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S2 Appendix: Determinants of plasma homocysteine as ingredients for 

the novel drink powder supplement 

Introduction 

Existing evidence suggests that women conceiving in the dry season in The Gambia have particular 

micronutrient deficiencies in nutrients related to one-carbon metabolism that result in a lower 

maternal methylation potential (1). This is in turn associated with a pattern of methylation suggestive 

of loss of imprinting at the gene VTRNA2-1 (2). Our group’s long-term goal is therefore to design a 

periconceptional nutritional intervention for women that improves the regulation of the infant 

epigenome by providing micronutrients in the quantity necessary for optimal one-carbon metabolism 

all year round. To achieve this we first require a proof-of-concept trial showing that a nutritional 

supplement can optimise the metabolome in non-pregnant women by correcting nutritional 

imbalances and increasing the methylation potential by reducing homocysteine. Should the 

supplement work it could be a promising candidate for future pregnancy trials investigating epigenetic 

outcomes.  

The primary end point in the proof-of-concept trial is to reduce plasma homocysteine (Hcy), since 

maternal plasma Hcy is strongly inversely associated with the ratio of S-adenosyl methionine (SAM) 

to S-adensosyl homocysteine (SAH) (1), a measure of methylation potential (3), and inversely 

associated with infant methylation (4). The hypothesis here is that reducing homocysteine will help 

improve the methylation potential and enable one-carbon metabolic pathways to function 

unhindered.  

Whilst the ratio of SAM:SAH is the most common and direct measure of methylation potential, there 

are a number of reasons why investigating plasma Hcy is preferable. Firstly, plasma Hcy is stable in 

EDTA at room temperature for 8 days and at -25°C for 29 years (5). This in in contrast to SAM, which 

rapidly converts into SAH and is strongly affected by freeze-thaw cycles. For example, unpublished 

data from the University of British Columbia suggests that the concentration of SAH after the second 

freeze-thaw cycle is 16.7% higher than after the first free-thaw cycle. Investigating Hcy is therefore 

more reliable, particularly when using stored samples. Secondly, Hcy assays are cheaper and more 

commonly available than those for SAM and SAH. Thirdly, there is already a wealth of existing evidence 

to show how nutritional interventions have been successful in reducing homocysteine through 

targeting one-carbon metabolic pathways (6–8).  

In our target population, women of reproductive age of West Kiang district, we had three available 

datasets of plasma metabolites involved in one-carbon metabolism. We compared the nutritional 
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biomarker predictors of homocysteine in these three datasets with the aim of identifying the 

micronutrients consistently demonstrating inverse associations with homocysteine as candidates to 

take forwards into the supplement design stage. These analyses therefore provided an opportunity to 

tailor the supplement more specifically to the population in rural Gambia rather than rely on a more 

generic formula. 

Methods 

Three datasets are referred to in this analysis. Two are from the original Methyl Donors and 

Epigenetics (MDEG) study, the ‘indicator group’ and the ‘main study group’ led by Paula Dominguez-

Salas from 2009-2012 (1,4,9).  The third, termed ‘MDEG-2’ utilises stored samples from the Early 

Nutrition & Immune Development (ENID) Trial (10).  

MDEG Indicator group 

This was an observational study that took place in West Kiang district between July 2009 and June 

2010, and written up in Dominguez-Salas et al. (2013) (1). The overall aim was to document the dietary 

intake and plasma nutrition concentrations of a cohort of non-pregnant women, with a focus on one-

carbon related metabolites. This dataset therefore provided a reference for the seasonal variation in 

these metabolites over a year, hence referred to as the ‘indicator group’. 

Non-pregnant women between the ages of 18 and 45 years (mean age 31 years) were followed 

monthly for a year. Each month they provided a fasted 10 mL blood sample and were observed by 

field workers for collection of a 48-hour weighed dietary intake. This analysis utilises the blood sample 

data. Blood samples were collected in the field into EDTA monovettes, transported on ice and fully 

processed within two hours at MRC laboratories in Keneba. Samples were spun for 10 minutes at 

2,750g and the plasma was removed, aliquoted and immediately stored at -80°C. A sample of the 

remaining red blood cells were removed, washed and also stored at -80°C. The original list of maternal 

1-carbon biomarkers analysed were folate, B12, holotranscobalamin (active B12), choline, betaine, 

dimethylglycine (DMG), methionine, s-adenosyl methionine (SAM), s-adenosyl homocysteine (SAH), 

homocysteine (Hcy), riboflavin (B2), cysteine, 4-pyridoxic acid (PA), pyridoxal (PL) and pyridoxal 5’-

phosphate (PLP). Throughout this analysis this collection of biomarkers is termed the ‘core one-carbon 

biomarker’ set. 

