
An Introduction to PEBL:
The Psychology Experiment

Building Language

Shane T. Mueller, Ph.D.
Indiana University
http://pebl.sf.net

34th Annual Meeting of the Society for Computers in Psychology
Minneapolis, MN

Nov. 18, 2004

Motivations for PEBL

● Many solutions exist for experiment design
● None were right for me.

– Everyone has solutions (6+ different ones used by
people in my lab).

– I use 3-4 different methods myself
– I primarily use GNU/Linux, but my lab uses other

platforms.
– Many of the best solutions have restrictive

licensing constraints that I would prefer not deal
with.

PEBL Goals

● Design a system that is:
– Free (redistributable without cost or licensing)

● I have megabytes of documents/programs that will
cost me hundreds of dollars to access again;

● Sharing difficult (network effects work against user)
– Source Code Availability

● Transparency, modifiability, accessibility
– Cross-platform

● Further avoid lock-in and enable better
sharing/flexibility

– A simple scripting language
● Avoid high level (though powerful) idioms

PEBL: Psychology Experiment
Building Language

● Planning and development for the past 3 yrs.
● Still in early stages (You can have an impact)
● Initial goals: create general-purpose system

that is tailored for creating basic psychology
experiments
– Present Text
– Present Images
– Present Sounds
– Keyboard Input
– Control of Timing
– Data Recording

Technical Details

● PEBL written primarily in C++
● Parser/lexer constructed with flex/bison.
● Parser creates a p-node execution tree from

a text program (not a text-based interpreter)
● Evaluator steps through p-node structure

● define Start (lParameter)
● {
●
● ##Make initial objects needed for display.
● gWindow <- MakeWindow()
● gPic <- MakeImage("pebl.bmp")
●
● gSmiley <- MakeImage("smiley-big.png")
● gFrowney <- MakeImage("frowney-big.png")
● AddObject(gPic, gWindow)
● AddObject(gSmiley, gWindow)
● AddObject(gFrowney, gWindow)
●
● Move(gSmiley, 300,50)
● Move(gFrowney, 300,50)
●
● lBG <- MakeColor("GREY")
● lFG <- MakeColor("dodgerblue3")
● lFont <- MakeFont("Vera.ttf",0,22,lFG,lBG,1)
● lText <- MakeLabel("Hello World", lFont)
●
● ##Initially place text here
● Move(lText, 300,200)
● ##Add text to the window.
● AddObject(lText,gWindow)
● ##Nothing appears until you draw!!!
● Draw()
●
● ##Set the positions of things
● x <- 0
● y <- 50
●
● ##The following loop enables simple animation.
● i <- 1
● while(i <= 350)
● {
● x <- x + 2
● y <- y + 1
● Move(lText,x, 25 * Sin(x / 25) + 300 - x/3)
● Move(gPic, x, y)
●
● if(Mod(i,50) == 0)
● {
● Hide(gFrowney)
● Show(gSmiley)
● }
● if(Mod(i,50) == 25)
● {
● Hide(gSmiley)
● Show(gFrowney)
● }
●
● Draw()
●
● i <- i + 1
●
● }
●
● ##Hide the sprites.
● Hide(lText)
● Hide(gPic)
●
● ##Make a new text label giving instructions about how to proceed
● lText2 <-MakeLabel("Press the 'X' key to Continue", lFont)
● AddObject(lText2,gWindow)
● Move(lText2, 200, 300)
● Draw()
●
● WaitForKeyDown("X")
● ##Wait a little bit after the "X" is pressed.
● Wait(300)
● }

Technical Details

● PEBL written primarily in C++
● Parser/lexer constructed with flex/bison.
● Parser creates a P-node execution tree from

a text program (not a text-based interpreter)
● Evaluator steps through p-node structure
● Heavy use of the C++ STL
● Designed to allow different platforms
● Currently, supports libSDL front-end, a LGPL

cross-platform game library.
● 15,000 lines of C++ (David A. Wheeler's sloccount)

PEBL Data Environment

● All data types are handled in a memory-
managed variant data type.

