′j(Y − X̃wβ̂
−j

)| ≥ λ, (A.12)

where β̂
−j

is the solution to (2.6) under the constraint of β̂−jj = 0. We can rewrite the

left-hand side as

|x̃′jY − x̃′jX̃
wβ̂
−j
| = |x̃′jX̃wβ − x̃′jX̃

wβ̂
−j
| = |x̃′jx̃jβj − x̃′jx̃jβ̂

−j
j | = 0.

The second equality is due to the orthogonal property of X̃w in (2.5). The last equality

is because βj = 0 and β̂−jj = 0. Hence, the condition (A.12) will never be satisfied

because λ > 0 which means that Ŝλ contains only variables in S. This completes the

proof. 2
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Appendix D

In this section, we explain how a matrix in the Grassmann Manifold can be written

as an eigen-decomposition solution, the link between the Grassmann Manifold and a

dimension reduction matrix, and how to form an equivalent form for the purpose of

obtaining a sparse estimate.

Grassmann Manifold

Suppose that a p× k matrix V is in the Grassmann Manifold with rank k.

First, we can extend it to a nonsingular p× p matrix V ∗ = (V, V ⊥).

Second, applying singular value decomposition on V ∗, we have V ∗ = LΛR′ where

the columns of p × p matrix L and p × p matrix R are corresponding left and right

eigenvectors of V ∗, and Λ = (Λk,Λp−k) is a diagonal matrix with non-zero singular

values of V ∗ being its diagonal elements. Let

G = LΛ−2L′, (A.13)

we have V ∗
′
GV ∗ = RΛ′L′LΛ−2L′LΛR′ = Ip.

Let M = GV ∗DV ∗
′
G, where G is found by (A.13) and D can be any diagonal

matrix with diagonal terms being ρ1 >, · · · , > ρp > 0, then V ∗, G, and M will satisfy

the basic eigenvalue decomposition as

MV ∗ = GV ∗D. (A.14)

Hence, for any p×k matrix V in the Grassmann Manifold with rank k, the columns

of V are the eigenvectors of a symmetric and positive definite matrix M, whose corre-

sponding eigenvalues are ρ1, · · · , ρk, as long as ρ1 > · · · > ρk > 0. Typically, we would

choose D so that ρ1 > · · · , > ρp > 0, and all the eigenvalues are bounded below by 0

and above by ∞.

Link between the Grassmann Manifold and a dimension reduction matrix

We assume that the CS is sparse, which means that only some variables are related
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to the response. Note that sparsity is not generally transformed from one scale to

another scale. That is, if a model is sparse in the X-scale, it does not mean it is sparse

in the Z-scale. Thus our discussion will focus on the original X-scale.

Suppose that the method specific kernel matrix M is obtained based on the original

predictors X. Basis directions are found by conducting the generalized eigenvalue

problem of the form

MV ∗ = GV ∗D, (A.15)

where columns of V ∗ = (v1, · · · , vp) are eigenvectors of M satisfying V ∗
′
GV ∗ = Ip and

D is a diagonal matrix with eigenvalues ρ1, ρ2, · · · , ρp of M in descending order. If the

structural dimension of the CS is k, then the first k orthogonal eigenvectors, say, V ,

form an estimate of the central subspace.

Thus, in the Grassmann Manifold, we construct M, D and G from V , while in

dimension reduction, we have M and G to deduce V and D.

Our theoretical result in Section 2.2 in the paper requires that all eigenvalues are

bounded below from 0 and above from ∞ to satisfy the Sparse Riesz Condition. This

is not satisfied when we have a p × p dimension reduction matrix with k nonzero

eigenvalues with k < p.