Plasma samples were shipped to the Department of Pediatrics, University of British Columbia (UBC), 

Canada for analysis of the following 1-carbon metabolites by liquid chromatography-tandem mass 

spectrometry: SAM, SAH, free choline, betaine, DMG, Hcy, methionine, cysteine and the B6 vitamers 
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(PA, PL, PLP). Plasma B12, active B12 and folate were analysed at UBC using an AxSyM analyser (Abbot 

laboratories, Chicago, IL). Riboflavin (B2) concentrations were analysed in the washed red blood cells 

by erythrocyte glutathione reductase activation coefficient (EGRAC) assay at MRC Human Nutrition 

Research laboratories, Cambridge, UK.  

A sample size of 30 women per month was planned for, and to account for drop-out and those being 

excluded after becoming pregnant 62 women were recruited into the study. Overall between 22 and 

30 blood draws were obtained each month throughout the year.  

MDEG main study group 

This dataset contains 167 mother-child pairs enrolled into the main MDEG cohort. Women of 

reproductive age (18-45 years) in West Kiang district were invited to participate and followed monthly. 

Those women conceiving in the peak of the rainy season (July-September 2009) and the peak of the 

dry season (February – April 2010) were enrolled and continued to be followed monthly until delivery. 

Their offspring were then followed throughout infancy. Detailed methodology and the main study 

results have been previously published in Dominguez-Salas et al. (2014) (4).  Women provided a 10ml 

fasting venous blood sample at the point they reported their first missed menses (mean (SD) 8.6 ± 4 

weeks gestation). The same set of core one-carbon biomarkers were analysed as described in the 

Indicator group, using the same laboratory analyses. The seasonal trends obtained from the Indicator 

group were then used to back-extrapolate the plasma concentrations to the time of conception. Infant 

DNA was obtained from a 3ml venepuncture taken between 2-8 months after delivery. In this main 

group study methylation at 6 MEs in the infant DNA were analysed. More recently two other published 

papers have also utilised the offspring DNA methylation data using the Illumina Infinium 

HumanMethytlation450 array (‘450k array’) (2,11). 

MDEG-2 

This dataset uses banked samples from the Early Nutrition & Immune Development (ENID) Trial 

(ISRCTN49285450) testing the effect of different nutritional supplements given to pregnant women 

on the immune development of their children. The trial provides a detailed bank of samples from 

multiple time-points across pregnancy and in infancy until 24 months of age. From this a subsample 

of mother-child pairs form the MDEG-2 dataset. The ENID trial protocol has been previously described 

in detail (10). In brief, women were randomised to four intervention groups after a positive pregnancy 

test at their ‘booking’ visit (the first clinic visit when pregnancy was confirmed, at approximately 13 

weeks gestation): iron-folate (Fe-Fol) tablets, multiple micronutrient (MMN) tablets, a lipid-based 

nutritional supplement (LNS) fortified with Fe-Fol and LNS fortified with MMN. Supplementation was 
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taken daily from the booking visit until delivery. At the time of booking mothers provided a fasted 

sample of 10 mL venous blood; 7.5mL into lithium heparin monovettes and 2.6mL into  an EDTA 

monovette. Samples were immediately placed on ice after the venepuncture and taken to the 

laboratory for processing within one hour. The monovettes were centrifuged at 1800 RCFs for ten 

minutes at 4°C and the plasma drawn off into 2mL microtubes. The microtubes were immediately 

frozen at -70°C. The plasma samples experienced two freeze-thaw cycles (one to sub-aliquot and one 

at the point of analysis).  Since maternal booking blood samples were taken before the interventions 

were started the trial design does not affect interpretation of the maternal plasma nutritional 

biomarkers. The first booking visit took place in January 2010 and final child was born in February 

2014. 

The MDEG-2 dataset is comprised of a sub-sample of 350 mothers for the plasma biomarker analysis. 

In order to understand how the metabolome changes across the year samples were purposively 

selected to represent an even distribution by month of booking. Within each month the women with 

the earliest gestational age at booking (assessed by ultrasound) were selected to capture the 

metabolome closest to the periconceptional period.  

The mother’s data is comprised of nutritional biomarkers analysed from their EDTA-treated plasma. 

The same biomarkers as MDEG main study and Indicator group were measured, with the addition of 

α-1-acid glycoprotein (AGP), serine, glycine, alanine, arginine, aspartic acid, glutamic acid, histidine, 

isoleucine, leucine, lysine, phenylalanine, proline, threonine, tryptophan, tyrosine and valine.  

