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1 Proofs

1.1 Proof of Theorem 4.1

It is immediate that L(6;0) = (y,XH) We turn our attention to proving that L(6;0) >
L(y, XO) for all @,0 € RP*!. Since L(y,X8) has bounded curvature our strategy is to represent
L(y, XO) by its exact second order Taylor expansion about 6 and then find a tight uniform bound
over the quadratic term in the expansion. This approach applies in general to functions with
continuous second derivative and bounded curvature (Bohning and Lindsay, 1988).

The exact second order Taylor expansion of L(y, 5(0) at @ is given by

L(y,X0) = L(y,X0) + (0 — 0)"VL(y,X0) + %(9 —0)"Hy (0 —0),

where 8* = 76 + (1 — 7)0 for some v € (0,1) and

VL(y.X68) = 4n"'X"G(p —y)

2
Hy = “X"MpX,
n

G = diag{p:(1 — p1), .-, pu(l — pn)}
My = diag{®u, (p1), - - -, Yu, (Pn)}
u=2y—1
p = F(X0)
Yu(p) = 2p(1 —p) = 2p = )((2p — 1) — u)]p(1 — p).
Note that (Mpg);; is bounded from above, i.e., supgee(Mpg);; < co. We now introduce a
surrogate function:

1(6:8) = L(y, X8) + %(0 ~8)X"G(F(X8) - y) + (6 - 6)'X"X(6 - 8),

where

n > maX{ sup ¥_1(p), sup 1/11(19)} .

pE[O,l} pE[O,l]

Note that for any @ € RPT (Mjy);; < n. Therefore,

(0 —0)"X"™Mg-X(0 — 0)
<nO—-0)"X"X(6 - 8),

(6~ 8)"Hy- (6 — )

and consequently L(0;80) majorizes L(y,X8) at 6. O
The following observations lead to a simpler lower bound on 7. Note that

sup ¥_1(p) = sup ¥i(p),

p€(0,1] p€(0,1]



since ¥_1(p) = ¥1(1 — p). So, the lower bound on 7 can be more simply expressed as

1 3 4 3 9 1}
su = max =—-max {=¢ —q¢ —2¢"+q+ = ;. 1.1
sup Vi(p) = max 4 (p) = 7 max {261 ¢ =24 +aq+g (1.1)
The first equality follows from the compactness of [0, 1] and the continuity of ¢;(p). The second
equality follows from reparameterizing ¢ (p) in terms of ¢ = 2p — 1. Since the derivative of the
polynomial in (1.1) has a root at 1, it is straightforward to argue that the lower bound of 7 is
attained at the second largest root, which is (—3 4 /33)/12. Thus, the majorization holds so long
as

1.2 Proof of Theorem 4.2

A key condition in MM algorithm convergence proofs is coerciveness since it is a sufficient condition
to ensure the existence of a global minimum. Recall that a continuous function f: U C R® —+ R
is coercive if all its level sets S; = {x € U : f(x) <t} are compact.

We will use the MM algorithm global convergence results in Schifano et al. (2010). Let £(0)
denote the objective function and let £1°1(@,8) denote a surrogate objective function that will be
minimized with respect to its first argument in lieu of £(@). The iteration map ¢ is given by

©(0) = argmin £°(0, 9).
6
We now state a slightly less general set of regularity conditions than those in Schifano et al. (2010)

that are sufficient for our purposes. Suppose &, €19, and ¢ satisfy the following set of conditions:

R1. The objective function £(8) is locally Lipschitz continuous for @ € © and coercive. The set
of stationary points S of £(0) is a finite set, where the notion of a stationary point is defined
as in Clarke (1983).

R2. £(0) = ¢151(0, 0) for all 6 € ©.
R3. ¢51(0,0) < £51(0, 0) for all 8,0 € © where 0 # 6.
R4. £151(0, ) is continuous for (0,0) € © x © and locally Lipschitz in ©.

R5. ¢(0) is a singleton set consisting of one bounded vector for 8 € ©.

Then {6™ n > 0} converges to a fixed point of the iteration map ¢. By Proposition A.8 in
Schifano et al. (2010) the fixed points of ¢ coincide with S.
In our case we have the following objective and surrogate functions

£(0) = 5y~ PO+ (all + L5 e)

€9(6.8) = 51(6.8) + ) (algll + S5 1812 )

We check each regularity condition in turn.