To fix this, from (A.15), we have M = MV ∗V ∗−1 = GV ∗DV ∗
′
G. For some positive

constant δ, let Mδ = (M + δG) = GV (D + δIp)V
′G. We will have similar eigenvalue

decomposition on Mδ as

MδV
∗ = GV ∗Dδ, (A.16)

where Dδ is a diagonal matrix with eigenvalues ρ1 + δ, ρ2 + δ, · · · , ρp + δ. Since the

eigenvectors of Mδ are same as these of M, we can work on Mδ to estimate the

basis directions of the central subspace. After some algebra, it requires the ratios of

maximum and minimum eigenvalues for the matrix Mδ to be bounded below from 0

and above from ∞. Let m1 ≥ · · · ≥ mp be the eigenvalues of Mδ, we have

m1 = ρ1 + δ, mp = ρp + δ.

Therefore, by choosing δ > 0, the eigenvalues of Mδ are bounded below from 0 and
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above from∞ so that the Sparse Riesz Condition will be satisfied. Under this condition,

Theorem 3 applies to the dimension reduction matrix Mδ.

Appendix E

Proof of Theorem 3. Since the optimization problem (2.20) was developed

based on the generalized eigenvalue problem (A.16), we again have an “error-free”

model in the population: Ỹ = X̃β. If the Sparse Riesz Condition is satisfied, following

(5.8) in Zhang and Huang (2008), we have

‖ v14 ‖2 + ‖ w2 ‖2≤‖ β5 ‖1 λ+ ‖ v14 ‖
(

λ2|S3|
pφZmin(S1)

)1/2

. (A.17)

where v14, w2, S1, and S2 are defined in the same ways as in the proof of Theorem

1. Following the same steps as in the proof of Theorem 1, we are able to obtain the

following two upper bounds:

q̂(λ) ≤ q̃ = #{j : β̂λj 6= 0 or j ∈ S} ≤ r1q, (A.18)

and ∑
j∈S

|βj|21{β̂λj =0} ≤ r2
qλ2

φ∗φ∗p2
, (A.19)

where r1, r2, φ∗, and φ∗ are defined in (2.11).

The rest of the proof follows mostly from the steps of Meinshausen and Bühlmann

(2010) in the proof of their Theorem 2.

Lemma 3. Define C by (1 + C)q + 1 = C̄q2 and assume q ≥ 3. Let weights Wk be

generated randomly in [u, 1] as in (2.20), and let X̃w
k = X̃wWk for k = 1, · · · , p be the

corresponding rescaled predictor variables. For u2 = νφmin(C̄q2)/C̄q2 with ν > 0, it

holds under assumption (2.21) for all realizations Wk that

φwmax(C̄q
2)

φwmin(C̄q2)
≤ 3C

κ
√
ν
. (A.20)
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Proof. We can follow exactly the same steps as in the proof of the Lemma 3 in Mein-

shausen and Bühlmann (2010). The only remark we need to make is that C in our

notation is their C̄ while our C̄ is their C. Since the steps are similar, we omit the

details.

Lemma 4. Let Ŝλ,w be the set {k : β̂λ,wk } of selected variables of the random-

ized lasso with u ∈ (0, 1] and randomly sampled weights w. Suppose that u2 ≥
(3/κ)2φmin(C̄q2)/C̄q2, we can show that

|Ŝλ,w ∪ S| ≤ C̄q2 and (S \ Ssmall) ⊆ Ŝλ,w, (A.21)

where Ssmall = {k : βk ≤
√

1.5C̄q3/2λ}.
Proof. The proof of this lemma follows from Theorem 1 and Lemma 4 of Meinshausen

and Bühlmann (2010). With Remark 2 in Zhang and Huang (2008), the equivalent

condition of (2.21) requires the existence of some C > 0 such that

φmax((1 + C)q + 1)

φmin((1 + C)q + 1)
< C,

where C is defined in (2.11). Hence, for all realizationsWi, if u2 ≥ (3/κ)2φmin(C̄q2)/C̄q2,

by Lemma 3, φwmax(C̄q2)

φwmin(C̄q2)
is bounded. Therefore, (A.18) and (A.19) hold which give us

|Ŝλ,w ∪ S| ≤ (1 + C)q ≤ C̄q2,

and

∑
j∈S

|βj|21{β̂λj =0} ≤ (1.5C2)qλ2 ≤ (
√

1.5C̄q3/2λ)2, (A.22)

where the first inequality uses the fact that 1/φ∗φ∗ ≤ C and the second inequality

follows from C ≤ C̄q. Accordingly, (A.22) is equivalent to the second part of (A.21).