Vitamin B12 and folate were measured using an Abbott AxSYM autoanalyzer. Choline, betaine, DMG, 

homocysteine, folate, B6 vitamers (PA, PL, PLP) and vitamin B2 were measured using liquid 

chromatography-tandem mass spectrometry. The amino acids were analysed using a Hitachi L-8900 

amino acid analyser. All of these biomarkers were measured at the Child and Family Research Institute 

at the University of British Columbia. The inflammatory marker AGP was measured using the Cobas 

Integra 400 plus autoanalyser at MRC The Gambia, Keneba field station. 

Selection of 1-carbon biomarkers as potential predictors 

We assessed the original list of biomarkers in each dataset for multicollinearity by inspecting the 

variance inflation factors. Amongst the B6 vitamers we dropped pyridoxic acid and pyridoxal from all 

datasets since they were highly correlated with pyridoxal-5’-phospahte (PLP), which is the main 

functional marker of vitamin B6. Since the active B12 assay did not work correctly in the MDEG-2 

dataset we used plasma total B12 from all datasets instead. S-adenosyl methionine (SAM) and s-

adenosyl homocysteine (SAH) from the MDEG-2 dataset had degraded over storage time and/or 
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freeze-thaw processing and were unusable. We dropped them from the list of potential predictors for 

that reason, and also because we wanted to prioritise the biomarkers that could be considered for a 

supplement rather than the intermediary metabolites. For the MDEG main study and the Indicator 

group the final list of potential predictors was therefore: B2, PLP, B12, cysteine, methionine, 

dimethylglycine (DMG), folate, choline and betaine. MDEG-2 used the same list but also included the 

amino acid panel.  

Predictive models: three approaches 

Since regression models are not always stable in their variable selection we wanted to compare three 

different methods of linear regression modelling: a two-step approach, backwards stepwise and least 

angle regression using Lasso. The aim was to obtain a qualitative overview in order to identify 

consistent patterns of predictors of homocysteine in different datasets using different variable 

selection approaches.   

We used log Hcy as the dependent variable in all our models. We standardised and log-transformed 

all potential nutritional predictors to be entered into the models as independent variables. All effect 

sizes therefore represent the change in log Hcy for a one SD increase in the log-transformed 

independent variable. We forced a priori confounders into all models, and these varied according to 

the information available for each dataset (age for Indicator group; age, BMI and gestational age for 

MDEG main study; age, BMI, gestational age and inflammation using α-1-acid glycoprotein (AGP) for 

MDEG-2). The Indicator group dataset contains repeated measures on the same individual. Both the 

Breusch-Pagan test (for random effects versus ordinary least squares regression, p<0.0001) and the 

Hausman test (for fixed versus random effects, p=0.2409), confirmed the use of random effects. This 

longitudinal dataset, however, could only be used in the two-step approach, which allowed for the 

modelling of random effects. The MDEG main study and MDEG-2 datasets, being cross-sectional, could 

be used in all three modelling approaches.  

In the two-step approach we regressed log Hcy against the nutritional predictors in univariable linear 

regression. Any variables with p<0.1 were then taken forwards to a multivariable linear regression 

model. In the final results we report any retained independent variables with p<0.05. We used the 

Wald test for the statistical tests in this approach. In the backwards stepwise approach we used 

automatic selection with p>0.2 as the criteria for removal from the model. Again, in the final results 

we only report the retained independent variables with p<0.05 using the Wald test. In the Lasso model 

the number of variables retained in the final model corresponds to the lowest Cp statistic found. No 

individual p values are reported and the output contains the coefficients only. Given it was not possible 
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to force confounders into the Lasso models we pre-adjusted log Hcy by regressing it against the 

confounders prior to model entry. 

We ran the three models using all the data available (‘combined season’ model), but then also 

stratified the models by peak of the dry season (February – April) and the peak of the rainy season 

(July – September). This was because we particularly wanted to run the supplementation trial in the 

dry season. Table 1 summarises the different datasets we used, detailing the list of potential 

nutritional predictors, the confounders, the type of statistical models used and the samples sizes.  
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Table 1: Summary of datasets and models used 

Dataset Total N Dry Season N 
Rainy Season 

N 
Biomarkers included in 

model 

A priori 
confounders 

forced into all 
models 

Models used Notes 

Indicator 
group 

48 non-pregnant 
women with 288 
total 
observations 

34 women 
with 79 
observations 

28 women 
with 63 
observations 

Hcy, B2, PLP, B12, 
folate, methionine, 
choline, betaine, DMG, 
cysteine 

Age Linear 
regression with 
random effects. 
2-step approach 
only 

Non-pregnant 
women, roughly 30 
followed for one 
year, longitudinal 
study with monthly 
blood samples (1).  

