Supporting Information for
Opportunities and Challenges for Machine Learning in Materials Science

Dane Morgan and Ryan Jacobs

Department of Materials Science and Engineering
University of Wisconsin-Madison, Madison, WI, 53706
ddmorgan@wisc.edu, rjacobs3@wisc.edu

[bookmark: _Ref14817779][bookmark: _Toc15593452]Recent reviews of ML in MS&E
Given the explosion of interest and advancement of machine learning (ML) as a whole and ML in Materials Science and Engineering (MS&E) in particular, we note here that numerous reviews, progress reports, perspectives, and tutorials covering various aspects of the application of ML in MS&E have been written in just the past few years. Here we provide a list as a resource for interested readers. Note that the reviews in this table are listed by year of publication, beginning with the earliest. A version of this list is also provided on Figshare (see Data Availability in Sec. 7 in the main text for link), which version can be continually updated in the future.

	Author
	Publication Year
	Reference
	Title

	Rajan
	2015
	(1)
	Materials Informatics: The Materials “Gene” and Big Data

	Broderick and Rajan
	2015
	(2)
	Informatics derived materials databases for multifunctional properties

	Mueller et al.
	2016
	(3)
	Machine learning in materials science: Recent progress and emerging applications

	Jain et al.
	2016
	(4)
	New opportunities for materials informatics: Resources and data mining techniques for uncovering hidden relationships

	Hill et al.
	2016
	(5)
	Materials science with large-scale data and informatics: Unlocking new opportunities

	Agrawal and Choudhary
	2016
	(6)
	Perspective: Materials informatics and big data: Realization of the “fourth paradigm” of science in materials science

	Audus and de Pablo
	2017
	(7)
	Polymer Informatics: Opportunities and Challenges

	Voyles
	2017
	(8)
	Informatics and data science in materials microscopy

	Liu et al.
	2017
	(9)
	Materials discovery and design using machine learning

	Ramprasad et al.
	2017
	(10)
	Machine Learning and Materials Informatics: Recent Applications and Prospects

	Ward and Wolverton
	2017
	(11)
	Atomistic calculations and materials informatics : A review

	Meredig
	2017
	(12)
	Industrial materials informatics: Analyzing large-scale data to solve applied problems in R&D, manufacturing, and supply chain

	Rupp, von Lilienfeld and Burke
	2018
	(13)
	Guest Editorial: Special Topic on Data-Enabled Theoretical Chemistry

	Correa-Baena et al.
	2018
	(14)
	Accelerating Materials Development via Automation , Machine Learning , and High-Performance Computing

	Dimiduk et al.
	2018
	(15)
	Perspectives on the Impact of Machine Learning , Deep Learning , and Artificial Intelligence on Materials , Processes , and Structures Engineering

	Tabor et al.
	2018
	(16)
	Accelerating the discovery of materials for clean energy in the era of smart automation

	Butler et al.
	2018
	(17)
	Machine learning for molecular and materials science

	Gubernatis and Lookman
	2018
	(18)
	Machine learning in materials design and discovery: Examples from the present and suggestions for the future

	Ye et al.
	2018
	(19)
	Harnessing the Materials Project for machine-learning and accelerated discovery

	Seko et al.
	2018
	(20)
	Progress in nanoinformatics and informational materials science

	Senderowitz and Tropsha
	2018
	(21)
	Materials Informatics

	Nash et al.
	2018
	(22)
	A review of deep learning in the study of materials degradation

	Schleder et al.
	2019
	(23)
	From DFT to machine learning: recent approaches to materials science–a review

	Wan et al.
	2019
	(24)
	Materials Discovery and Properties Prediction in Thermal Transport via Materials Informatics: A Mini Review

	Rickman et al.
	2019
	(25)
	Materials informatics: From the atomic-level to the continuum

	Balachandran
	2019
	(26)
	Machine learning guided design of functional materials with targeted properties

	Gomes et al.
	2019
	(27)
	Artificial intelligence for materials discovery

	Ramakrishna, et al.
	2019
	(28)
	Materials informatics

	Agrawal and Choudhary
	2019
	(29)
	Deep materials informatics: Applications of deep learning in materials science

	Himanen et al.
	2019
	(30)
	Data-driven materials science: status, challenges and perspectives

	Reyes and Maruyama
	2019
	(31)
	The machine learning revolution in materials?

	Ong
	2019
	(32)
	Accelerating materials science with high-throughput computations and machine learning

	Venkatasubrmanian
	2019
	(33)
	The promise of artificial intelligence in chemical engineering: Is it here, finally?