R1. Since ||y — F(X8)]|2 is bounded below and the penalty term is coercive, £(8) is coercive.
Recall that the gradient of the L(y, X8) is (4/n)X"G(F(X6)—y). The norm of the gradient
is bounded; specifically it is no greater than 203 where o, is the largest singular value of
X. Therefore, L(y, 5{0) is Lipschitz continuous and therefore locally Lipschitz continuous.
Consequently, £(0) is locally Lipschitz continuous. If the set of stationary points of £(0) is
finite, then R1 is met.

R2 and R3. Recall the majorization we are using is given by
L(6;0) = L(y,X8) + (0 — 0)"VL(y,X8) + L6 — 9)TX™X(6 — ),
n
where

> — ma —-q —q° —2 — 0.
7 4qe[_ffu{2q ¢ty

To ensure that the majorization is strict we need the inequality to be strict. Thus, the curva-
ture of the majorization exceeds the maximum curvature of L(y, X8) and the majorization

is strict. R2 and R3 are met.

R4. The penalized majorization is the sum of continuous functions in (0,0) € © x © and is
consequently continuous. The penalized majorization as a function of its first argument is
the sum of a positive definite quadratic function and the 1-norm function, both of which are
locally Lipschitz continuous so their sum is locally Lipschitz continuous. R4 is met.

R5. If A(1 — a) > 0 then 5{51(0,9) is strictly convex in @ and thus has at most one global
minimizer. Since £[9(8,0) is also coercive in @ it has at least one global minimizer. R5 is
met.

Thus, Algorithm 1 will converge to a stationary point of £(0), provided that there are only finitely
many stationary points and the coordinate descent minimization of the Elastic Net penalized
quadratic majorization is solved exactly. O]

Remark 1. If £ does not have finitely many stationary points, it can be shown that the limit
points of the sequence of iterates are stationary points and that the set of limit points is connected
(Schifano et al., 2010; Chi, 2011).

Remark 2. The iterate update M+l — go(H(m)) can be accomplished by any means algorithmically
so long as the global minimum of the majorization is found. Iterates of coordinate descent are
guaranteed to converge to a global minimizer provided that the loss is differentiable and convex
and the penalty is conver and separable (Tseng, 2001). Thus, applying coordinate descent on the
Elastic Net penalized quadratic majorization will find the global minimum.

Remark 3. Our definition of stationary points has to change because the objective functions of
interest are locally Lipschitz continuous and therefore differentiable almost everywhere except on
a set of Lebesque measure zero. Clarke (1983) defines and proves properties of a generalized
gradient for locally Lipschitz functions. Apart from pathological cases, when a function is convex
the generalized gradient is the subdifferential. See Proposition 2.2.7 in Clarke (1983). When a
function s differentiable the generalized gradient is the gradient. Thus as would be expected a point
X 1s a stationary point of a locally Lipschitz function if the function’s generalized gradient at x
contains 0.



Algorithm 1 ITERATIVE LsE SOLVER
0 < initial guess

repeat
p « F(X6)
G « diag{p = (1 — p)}
z < 2G(p—y)
¢+ X8 — %(Z—?l)
Bo<Bo—n'z
repeat

for k=1..pdo

r ¢ — (XB— Bixk)
Br + S (Ixfr, Aa) / [Z]xx]3 + A(1 — a)]
end for
until convergence
until convergence
return 60

2 Algorithm Details

Algorithm 1 gives pseudocode for the resulting iterative solver for a given pair of parameters
a and X\. The symbol * denotes the Hadamard element-wise product. In practice we also use
active sets to speed up computations. That is, for a given initial 3, we only update the non-zero
coordinates of 3, the active set, until there is little change in the active set parameter estimates.
The non-active set parameter estimates are then updated once. If they remain zero, the Karush-
Kuhn-Tucker (KKT) conditions have been met and a global minimum of (4.4) has been found. If
not, then the active set is expanded to include the coordinates whose KKT conditions have been
violated and the process is repeated.

2.1 Choosing the penalty parameters
2.1.1 Warm Starts and Calculating Regularization Paths

We will need to compare the regression coefficients obtained at many values of the penalty param-
eter A to perform model selection. Typically we can rapidly calculate regression coefficients for a
decreasing sequence of values of A\ through warm starts. Namely, a solution to the problem using
Ar as a regularization parameter is used as the initial starting value for the iterative algorithm
applied to the subsequent problem using \;.; as a regularization parameter. The idea is if A\
and A\gy1 are not too far apart, the solutions to their corresponding optimization problems will
be close to each other. Thus, the solution of one optimization problem will be a very good initial
starting point for the succeeding optimization problem.