MDEG 
main 
study 
 
 

167 pregnant 
women 

83 84 Hcy, B2, PLP, B12, 
folate, methionine, 
choline, betaine, DMG, 
cysteine 

Maternal age, 
BMI, gestational 
age 

Ordinary linear 
regression. 2-
step, backwards 
stepwise and 
Lasso 

Cross-sectional data, 
pregnant women 
selected from peak 
of rainy and peak of 
dry season (4). 

MDEG-2  
 
 

350 pregnant 
women 

87 100 Hcy, B2, PLP, B12, 
folate, methionine, 
choline, betaine, DMG, 
cysteine, Asp, Thr, Ser, 
Glu, Gly, Ala, Val, Ile, 
Leu, Tyr, Phe, Lys, His, 
Arg, Pro 

Maternal age, 
BMI, gestational 
age, 
inflammation 
(AGP) 

Ordinary linear 
regression. 2-
step, backwards 
stepwise and 
Lasso 

Cross sectional data, 
pregnant women 
selected from each 
month of year. 

 

Abbreviations: Hcy, homocysteine; PLP, pyridoxal 5’-phosphate; DMG, dimethylglycine; BMI, body mass index; Asp, aspartic acid; Thr, threonine; Ser, 

serine; Glu, glutamic acid; Gly, glycine; Ala, alanine; Val, valine; Ile, isoleucine; Leu, leucine; Tyr, tyrosine; Phe, phenylalanine; Lys, lysine; His, histidine; Arg, 

arginine; Pro, proline.   
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Results 

Tables 2, 3 and 4 detail the predictors of Hcy retained in final multivariable models in the MDEG main 

study, MDEG-2 and Indicator group datasets respectively. A summary of the retained coefficients in 

all models is provided in Figure 1.  

There were four predictors that were consistently inversely associated with Hcy in most model 

approaches and seasons: folate, B2, B12 and betaine. Of these folate had the strongest effect sizes, 

particularly in the dry season. Cysteine was positively associated with Hcy in all models. DMG was also 

positively associated with Hcy in the combined and dry season models.  

The pattern for choline and PLP was inconsistent. In several models they were not retained as 

predictors, and where they did feature the direction of the association varied. Choline was inversely 

associated with Hcy in the MDEG-2 Lasso dry and rainy season models, yet was positively associated 

in the MDEG main study Lasso models in all seasons.  PLP was positively associated with Hcy in the 

MDEG-2 dataset but showed different directions of association by season in the MDEG main study 

dataset.  

The amino acids were only measured in the MDEG-2 dataset. Glycine was a positive predictor of Hcy 

in the combined models but was not retained when models were stratified by season. None of the 

other amino acids showed a consistent pattern, and when they were retained in the final models they 

had small effect sizes.  
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Table 2: Nutritional biomarker independent predictors of homocysteine in MDEG main study dataset 

Seasonal 
Model 

Statistical 
approach* 

N R2 Positive predictorsƗ 
(β, 95%CI, p value) 

Negative predictorsƗ 
(β, 95%CI, p value) 

Combined 
Seasons 

 

2-step 150 0.582 Cysteine  
DMG  

0.14 (0.10, 0.18), p<0.001 
0.05 (0.01, 0.09), p=0.015 

Folate  
B2  

-0.12 (-0.16, -0.09), p<0.001 
-0.05 (-0.08, -0.01), p=0.009 

Backwards 
Stepwise 

149 0.610 Cysteine  0.16 (0.12, 0.20), p<0.001 Folate  
B2  
B12  

-0.14 (-0.17, -0.10), p<0.001 
-0.04 (-0.07, 0.00), p=0.029 
-0.05 (-0.09, -0.02), p=0.005 

Lasso 152 0.422 Cysteine  
DMG  
Choline  
Methionine 

0.14 
0.04 
0.04 
0.02 

Folate  
Betaine  
B2  
B12 
PLP  

-0.11 
-0.08 
-0.04 
-0.03 
-0.01 

Dry season 
 

(Feb-Apr) 

2-step 79 0.575 Cysteine  0.16 (0.10, 0.22), p<0.001 Folate  
B2  

-0.17 (-0.23, -0.11), p<0.001 
-0.07 (-0.13, -0.01), p=0.018 

Backwards 
Stepwise 

79 0.542 Cysteine  0.16 (0.10, 0.23), p<0.001 Folate  -0.18 (-0.24, -0.12), p<0.001 

Lasso 80 0.423 Cysteine  
DMG  
Choline  
Methionine  
 

0.13 
0.05 
0.06 
0.03 

Folate  
B2  
B12  
Betaine  
PLP 

-0.11 
-0.06 
-0.02 
-0.11 
-0.02 

Rainy 
season 

 
(Jul-Oct) 