Lemma 5 Let pw be the probability of choosing weight u for each variable and 1−pw the

13



probability of choosing weight 1. Define p̃ = pw(1−pw)C̄q
2

and let Π̂λ
k be the probability

of variable k being in the selected subset Ŝλ,w with respect to random sampling of the

weights w. Under assumptions of Theorem 3, for any λ ≥ inf{λ : r1q + 1 ≤ p},

max
k∈N

(Π̂λ
k) < 1− p̃, (A.23)

min
k∈S\Ssmall

(Π̂λ
k) ≥ 1− p̃, (A.24)

where Ssmall = {k : βk ≤
√

1.5C̄q3/2λ}.
Proof. Following Meinshausen and Bühlmann (2006), a variable j 6∈ S is in the selected

set Ŝλ,w only if

|x̃′j(Y − X̃wβ̂
−j

)| ≥ λ, (A.25)

where β̂
−j

is the solution to (2.20) under the constraint of β̂−jj = 0. Using Lemma

5 of Meinshausen and Bühlmann (2010) and Lemma 4 above, we can show that the

left-hand side of (A.25) is bounded by ‖ ((X̃w
B)′X̃w

B)−1(X̃w
B)′X̃w

j ‖1 λ ≤ 2−1/4λ < λ

with probability greater than or equal to pw(1 − pw)C̄q
2
, where set B = Ŝλ,w ∪ S and

the first inequality is based on Lemma 5 of Meinshausen and Bühlmann (2010). This

leads to the result (A.23). The consequence of Lemma 4 directly yields (A.24). Since

our Lemma 5 is equivalent to Theorem 3, the proof of Theorem 3 is complete. 2

Appendix F

In Section 2.2.2 in the paper, we used δ > 0 to have Mδ = (M + δG) for GMSE

and SGMSE in order to satisfy the Sparse Riesz Condition. In this section, we in-

vestigate the choice of δ in GMSE and SGMSE. Our empirical evidences show that

the choices of the positive constant δ have little effect on the final estimates. We ran

simulations on the three models in Section 3.2.1 in the paper, with different choices of

δ = 0.001, 0.01, 0.1, 0.5. For the same model and method, varying δ does not greatly

change the results. In addition, for all δ values, SGMSE is improved over GMSE. It

seems that a smaller value of δ is preferable because it results in a lower false positive
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rate. Hence, a rule of thumb for appropriate δ to use in GMSE is between 0.001 to

0.01.

δ = 0.001 δ = 0.01 δ = 0.1 δ = 0.5
TPR FPR TPR FPR TPR FPR TPR FPR

SIR
GMSE SIR

SGMSE SIR
1.000 0.073
1.000 0.003

1.000 0.023
1.000 0.000

1.000 0.018
1.000 0.000

1.000 0.025
1.000 0.003

PHD
GMSE PHD
SGMSE PHD

1.000 0.268
1.000 0.085

1.000 0.274
1.000 0.095

1.000 0.380
1.000 0.140

1.000 0.350
1.000 0.154

SAVE
GMSE SAVE

SGMSE SAVE
1.000 0.283
1.000 0.063

1.000 0.263
1.000 0.058

1.000 0.304
1.000 0.069

1.000 0.451
1.000 0.151

Table A.2: For different δ, TPR and FPR are computed among 100 replicates for SIR, PHD and
SAVE models using GMSE and SGMSE in Section 3.2.1.

Appendix G

In this appendix, we compare GMSE to the sparse sufficient dimension reduction

(SSDR) method (Li 2007), and SGMSE to stable SSDR (SSSDR).

Li’s SSDR starts with an equivalent formulation of eigen-decomposition as

min
α,β

p∑
i=1

‖ G−1mi −αβTmi ‖2
G +λ2tr(β

TGβ) +
k∑
j=1

λ1j

p∑
h=1

|βjh|, (A.26)

subject to αTGα = I, where the norm is the inner product with with respect to G.