For A\ sufficiently large, only the intercept term 6y will come into the model. The smallest \*
such that all regression coefficients are shrunk to zero is given by

2

A= (1 =) max [x(;y], (2.1)



where x(;) denotes the jth column of the design matrix X. We compute a grid of A values equally
spaced on a log scale between A\,.x = A" and A\,in = €A\nax Where € < 1. In practice, we have
found the choice of € = 0.05 to be useful. In general, we are not interested in making A so small
as to include all variables.

Moreover, due to the possible multi-modality of the LyE loss, we recommend computing the
regulation paths starting from a smaller regularization parameter and increasing the parameter
value until \.x. Since we face multi-modality initial starting points can make a significant differ-
ence in the answers obtained.

2.1.2 The heuristic for choosing starting values

Since the logistic LoE loss is not convex, it may have multiple local minima. For the purely
LASSO-penalized problem, the KKT condition at a local minimum is

v = [x(;G(y — F(Bol + XB))| < \.

Equality is met whenever 3; # 0. Thus, the largest values of v; will correspond to a set of covari-
ates which include covariates with non-zero regression coefficients. The leap of faith is that the
largest values of v; evaluated at the null model will also correspond to a set of covariates which
include covariates with non-zero regression coefficients. This idea has been used in a “swindle”
rule (Wu et al., 2009) and STRONG rules for discarding variables (Tibshirani, Bien, Friedman,
Hastie, Simon, Taylor, and Tibshirani, 2012). In those instances the goal is to solve a smaller
optimization problem. In contrast, we initialize starting parameter entries to zero rather than ex-
cluding variables with low scores from the optimization problem. Specifically, we do the following:
(1) calculate the following scores z; = |X2;)G0(y — pl))|, where p = 7 the sample mean of y and

Go =p(1 —p)I; (2) set B(()O) =log(y/(1 —7)); and (3) set 5](-0) =I(j € S), where I(-) denotes the
indicator function and & = {j : z; is “large” }.

2.1.3 Robust Cross-Validation

Once we have a set of models computed at different regularization parameter values, we select
the model that is optimal with respect to some criterion. We use the following robust 10-fold
cross-validation scheme to select the model. After partitioning the data into 10 training and test
sets, for each ¢ = 1,...,10 folds we compute regression coefficients 9_2()\) for a sequence of \’s
between A.x and Ay, holding out the ith test set S;.

Next we refit the model using the reduced variable set Sf, those with nonzero regression
coefficients, and refit using logistic LoE with o = 0. This refitting produces less biased estimates.
We are adopting the same strategy as LARS-OLS in Efron, Hastie, Johnstone, and Tibshirani
(2004). Our framework, however, could adopt a more sophisticated strategy along the lines of the

Relaxed LASSO in Meinshausen (2007). Henceforth let éii(/\) denote the regression coefficients
obtained after the second step. Let d;"(A) denote the contribution of observation j to the LyE

loss under the model 8 ()), i.e.,



We use the following criterion to choose A*:

A" = arg min {median {median dj_z()\)}} )
A i=1,...,10 JES;

The reason for choosing A\* in this way is due to a feature of the robust fitting procedure. Good
robust models will assign unusually large values of dj_i()\) to outliers. Thus, the total LoE loss is
an inappropriate measure of the prediction error if influential outliers were present. On the other
hand, taking the median, for example, would provide a more unbiased measure of the prediction
error regardless of outliers. The final model selected would be the one that minimizes the robust
prediction error criterion.



3 Simulation Experiments in Low Dimensions
Tables 3 and 4 provide summary statistics for simulations performed in Section 5.1. The experi-

ments show the unbiasedness of the LoE compared to the MLE at the price of increased variance.
The mse summarizes the bias-variance tradeoff between the two methods.

Table 3: Effect of varying the position of a single outlier from —0.25 to 24.