2-step 77 0.622 Cysteine  0.13 (0.08, 0.17), p<0.001 None  

Backwards 
stepwise 

70 0.732 Cysteine  0.17 (0.12, 0.21), p<0.001 Folate  
B12  

-0.10 (-0.14, -0.06), p<0.001 
-0.05 (-0.09, -0.01), p=0.010 

Lasso 72 0.504 Cysteine  
Choline  
DMG  
PLP  

0.14 
0.04 
0.03 
0.03 

Folate 
Betaine  
B2  
B12  

-0.09 
-0.05 
-0.02 
-0.04 
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*Lasso model fitted to variables demonstrating the smallest Cp value. Note no confidence intervals are reported for Lasso models.  
 

ƗPredictors are adjusted for maternal age, gestational and BMI. Only variables with a final p<0.05 reported.  
 

ǂβ Coefficients represent the change in log homocysteine for a one SD increase in the log-transformed independent variable. 

 

Abbreviations: CI, confidence interval; DMG, dimethylglycine; PLP, pyridoxal 5’-phosphate 
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Table 3: Nutritional biomarker independent predictors of homocysteine in MDEG-2 dataset 

Seasonal 
Model 

Statistical 
approach* 

N R2 Positive predictorsƗ 
(β, 95%CI, p value) 

Negative predictorsƗ 
(β, 95%CI, p value) 

Year-round 
 

2-step 339 0.588 Cysteine 
Glycine 
DMG 

0.21 (0.18, 0.24), p<0.001 
0.05 (0.02, 0.08), p<0.001 
0.03 (0.01, 0.06), p=0.019 

Folate 
B12 
Betaine 

-0.10 (-0.13, -0.08), p<0.001 
-0.10, (-0.13, -0.08), p<0.001 
-0.07 (-0.10, -0.04), p<0.001 

Backwards 
Stepwise 

338 0.610 Cysteine 
Glycine  
DMG  
Proline  
PLP  
Aspartate  

0.2 (0.18, 0.23), p<0.001 
0.06 (0.04, 0.09), p<0.001 
0.04 (0.01, 0.06), p=0.004 
0.04 (0.01, 0.07), p=0.009 
0.04 (0.00, 0.07), p=0.027 
0.03 (0.00, 0.06), p=0.046 

Folate 
B12  
Betaine  
B2  

-0.10 (-0.13, -0.08), p<0.001 
-0.10 (-0.12, -0.07), p<0.001 
-0.07 (-0.10, -0.04), p<0.001 
-0.05 (-0.07, -0.02), p<0.001 
 

Lasso 342 0.540 Cysteine  
Glycine  
PLP 
DMG  
Proline  
Glutamate  
Aspartate  
Isoleucine  
Serine  

0.18 
0.06 
0.04 
0.03 
0.03 
0.02 
0.02 
0.01 
0.01 

Folate  
B12  
Betaine  
B2  
Tyrosine  
Threonine  
Alanine  
Methionine  

-0.09 
-0.08 
-0.06 
-0.04 
-0.02 
-0.02 
-0.01 
-0.01 
 

Dry season 
 

(Feb-Apr) 

2-step 82 0.470 Cysteine  0.18 (0.13, 0.23), p<0.001 B12 
Betaine  

-0.08 (-0.13, -0.03), p=0.001 
-0.07 (-0.12, -0.03), p=0.003 

Backwards 
Stepwise 

81 0.624 Cysteine  
PLP 
Aspartate  
 

0.18 (0.13, 0.23), p<0.001 
0.05 (0.01, 0.10), p=0.021 
0.05 (0.00, 0.10), p=0.042 

Betaine  
Folate  
B12  
B2 
Threonine  

-0.08 (-0.13, -0.04), p<0.001 
-0.08 (-0.13, -0.02), p=0.008 
-0.07 (-0.12, -0.03), p=0.003 
-0.05 (-0.10, -0.01), p=0.013  
-0.04 (-0.08, 0.00), p=0.045 

Lasso 85 0.572 Cysteine  
PLP 
Proline  
Serine Glycine  

0.16 
0.07 
0.04 
0.03 

Betaine  
Folate  
B12  
Choline 

-0.06 
-0.06 
-0.06 
-0.04 
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Seasonal 
Model 

Statistical 
approach* 

N R2 Positive predictorsƗ 
(β, 95%CI, p value) 

Negative predictorsƗ 
(β, 95%CI, p value) 

Aspartate  
DMG  

0.02 
0.02 
0.01 

B2 
Threonine  

-0.03 
-0.03 

Rainy 
season 

 
(Jul-Oct) 

