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1. Overview

Influenza viruses are a major cause of morbidity and mortality worldwide. Vaccination is a
powerful tool for preventing or mitigating influenza outbreaks. Yet, vaccine supplies and daily
administration capacities are limited, even in developed countries. Understanding how such
constraints can alter the mitigating effects of vaccination is a crucial part of influenza prepared-
ness plans. We present a mathematical model that explicitly takes into account vaccine supply
and the number of vaccines administered per day and places data-informed limits on these pa-
rameters. We use the model to test several vaccination scenarios. The model can be used by
government and medical officials to create customized pandemic preparedness plans
based on the supply and administration constraints of specific communities.

2. Epidemiological Model

We developed a SIR-like epidemiological model to study the spread of influenza (Coburn et al.,
2009; Kermack and McKendrick, 1927).

S = Susceptible
VS = Vaccinated susceptibles
IC = Infected confirmed
IU = Infected unconfirmed
RC = Recovered confirmed
RU = Recovered unconfirmed
VC = Vaccinated confirmed
V*U = Vaccinated unconfirmed
D = Deceased due to infection

*still infected/infectious

The dynamics of the model are defined by:

Ṡ = −λ(S, I, t) − vS(t)

İC = pλ(S, I, t) − (c + δ)IC
İU = (1 − p)λ(S, I, t) − (c + δ)IU − vU (t)

V̇U = vU (t) − (c + δ)VU

ṘC = cIC − vR(t)

ṘU = c(IU + VU )

V̇SC = vS(t) + vR(t)

Ḋ = δ(IC + IU + VU )

New infections per unit time are:

λ(S, I, t) = b
S

N
[IC + α(IU + VU )] + φ(t),

where p is probability of being infected and confirmed, c is rate of recovery, δ is death rate due
to infection, b is probability of infection per contact, α is infectiousness of unconfirmed cases,
and φ(t) is a small pulse used to initiate an outbreak.

3. Modeling Vaccination

Modling vaccination according to proportion of population may over- or underestimate number
of people that can realistically be vaccinated per day. We propose a non-proportional scheme
with a daily vaccine limit.

Comparison of decay in vaccinable pop-
ulation over time for proportional (dashed
line) and non-proportional (solid line) mod-
els of vaccination. Proportional decay is
given by x(t) = x0e

−kt, time constant of
decay is k=0.1. Non-proportional decay is
given by x(t) = x0 − v̄Dt, where v̄D=kx0
and represents max total number of vac-
cines per day.

We calculate weights of each subpopulation (epidemiological class):

wS(t) =
S(t)

M(t)
, wU (t) =

IU (t)

M(t)
, wR(t) =

RC(t)

M(t)
,

where M(t) = S(t) + IU (t) + RC(t) is total eligible for vaccination at time t.

Max number of vaccines per day each subpopulation can receive is then:

v̄S(t) = v̄DwS(t), v̄U (t) = v̄DwU (t), v̄R(t) = v̄DwR(t).

For more details on the model, see Cruz-Aponte et al. (2011)

4. Results

Comparison of propor-
tional (dashed) and non-
proportional (solid) models
for different vaccination
campaign starts. Initial
outbreak occurs on day
10 (t0=10; solid vertical
line). Vaccination campaign
initiated on days 20 (a, b),
50 (c, d), or 80 (e, f), and
lasts for 28 days, at rate of
1% of population per day
(proportional; k=0.01), or
maximum of 106 vaccines
per day (non-proportional,
v̄D = 106).

� Proportional model predicts epidemics that peak sooner with larger peak, but are often
shorter, than non-proportional model epidemics.

5. Results

Quantification of final size, peak size,
peak time, and epidemic duration for
proportional (open circles) and non-
proportional (filled circles) models.
Measures plotted as function of differ-
ence between vaccination start time
(ta) and initial outbreak (t0; solid gray
line). Vaccination scenarios were:
(1) 60 day campaign with k=0.001
(proportional) or ν̄D = 105 (non-
proportional) (a1-a4), (2) 30 day cam-
paign with k=0.01 or ν̄D = 106 (b1-b4),
and (3) 5 day campaign with k=0.1 or
ν̄D = 107 (c1-c4).

� In moderate/aggressive regime, final and peak sizes are smaller, while peak times and
epidemic durations are larger, in non-prop. vs. proportional model.

Effects of vaccine
coverage, start times,
and unconfirmed cases
in non-prop. model
(v̄D=106). Outbreak
at t0=10. Vaccination
starts ta=20 (a)-(d),
50 (e)-(h), or 80 (i)-(l).
Confirmed case proba-
blity, p, 0.20 (thick gray)
or 0.65 (thin black).

� 20% coverage does not mitigate outbreak. 40-60% coverage effective in mitigating
outbreak, the earlier the better. Beyond 60% coverage, no additional benefits, vaccines
are wasted. Confirmed case probablity has little effect.
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