	Aggour et al.
	2019
	(34)
	Artificial intelligence/machine learning in manufacturing and inspection: A GE perspective

	Schmidt et al.
	2019
	(35)
	Recent advances and applications of machine learning in solid-state materials science

	Arroyave and McDowell
	2019
	(36)
	Systems Approaches to Materials Design: Past, Present, and Future

	Peerless, et al.
	2019
	(37)
	Soft Matter Informatics: Current Progress and Challenges

	Gu, et al.
	2019
	(38)
	Machine learning for renewable energy materials

	Chen and Gu
	2019
	(39)
	Machine learning for composite materials

	Boyce and Uchic
	2019
	(40)
	Progress toward autonomous experimental systems for alloy development

	Barnard, et al.
	2019
	(41)
	Nanoinformatics, and the big challenges for the science of small things

[bookmark: _Toc13817123][bookmark: _Ref14817224][bookmark: _Toc15593453]Software tools to enable and enhance ML in MS&E
Recently, there has been intense development of open source software packages in ML, and more specifically those aimed at streamlining and accelerating the adoption of materials informatics research. Software tools, especially given the rapidly evolving field of ML and its application to MS&E more specifically, are becoming increasingly important in order to maintain community best practices and ease-of-use, especially for users new to the field.(5, 15, 42) An extensive list of software packages are listed in this section, along with a brief explanation on the types of ML-related analysis enabled by each package. We note that this list is not comprehensive and new packages appear frequently, but we believe the list should be useful for those trying to make sure they are aware of available tools. Overall, the type of software package may be categorized into one of eight groups, where group 1 denotes are ML environments with many packages pre-installed, groups 2 and 3 denote general (multidisciplinary) software and the remaining groups denote software that is tied more specifically to ML problems in MS&E.

(1) ML-exploration and hosting environments:
· Google Colab: Free cloud based free Jupyter notebook environment with many ML packages preinstalled and free computer resources available.(43)
· NVIDIA NGC: Portal for a wide-range of free ML software prepared in containers for rapid GPU deployment.(44)
· Nanohub: A science and engineering API with many community-contributed resources, including ML-centric tools.(45)
· DLHub: Online center for hosting, sharing, and publication of data and ML models through a user-friendly interface.(46)

(2) Paid commercial ML-centric software services:
· Datarobot: Enterprise ML software enabling easy automation of entire ML analysis pipeline.(47)
· Amazon Sagemaker: Part of Amazon Web Services, Amazon’s Sagemaker provides enterprise software to quickly build, train, and deploy ML models.(48)
· Microsoft Azure: The machine learning studio within Microsoft Azure contains a fully managed cloud service providing enterprise machine learning software to quickly build, train, and deploy ML models.(49)
· IBM Watson: Enterprise ML software web API.(50, 51)

(3) Open source software enabling the use of ML algorithms:
· Scikit-learn: A Python package with a wide array of algorithms encompassing every portion of the ML analysis pipeline.(52)
· Waikato Environment for Knowledge Analysis (WEKA): A Java package with a wide array of algorithms encompassing every portion of the ML analysis pipeline.(53)
· R: A general data science and machine learning package.(54)
· TensorFlow: Designed to enable custom, complex, highly flexible neural network models.(55)
· Keras: A user-friendly front end API for TensorFlow.(56)
· PyTorch: A package enabling more widespread use of deep learning, particularly for image analysis.(57)
· ChainerCV: A library for deep learning with a focus on computer vision.(58)
· DeepChem: A library for deep learning with a focus on analysis of chemical characteristics of molecules.(59)

(4) Software consisting of trained models enabling easy prediction of materials properties:
· AFLOW-ML: Web-hosted ML models with drag-and-drop prediction of numerous properties.(60)
· ElemNet: A deep learning neural network trained using only elemental compositions enabling the prediction of material formation energies.(61)
· JARVIS-ML: Web-hosted ML models with drag-and-drop prediction of numerous properties.(62)
· PhysNet: A deep neural network enabling predictions of energies, forces and dipole moments for small molecules.(63)

(5) Software enabling improved feature engineering for more robust ML model generation:
· Materials Agnostic Platform for Informatics and Exploration (MAGPIE): methods of feature generation using elemental properties.(11)
· Materials Simulation Toolkit for Machine Learning (MAST-ML): automation of ML pipeline and codifying of best practices of ML in MS&E, including data cleaning, feature engineering, model fitting, cross-validation and assessment of many statistics.(64)
· matminer: codified set of useful data visualization and structure- and chemistry-based feature generation schemes.(65)
· DScribe: codified set of structure- and chemistry-based feature generation schemes.(66)

(6) Software streamlining ML analysis methods and the ML pipeline
· LoLo: Automated ML model fitting and data analysis, estimates of errors based on random forest models.(67)
· matminer: (see above)
· MAST-ML: (see above)
· MATcalo: materials knowledge-based assistive software to aid researchers in MS&E using ML to conduct improved materials research.(68)
· MatErials Graph Network (MEGnet): automated construction and evaluation of graph-based convolutional neural networks for molecules and crystals.(69)
· SchNet: automated construction and evaluation of deep tensor neural networks for prediction of molecule and crystal properties.(70)
· Veidt: streamlined construction of deep learning neural networks for materials science.(71)
· Materials Knowledge Systems in Python project (pyMKS): ML analysis of structure-property-processing relationships with a focus on microstructure characterization.(72)
· Tree-based Pipeline Optimization Tool (TPOT): automation of ML pipeline, particularly choice of best ML model.(73)