2-step 98 0.636 Cysteine  
 

0.23 (0.17, 0.29), p<0.001 B12  
Folate  
B2  

-0.09 (-0.14, -0.04), p<0.001 
-0.08 (-0.12, -0.03), p=0.001 
-0.06 (-0.11, -0.01), p=0.022 

Backwards 
stepwise 

98 0.700 Cysteine  
Valine  
Proline  
Aspartate  
 

0.24 (0.18, 0.29), p<0.001 
0.11 (0.03, 0.19), p=0.005 
0.07 (0.01, 0.13), p=0.028 
0.04, p=0.022 

Leucine  
B12  
Folate  
Alanine  
B2  

-0.10 (-0.19, -0.01), p=0.035 
-0.08, (-0.12, -0.04), p<0.001 
-0.07 (-0.11, -0.03), p=0.002 
-0.07 (-0.12, -0.01), p=0.028 
-0.05 (-0.10, 0.00), p=0.036 

Lasso 98 0.529 Cysteine  
Glutamate  
Proline  
Aspartate  
Valine  
 

0.18 
0.03 
0.02 
0.01 
0.01 

B12  
Folate  
B2  
Betaine  
Tyrosine  
Histidine  
Choline  

-0.06 
-0.06 
-0.04 
-0.02 
-0.02 
-0.01 
-0.01 

 

*Lasso model fitted to variables demonstrating the smallest Cp value. Note no confidence intervals are reported for Lasso models.  
 

ƗPredictors are adjusted for maternal age, BMI, gestational age and inflammation (AGP). Only variables with a final p<0.05 reported.  
 

ǂβ Coefficients represent the change in log homocysteine for a one SD increase in the log-transformed independent variable. 

 

Abbreviations: AGP, Alpha-1-acid glycoprotein; CI, confidence interval; DMG, dimethylglycine; PLP, pyridoxal 5’-phosphate
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Table 4: Nutritional biomarker independent predictors of homocysteine in the Indicator group dataset 

Seasonal Model No. 
observations 

No. 
women 

Overall R2* Positive predictorsƗ 
(βǂ, 95% CI, p value) 

Negative predictorsƗ 
(βǂ, 95% CI, p value) 

Combined 
seasons 

288 48 0.306 Cysteine  
DMG  

0.14 (0.11, 0.17), p<0.001 
0.08 (0.04, 0.12), p<0.001 

Folate 
Betaine  

-0.11 (-0.13, -0.08), p<0.001 
-0.05 (-0.08, -0.02), p=0.003 

Dry (Feb-Apr) 79 34 0.295 Cysteine  0.17 (0.12, 0.21), p<0.001 Folate  -0.15 (-0.22, -0.08), p<0.001 

Rainy (Jul-Oct) 63 28 0.549 Cysteine  0.16 (0.11, 0.22), p<0.001 Folate 
B12 
B2  

-0.13 (-0.18, -0.07), p<0.001 
-0.09 (-0.16, -0.02), p=0.009 
-0.09 (-0.17, -0.01), p=0.026 

 

*Two-step linear regression using random effects 
 

ƗPredictors are those variables retained in the multivariable model with p<0.05, adjusted for age. 
 

ǂβ Coefficients represent the change in log homocysteine for a one SD increase in the log-transformed independent variable. 

 

Abbreviations: CI, confidence interval; DMG, dimethylglycine 
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Figure 1: Summary of retained coefficients of multivariable linear regression models in three datasets, by season*.  

 

*Note: Coefficients represent change in log homocysteine 

for each SD increase in the log-transformed independent 

variable. Only variables with p<0.05 shown. Those inversely 

associated with homocysteine are shaded in green, and 

those positively associated are shaded in red.  

 

Abbreviations: DMG, dimethylglycine; MDEG1, MDEG main 

study 
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Discussion 

In order to assess which nutritional components we could consider for a supplement to reduce plasma 

homocysteine we analysed three different datasets using different linear regression approaches to 

see which nutritional biomarkers were consistently inversely associated with Hcy. This approach built 

up an overview of the most reliable predictors of homocysteine. We found that folate, B12, B2 and 

betaine were the most consistent negative predictors of Hcy.  

Negative predictors of homocysteine 

The findings that plasma folate, B12, B2 and betaine were inversely associated with Hcy are consistent 

with the literature (12–15). Supplementation with these components have been successful in previous 

trials with the aim of reducing homocysteine (6,16–19).  

