
Supplementary appendix to
“Massively parallel nonparametric regression,
with an application to developmental brain

mapping,” published in the Journal of
Computational and Graphical Statistics

Philip T. Reiss1,2, Lei Huang3, Yin-Hsiu Chen1,
Lan Huo1, Thaddeus Tarpey4, and Maarten Mennes5

1Department of Child and Adolescent Psychiatry, New York University
2Nathan S. Kline Institute for Psychiatric Research

3Department of Biostatistics, Johns Hopkins University
4Department of Mathematics and Statistics, Wright State University

5Department of Cognitive Neuroscience, Radboud University Nijmegen Medical Centre

September 10, 2012

1 Diagonalization

The following reparametrization obviates the need to compute and invert the q × q matrix V γ

for γ = γ(1), . . . , γ(G). Given the singular value decomposition ZZT = U ∗D∗U
T
∗ , where U ∗ is

an n × n orthogonal matrix and D∗ = Diag{d1, . . . , dn}, we have V −1
γ = U ∗ΛγU

T
∗ where Λγ =

Diag
{

1
1+γd1

, . . . , 1
1+γdn

}
. Setting ỹ` = UT

∗ y` and X̃ = UT
∗X and noting that dq+1 = . . . = dn = 0,

the quantities determining `R(γ;y`) simplify to

yT`M γy` = ỹT`

[
Λγ −ΛγX̃(X̃

T
ΛγX̃)−1X̃

T
Λγ

]
ỹ`

and hγ = −
q∑
i=1

log(1 + γdi)− log |X̃T
ΛγX̃|.
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2 Pointwise interval estimation

The penalized spline model for location ` implies that y`|θ` ∼ N(Bθ`, σ
2
`In). Following Silver-

man (1985), roughness penalization can be viewed as imposing a prior density proportional to

exp(−λ`
2
θT` Pθ`/σ

2
` ) on θ`, leading to the posterior distribution θ`|y` ∼ N [θ̂`, σ

2
` (B

TB+λ`P )−1].

Consequently, for a given x∗, the posterior variance of g`(x
∗) = b(x∗)Tθ` is σ2

`b(x
∗)T (BTB +

λ`P )−1b(x∗). We can evaluate a pointwise Bayesian confidence interval for g`, in the sense of

Wahba (1983) and Wood (2006b), at given points x∗1, . . . , x
∗
m, by computing the m-dimensional

vector of posterior variance estimates

σ̂2
`Diag

[
B∗(BTB + λ`P )−1B∗T ] , (1)

where σ̂2
` is an estimate of the `th-location error variance and B∗ =


b(x∗1)

T

...

b(x∗m)T

. Demmler-

Reinsch orthogonalization, as applied in the main text, can speed the computation here in two

respects. First, a natural error variance estimator is σ̂2
` = ‖y` −Bθ̂`‖2/(n− df`), where df` is the

effective degrees of freedom of the `th-location smooth; and df` can be obtained for all ` by

(df1, . . . , dfL) = 1TKM ,

where 1K is a vector of K 1s. Second, for a fixed `, we need not compute the entire m×m matrix

whose diagonal appears in (1), since

Diag
[
B∗(BTB + λ`P )−1B∗T ] = (B∗R−1U)�2

(
1

1 + λ`τ

)
,

where A�2 = A�A.

3 Implementation of functional data clustering

The voxelwise curve estimates created by our massively parallel procedure can be represented as

a single functional data object using the fda package in R (Ramsay et al., 2009). This object

is determined by a matrix, each column of which gives the coefficient of the curve for one voxel

pair with respect to a B-spline basis. The fda function deriv.fd was used to generate a similar
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object representing the first derivatives of the curves, and functional principal component analysis

was performed on the latter object via the fda function pca.fd. Due to the relatively large

number of curves, we did not find it necessary to regularize the eigenfunctions by means of a

roughness penalty. Ordinary k-means clustering was then applied to the matrix of functional

principal component scores. Interactive visualization of the clusters is implemented with the R

package rpanel (Bowman et al., 2007).

4 Timing estimates

A straightforward way to perform RLRT for a single scatterplot smooth using standard software

is:

1. use the gamm function in R package mgcv (Wood, 2006a) to express the nonparametric re-

gression model as a linear mixed-effects object;

2. input this object to the R package RLRsim (Scheipl, 2010), which simulates the null distri-

bution for the RLRT, and refers the observed test statistic to this distribution.

Simulating the null distribution in step 2 takes a fraction of a second, and need not be repeated

for each voxel since the null distribution is the same in each case. Therefore, our timing estimate

for the näıve voxelwise RLRT is based on repeating step 1 for 500 voxel pairs, and extrapolating

the elapsed time to 71287 voxel pairs. For näıve voxelwise smoothing, we used the gam function in

mgcv to perform nonparametric regression with smoothing parameter selection by REML (Wood,

2011) for 500 voxel pairs, and again extrapolated to the entire brain.
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