MLE L.E
Outlier Position Coeflicient True Value mean  std mse mean  std mse
By 0 -0.002 0.182 0.033 -0.005 0.192 0.037
B4 1 1.032 0434 0.189 1.063 0.480 0.234
-0.25 B, 0.5 0.526 0.424 0.180 0.539 0.463 0.216
Bs 1 1.047 0.439 0.195 1.079 0.482 0.238
B, 2 2.110 0.487 0.249 2.181 0.572 0.359
Bo 0 -0.024 0.168 0.029 0.002 0.192 0.037
B4 1 0.868 0.394 0.173 1.052 0.476 0.229
1.5 B, 0.5 0.401 0.391 0.162 0.532 0.460 0.212
B 1 0.880 0.396 0.171 1.068 0.478 0.233
B, 2 1.860 0.430 0.204 2.160 0.567 0.347
Bo 0 -0.022 0.157 0.025 0.002 0.192 0.037
B4 1 0.732 0.368 0.207 1.0564 0.476 0.229
3 B, 0.5 0.296 0.369 0.178 0.533 0.460 0.212
B 1 0.743 0.368 0.201 1.069 0.478 0.233
B, 2 1.662 0.392 0.268 2.163 0.567 0.347
Bo 0 -0.020 0.142 0.021 0.002 0.192 0.037
B4 1 0.508 0.337 0.356 1.054 0.476 0.229
6 B, 0.5 0.112 0.344 0.268 0.533 0.460 0.212
B 1 0.516 0.334 0.346 1.069 0.478 0.233
B, 2 1.350 0.347 0.543 2.163 0.567 0.347
Bo 0 -0.018 0.128 0.017 0.002 0.192 0.037
B4 1 0.153 0.325 0.823 1.054 0.476 0.229

12 B, 0.5 -0.201 0.336 0.604 0.533 0.460 0.212

B 1 0.158 0.316 0.808 1.069 0.478 0.233
B, 2 0.906 0.317 1.297 2163 0.567 0.347
By 0 -0.011 0.124 0.016 0.002 0.192 0.037
B4 1 -0.088 0.330 1.293 1.054 0.476 0.229
24 B, 0.5 -0.431 0.331 0975 0.533 0.460 0.212
B 1 -0.086 0.315 1.279 1.069 0478 0.233
B, 2 0.641 0.324 1.952 2163 0.567 0.347




Table 4: Effect of varying the number of outliers at a fixed location.

MLE L.E

Number of Outliers Coefficient True Value mean  std mse mean  std mse
B, 0 0.005 0.182 0.033 0.002 0.192 0.037

B 1 1.026 0.433 0.188 1.0564 0.476 0.229

0 B, 0.5 0.521 0.422 0.179 0.533 0.460 0.212
Bs 1 1.041 0438 0.193 1.069 0.478 0.233

B, 2 2.099 0.485 0.245 2.163 0.567 0.347

B, 0 -0.022 0.157 0.025 0.002 0.192 0.037

B, 1 0.732 0.368 0.207 1.054 0.476 0.229

1 B, 0.5 0.296 0.369 0.178 0.533 0.460 0.212
Bs 1 0.743 0.368 0.201 1.069 0.478 0.233

B, 2 1.662 0.392 0.268 2.163 0.567 0.347

B, 0 -0.090 0.126 0.024 0.002 0.192 0.037

B4 1 0.086 0.320 0.937 1.054 0.476 0.229

5 B, 0.5 -0.263 0.327 0.689 0.533 0.460 0.212
Bs 1 0.090 0.308 0.922 1.069 0.478 0.233

B, 2 0.830 0.312 1.466 2.163 0.567 0.347

Bo 0 -0.110 0.124 0.027 0.002 0.192 0.037

B4 1 -0.073 0.330 1.261 1.054 0.476 0.229

10 B, 0.5 -0.417 0.333 0.951 0.533 0.460 0.212
B 1 -0.071 0.315 1.246 1.069 0.478 0.233

B, 2 0.659 0.323 1.903 2.163 0.567 0.347

Bo 0 -0.117 0.124 0.029 0.002 0.192 0.037

B, 1 -0.127 0.335 1.382 1.054 0.476 0.229

15 B, 0.5 -0.470 0.338 1.055 0.533 0.460 0.212
B 1 -0.125 0.321 1.367 1.069 0.478 0.233

B, 2 0.605 0.328 2.054 2.163 0.567 0.347

Bo 0 -0.122 0.124 0.030 0.002 0.192 0.037

B4 1 -0.159 0.339 1.457 1.054 0.476 0.229

20 B, 0.5 -0.502 0.342 1.120 0.533 0.460 0.212
B 1 -0.157 0.325 1.443 1.069 0.478 0.233

B, 2 0.573 0.332 2.145 2.163 0.567 0.347

4 Variable Selection Experiments in High Dimensions

We show more detailed results for a single replicate for the simulations reported in Section 5.2.
Figure 1 shows the robust cross validation curves for the three methods for the replicate. Figure 2
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Figure 1: Robust 10-fold cross-validation curves for the three methods. The vertical error bars
around the dots indicate £+ one median absolute deviation with a scale factor of 1.4826. The
dash-dotted line indicates the minimizing A\. The dashed line indicates the 1-MAD rule .
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Figure 2: Regularization paths for the three methods. Paths for nonzero regression coefficients in
the true model are drawn in heavy solid lines.