Hcy can be metabolised via a process involving remethylation or through the transsulfuration 

pathway.  In the former, Hcy accepts a methyl group to form methionine (20), which can then in turn 

be condensed with ATP to form S-adenosyl methionine, a methyl donor involved in numerous 

transmethylation reactions.  The remethylation of Hcy to methionine uses two distinct pathways. The 

major one is the vitamin B12- dependent reaction involving folate metabolic pathways (21), chiefly 

the donation of a methyl group from N5-methyl tetrahydrofolate (‘methyl-THF’). The alternative 

pathway for the methylation of Hcy, predominantly used in the liver and kidneys, uses the methyl 

group from betaine, a product formed through the oxidation of choline (22,23). In the transsulfuration 

pathway Hcy is metabolised through its irreversible degradation to cystathionine and cysteine, 

requiring PLP (vitamin B6) (21).  

Dietary folates and folic acid therefore contribute to the removal of homocysteine via methyl-THF. 

They are first reduced to form tetrahydrofolate (THF), which is in turn is reduced to methylene-THF, 

then to methyl-THF. This is the form that donates its methyl group to Hcy using vitamin B12. In human 

plasma and the cytosol the predominant form of vitamin B12 is methylcobalamin (24). This is the form 

that is used as a coenzyme for methionine synthase, the enzyme responsible for adding the methyl 

group from 5-methyl-THF to Hcy to form methionine.  

The above metabolic descriptions explain why folate, betaine and B12 are required to metabolise Hcy 

and remove it from the system. In order to understand where B2 fits in we need to re-visit the step 

where dietary folates are converted to methylene-THF. B2 is required as a precursor to flavin 

mononucleotide (FMN), a reaction catalysed by riboflavin kinase. FMN is converted to flavin adenine 
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dinucleotide (FAD) by FAD synthase (25,26). FAD is a cofactor required by methylenetetrahydrofolate 

reductase (MTHFR) to reduce methylene-THF to methyl-THF (3).  

Threonine was retained as a negative predictor of Hcy in some models, as was alanine in the analyses 

excluding cysteine and DMG. The relationship between plasma Hcy and amino acids is not well 

documented in the literature. However, in a study investigating plasma metabolites in healthy controls 

no association between Hcy and amino acids was found (27). Without further justification from the 

literature it is not possible to say whether these are genuine or chance findings of associations, 

especially as amino acids were only measured in one of our datasets.    

 

Positive predictors of homocysteine 

 

Cysteine was the strongest positive predictor of Hcy, which was to be expected given that Hcy can be 

converted into cystathionine by Cystathionine β-synthase (CBS) and then onto cysteine by 

Cystathionine γ lyase (21). The positive association of DMG with homocysteine can be explained by 

the reaction catalysed by betaine-homocysteine methyltransferase (BHMT), which methylates Hcy 

using a methyl group from betaine and in the process forms DMG (28). Thus describing cysteine and 

DMG as ‘positive predictors’ can be misleading since they are by-products of Hcy catabolism. 

There were no strong associations between methionine and Hcy, most likely explained by its position 

on a circular metabolic pathway and therefore it be viewed as both a substrate for Hcy production 

and as a by-product of Hcy catabolism. It can be seen as a substrate for Hcy production since it is 

condensed with ATP to form SAM, which is then demethylated to SAH, which in turn is hydrolysed to 

form Hcy and adenosine (21,29).  We can also view methionine as the product resulting from Hcy 

catabolism through Hcy remethylation using the methyl group from 5-methyl-THF or betaine. Linear 

regression models are not designed to model such circular pathways and therefore it is perhaps not 

surprising that no clear associations between methionine and Hcy can be identified. We might only 

expect homocysteine to significantly rise in response to a methionine load (e.g. straight after a protein-

rich meal), whereas the samples in these datasets are fasted blood samples.  

Given that choline is oxidised to betaine (30), and that in our datasets betaine is strongly inversely 

associated with Hcy, we had also expected to see an inverse association between choline and 

homocysteine. Whilst this was the case in the MDEG-2 dataset, in the MDEG main study choline had 

a positive association with Hcy. Despite seeming counter intuitive, this positive association has been 

found previously in pregnant women (12). Molloy et al. (2005) hypothesise that increased fetal 

requirements for choline during pregnancy upregulates choline production via phosphatidylcholine 
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(PC) synthesis (12). To produce one molecule of PC using the PEMT pathway three methyl groups from 

SAM are required. Once SAM donates its methyl group it forms SAH, which is hydrolysed to Hcy (31), 

thereby increasing Hcy concentrations.  It is therefore unlikely that choline is associated with increased 

Hcy in a causal relationship per se, but that the association is due to the physiological adaptation in 

pregnancy to increased endogenous production of choline. This remains speculative since we cannot 

distinguish between dietary and endogenous sources of choline in our plasma samples, nor was the 

direction of the association between choline and Hcy consistent within our datasets. 