● Complex objects (images, text, fonts, etc.)
are managed with a counted-reference
system.

● Global and local variables are available.
● Lists are currently the only sequence type.

PEBL’s Focus

● Simple and forgiving syntax focusing on
readability

● Avoid difficult but powerful programming
idioms (Object-oriented, Pointers, Recursion)

● Use objects with few options
– Avoid the numerous properties/options available

(and useful) in general-purpose languages

● Statements separated by new lines
● Naming conventions enforced in syntax

– Local/global status designated by initial letter
– Function names begin with Capitals

Example Function

define Mean (listOfNums)
{
 # Initialize variables

sum <- 0 #Variables begin with lowercase
len <- 0

 loop(i,listOfNums) #Simple looping control
{

sum <- sum + i
len <- len + 1

}
 return sum/len
}

PEBL Function Library

● Philosophy: Provide easy access to anything
commonly done in experiments

● 130+ Functions
● Core functions written in C++
● Increasing number written in PEBL itself
● Randomization, counterbalancing, etc.

– DesignFullCounterbalance()
– DesignLatinSquare()

● Response Collection
– WaitForKeyPress("X")
– WaitForAnyKeyPress()
– WaitForListKeyPress(["A","Z"])

Performance:
 Speed of Variable Access

● Primitive variables created/accessed rapidly
● Use an STL map association structure to

store variable values.

● 100,000 lookup/store operations in 810 ms
– 123/ms

● Sufficiency of a map structure may diminish
as number of stored variables increases (O
(log(N)).

Performance:
 Evaluator Efficiency

● 100,000 addition/multiplication ops in 150 ms
– 667/ms

● 100,000 file write ops in 17.3 sec
– 5.8/ms

● 100,000 list creations in 4.7 sec
– 21/ms

● 100,000 list appends in 12.1 sec
– 8.2/ms

Performance: Timing
● Delays/waits performed with

busy wait
● Standard interrupt-based

waiting (sleep()) would be
better but normally is no
better than 10ms accuracy

● On 10,000 programmed
delays between 1 and 20
ms, 9 missed by 1-2 ms
(could be partly
measurement error)

0

5

10

15

20

25

0 5 10 15 20 25

Performance: Video Display

● Tested on 60 hz laptop
● 1000 iterations of a 4-frame animation
● With proper drivers/video cards, Draw() function

blocks until next vertical refresh
● 4 consecutive draws should take 4 refresh cycles
● In 10,000 trials @ 60 hz (66.66 ms)

0

2500

5000

7500

10000

Count 1 1 1 0 115 7777 2098 6 0 1

61 62 63 64 65 66 67 68 69 70

Performance: Summary

● Accuracy is probably good enough for most
experiments people do.

● For experiments with high demands
(presentation duration, response accuracy),
current versions of PEBL may be insufficient.

● For these experiments, a real-time OS and
special-purpose presentation and data
acquisition hardware is probably necessary
as well.

Limitations
● Timing and video display are good when you are

careful and lucky
● Input is handled through a parallel thread in the

library, imposing some delay in processing key
events

● Currently available only on Microsoft Windows ™
and Linux (no Mac support)

● Underdeveloped function library in many areas
(visual/images, sound)

● Keyboard is only input device currently supported
● No graphical drag-n-drop or menu-based interface

designer or development environment

The Future

● OpenGL front end may offer better support
for video timing

● Take advantage of real-time OS features on
supported platforms

● Audio Subsystems to improve playback
capabilities (PortAudio and/or Jack).

● Programming front-end for a cognitive
modeling system (EPIC).

● Whatever potential users need and are
willing to contribute.

Information

● PEBL Website: http://pebl.sf.net
● Current Release: 0.3
● Contact: stmuelle@indiana.edu or
pebl-list@lists.sf.net