shows the regularization paths for the three methods for the replicate. Note the large jump in the
LsE curve. By choosing the starting LoE point by our heuristic, a local minimum different from
the MLE solution is found. For sufficiently large A\, however, the local minimum vanishes, and the
regularization paths mimic the MLE regularization paths.
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5 The Hybrid Huberized SVM

Consider the following classification problem. Let X € R™*P denote a centered matrix of covariates
and y € {—1,1}" denote binary class labels. We will employ the compact notation X = (1,X) €
R+ and @ = (By,3")" € R, The Hybrid Huberized Support Vector Machine (HHSVM)
(Wang et al., 2008) constructs a linear classifier X0 by minimizing the following loss.

Uy, X;0) => ¢ (u:X]0) + J(B),
i=1
where the function ¢ is a smooth hinge loss,

(1—t)2+2(1 —t)(t —u), ifu<t,
d(u) =< (1 —u)?, ift <u<l,

0, otherwise,

and J is the Elastic Net penalty (Zou and Hastie, 2005).

1—
58 = (allpll + 52112 ).

where « € [0,1] is a mixing parameter between the 1-norm and 2-norm regularizers. We now
derive an MM algorithm for solving the entire regularization path with respect to a varying A for
a fixed . The majorization we will use leads to a simple MM algorithm. This algorithm calculates
a different regularization path than the algorithm in (Wang et al., 2008), which uses the following
parameterization of the Elastic Net

A
J(B) = MBI+ 511815,

for varying A\; for a fixed Ay. The code used in (Wang et al., 2008) is available on the author’s
website (http://www.stat.lsa.umich.edu/~jizhu/code/hhsvm).
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5.1 An MM Algorithm for Minimizing the Smooth Hinge Loss

We begin by deriving a quadratic majorization of ¢. It is straightforward to verify that the first
and second derivatives of ¢ are given by

¢'(u) =

¢"(u) =

(—2(1—1t), ifu<t,
—2(1 —w), ft<u<l,

L0, otherwise.

(O, if u <t,

2, ift<u<l,

0, otherwise.

Y

\

Then we can express ¢ as an exact second order Taylor expansion at a point @ with

B(u) = o(i0) + ¢/ (i) — ) + 30" (u)(u — )

where u* = du + (1 — §)a for some 6 € (0,1). It follows immediately that the following function

majorizes ¢ at u.

The u that minimizes g(u; @) is

g(u; @) = ¢(a) + ¢ (@) (u — @) + (u — )",

5.2 An MM Algorithm for the Unregularized Classification Problem

Returning to our original problem and applying the above results along with the chain rule gives

us the relationship

Uy X;6) < ((y,X;0) + @"X(6 - 6) +[1X(6 — 0)]5.

where

@ = v (u:X] 9).

Since the equality occurs when 0 = 0, the right hand side majorizes the left hand side. Further-
more, the majorization up to an additive constant is separable in Fy and 3.

1
2

—p+X(0-0)

-

= H {XB —S(@—p1) — Xﬁ} + {501 i 501}

N 2
) — X6

2

1
2
1 2
2

2 2

. 1 - \?
—n (G o= 517+ 2 - X8,
n

12



where . .
7z=XB—= (@--1%1).
2 n

We can write the updates with the intercept and regression coefficients separately. The inter-
cept update is

- 1 5
Bo = Bo — 2—1T‘P-
n

and if X is full rank the update for 3 is

(XTX) " XT (gb - %1%1) .

N[ =

B=B-

5.3 An MM Algorithm for the HHSVM

Adding an Elastic Net penalty to the majorization gives us the following loss function to minimize.

1/~ 1 ..\ 1 _ ) l—a,
3 (Ao o 5-170) + o la - Xl + 1 (algl + 52012

Penalized least squares problems of this variety are efficiently solved with coordinate descent.
The coordinate descent updates are

S (ix]r, \a)

6' - )
T HIxell3 A1 - @)
where
= 1.
JF#k
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