Vitamin B6 (in the active form of PLP) is required to reduce THF to methylene-THF, and is also a 

cofactor in the transsulfuration pathway converting homocysteine to cysteine (21). If PLP was to be 

retained in the models at all we would have expected it to be as a negative predictor, considering its 

role in pathways responsible for Hcy’s remethylation and transsulfuration. Indeed, B6 has been 

inversely associated with Hcy in previous studies (14,32,33). However, there are also several studies 

that show that PLP has no effect on fasting Hcy levels (13,34,35). It is more likely that the effect of PLP 

will be seen in reducing Hcy after a methionine load (21). It is biologically very unlikely that PLP would 

cause an increase in plasma Hcy, and its retention in some of the models as a positive predictor is not 

easily explained.  

The positive association between glycine and Hcy could be explained by the reaction catalysed by 

glycine N-methyltransferase (GNMT). In this reaction glycine accepts a methyl group from SAM to 

form SAH and sarcosine. This reaction occurs especially when SAM concentrations are high (19). The 

production of SAH from this reaction would therefore contribute to higher Hcy through the hydrolysis 

of SAH to Hcy. Surprisingly, serine was not retained in many models at all, and where it was retained 

the effect size was very small. Given that serine is used in the transsulfuration pathway to catabolise 

Hcy, and also used as a 1-carbon donor at the stage of converting THF to methylene-THF through the 

action of Serine Hydroxymethyltransferase and PLP (36), we might have expected it to have an inverse 

association with Hcy.  

The unexplained variability in plasma Hcy could perhaps be partially explained by the effect of SNPs in 

enzymes involved in one-carbon metabolism (e.g. MTHFR, CBS) on homocysteine levels. The notion 

that relevant SNPs influence plasma Hcy levels has been well documented in other populations (37–

43). However, the effect of these genetic variants on total plasma Hcy variability is likely to be less 

significant than the nutritional biomarker predictors, with the former often explaining less than 6% of 

total Hcy variability (37,42). There are also several other potential predictors of Hcy which we did not 

measure (e.g. fat-free mass, renal function, estradiol and creatinine concentrations, caffeine 

consumption, smoking, alcohol intake etc.(14,35)). The overall aim of these analyses was to identify 



18 
 

nutritional inputs that could be modified through a supplement, rather than an exercise in identifying 

all potential predictors of Hcy. The high proportion of Hcy variability explained by the profile of 

nutritional predictors we considered gave us confidence that a nutritional approach to modifying Hcy 

has promising potential.  

Limitations 

All linear regression approaches have their own set of limitations in the way they select and report the 

effect of a sub-set of explanatory variables (44–47). The potential differences that the type of linear 

regression approach can make to variable selection is part of the reason we chose to compare three 

different approaches. In a traditional research study on predictors of homocysteine this would clearly 

be open to criticisms of multiple testing and an incoherent statistical approach. However, for a 

supplement design aim it was useful to assess to what extent similar trends emerged across multiple 

datasets and linear regression approaches that could help identify consistent negative predictors of 

Hcy.  

The datasets we investigated carry the limitations of utilising cross-sectional plasma information. 

Whilst useful for identifying predictors of Hcy they cannot go much further in guiding the doses of 

ingredients to include in a supplement, nor what the expected effect of a supplement might be on 

plasma Hcy. To achieve this would require the integration of dietary intake data and kinetic data that 

could be used in more formal pharmacodynamics approaches, which go beyond the scope of this 

study. A plasma sample taken at one point in time can provide clues as to what some of the underlying 

determinants of plasma Hcy are, but without further clinical tests it can be difficult to disentangle the 

components. For example, a high Hcy concentration could be due to increased transmethylation, 

decreased transsulfuration, decreased remethylation, decreased uptake of Hcy by the kidney, genetic 

defects in key enzymes, or a combination of these factors (21,29,48).  Thus the utility of these analyses 

is constrained to selection of potential ingredients to take forwards to the supplement design stage. 

The outputs of this analysis may therefore be seen as more qualitative rather than quantitative, but 

still help to design a supplement that is better tailored to the West Kiang population rather than rely 

solely on a generic, commercially available supplement.   
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Conclusion 

In the context of West Kiang, the four nutritional biomarkers consistently inversely associated with 

plasma Hcy were betaine, B12, B2 and folate. These were consistent with the literature. We had 

expected vitamin B6 and choline to also be inversely associated with Hcy, but since this was not 

supported by our data we dropped them from the list of potential supplement ingredients. We 

therefore took betaine, B12, B2 and folate forwards into the supplement design stage.  
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