In (A.26), G takes the form of the covariance matrix Σx of X, the values of mi are

columns of the square root of the method-specific dimension reduction matrix M and β

is a p× k matrix of which the columns are the basis directions of the central subspace.

The λ2 and λ1j’s are the tuning parameters corresponding to the L1 and L2 penalties.

Then, Li (2007) showed that the optimization problem (A.26) can be solved in an

alternative way by solving k independent LASSO problems for a given α as:

β̂j = min
βj

{
βTj (M + λ2G)βj − 2αTjMβj + λ1j

p∑
h=1

|βjh|

}
, (A.27)

subject to αTGα = I. For given βj’s, solving α is just a usual OLS problem. Li (2007)
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also showed that (A.27) can be transformed into an equivalent problem as

β̂j = min
βj

{
‖ u∗ −m∗βj ‖2 +λ1j

p∑
h=1

|βjh|

}
, (A.28)

where,

m∗ =

 M1/2

√
λ2G

1/2

 , u∗ =

 M1/2αj

0

 .

In the above SSDR method, by introducing subsampling and random weight we also

develop a Stable SSDR, which we call SSSDR.

However, the introduction of λ2 in SSDR is only for the uniqueness of the eigenvec-

tors. For this reason, Li’s algorithm gives an invariant result for any λ2 > 0. However,

under this formulation, the Sparse Riesz Condition is not always satisfied, even though

λ2 is a nuisance parameter. Thus, we are not able to prove the theoretical result, even

if we believe the result holds. In addition, with an information criterion to select λ2,

it slows down the computing speed. Nevertheless, the table below shows that in our

simulations the two approaches have very comparable results.

Original SSDR GMSE SSSDR SGMSE
TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR

SIR 1.000 1.000 1.000 0.012 1.000 0.022 1.000 0.001 1.000 0.002

PHD 1.000 1.000 1.000 0.171 1.000 0.249 1.000 0.044 1.000 0.058

SAVE 1.000 1.000 1.000 0.264 1.000 0.191 1.000 0.115 1.000 0.005

Table A.3: TPR and FPR are computed over 100 replicates for SSIR, SPHD and SSAVE models
using Li’s (2007) SSDR, SSSDR, GMSE and SSGMSE in Section 2.2.

Appendix H

In this section, we include two simulation studies: one simulation shows the sensitivity

of sliced inverse methods to the choices of H; another simulation illustrates the stability

of the results using the ensemble method proposed in Section 2.3.2 in the paper. We

used model (3.1) for SIR and model (3.5) for SAVE as in Section 3.1 in the paper.
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Figure A.1 shows that for each fixed H = 5, 10, 15, 20, the results for SIR do vary

but not as much as these of SAVE (left column); stable procedures show significant

improvement. While results for SIR do vary, but results vary more for SAVE (right

column). We now use these four different numbers of slices to develop one aggregated

dimension reduction matrix as proposed in Section 2.3.2. Figure A.2 shows that the

ensemble method gives better and more stable results (left column), which are further

improved by our newly developed stable procedure (right column).
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Meinshausen, N. and Bühlmann, P. (2010), “Stability selection”, Journal of the Royal

Statistical Society, Series B, 72, 417-473.

Zhang, C. H. and Huang, J. (2008), “The sparsity and bias of the LASSO selection

in High-Dimensional linear regression”, The Annals of Statistics, 36, 1567-1594.

17



Figure A.1: Top row: SIR model; Bottom row: SAVE model. The accuracies of SED estimate
(left column) and the stable SED estimate (right column) are plotted vs tuning parameter values for
different choices of H = 5, 10, 15, 20.
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Figure A.2: Top row: SIR models (3.1); Bottom row: SAVE models (3.5). The accuracies of
ensemble SED estimate (left column) and the stable ensemble SED estimate (right column) are plotted
vs tuning parameter values.
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