(7) Software facilitating the creation of interatomic potentials
· Atomic Energy Network Package (aenet): fitting neural network-based models for interatomic potentials.(74)
· Atomistic Machine Learning Package (AMP): construction of MLPs using a variety of atomic structure descriptors and machine learning models.(75)
· SimpleNN: fitting neural-network-based models for interatomic potentials.(76)
· PES-Learn: automated production of neural-network or Gaussian process models for constructing interatomic potentials.(77)
· DeePMD-kit: construction of MLPs using deep learning neural networks.(78)
· Convolutional Neural Networks for Atomistic Systems (CNNAS): creation of deep convolutional neural networks for interatomic potentials.(79)
· TensorMol-0.1: creation of interatomic potentials consisting of trained neural network combined with screened long-range electrostatic and van der Waals physics.(80)
· SchNetPack: extends SchNet and aids in creation of machine learning potentials using deep learning neural networks (using PyTorch).(81)
· sGDML: python package for force-field generation using the symmetric gradient domain machine learning (sGDML) model.(82)

(8) Software facilitating the use of natural language processing
· word2vec: NLP methods to efficiently construct word embeddings.(83)
· Global Vector (GloVe): NLP software that combines global matrix factorization and local context window methods.(84)
· Character to Sentence Convolutional Neural Network (CharSCNN): Tools to conduct sentiment analysis using deep convolutional neural networks.(85)
[bookmark: _Toc13817113][bookmark: _Ref15680951][bookmark: _Toc16204721]Journals publishing ML in MS&E studies
As ML in MS&E has greatly expanded in scope in the past several years, there are many journals that have or might be expected to publish ML-related studies in MS&E. In particular, some journals seem particularly well represented in this area and additionally appear interested in publishing papers with a relatively more methodological focus that might contain limited new materials insights. These journals include, but are not necessarily limited to (in alphabetical order): Computational Materials Science (Elsevier), Computer Physics Communications (Elsevier), Integrating Materials and Manufacturing Innovation (Springer), Journal of Chemical Theory and Computation (ACS), Machine Learning: Science and Technology (IOP), Materials Discovery (Elsevier), Materials Today Advances (Elsevier), Molecular Systems Design & Engineering (RSC), MRS Communications (MRS), and npj Computational Materials (Nature, open source). There are also a number of more chemistry-oriented journals that publish papers in ML and the areas of QSAR/QSPR, e.g., Chemometrics and Intelligent Laboratory Systems, Journal of Computational Chemistry, Journal of Chemical Information and Modeling, Journal of Computer-Aided Molecular Design, and Molecular Informatics. For papers where the materials insights are significant any materials journal could, of course, be appropriate.
[bookmark: _Ref16459927]Types of Machine Learning Models
This section primarily describes some standard ML models (with a focus on supervised regression) widely used in MS&E with a goal of highlighting the most salient features for an MS&E researcher. The discussion touches on basic aspects which are covered in many textbooks and general reviews, e.g., Refs. (3, 86–88), and we therefore do not provide additional references unless addressing a specific feature outside the scope of these broad ML texts. We will use notation similar to the main text in that we assume our data has the original form (X,Y), where X is a matrix of features where each row corresponds to a system to be predicted and each element in that row is a value describing some feature of the system, and Y is a vector of target properties to be modeled. The relationship between X and Y can be written as , where is a noise term (with mean zero and variance) and we seek a model for from ML. We write this model as and its predictions as .
[bookmark: _Toc16204722]Multivariant Linear Regression (MVLR)
MVLR assumes that the target Y is a linear function of the features X. Note that these are generally used with some kind of regularization which penalizes large variations in the fitted coefficients, either the L2 or L1 norm, an approach known as ridge regression. These methods are notable for being extremely fast, deterministic, and very easy to interpret (e.g., the coefficient of each term gives its effect, and magnitudes effectively rank the importance of each variable). MVLR is also simple enough that an enormous body of statistical data on the fit can be determined essentially analytically. For example, uncertainties in all fitted coefficients and their covariance, and uncertainties in any predictions, can be readily obtained, and these can include the influence of uncertainties in the data being fit. Accurate fitting with MVLR does require that the Y values be an approximately linear function of the features X, but since X can include arbitrary functions of underlying descriptors (e.g., polynomials, logarithms, etc.) MVLR does not require linearity with an initial set of features. For a given set of features MVLR does not have any hyperparameters (one is introduced by regularization) although the feature engineering to introduce nonlinearity can effectively add many adjustable parameters. Because of the powerful statistical tools and extremely rapid and robust fitting enabled by MLVR, it is often desirable to consider such models first as they provide a useful baseline. However, materials properties are generally not expected to behave as a linear function of simple features or simple closed form functions of features, which means that MLVR models tend to either poorly represent the data or overfit it, leading to inaccurate estimates of values and/or large estimated uncertainties in predictions, and serious errors for data even slightly different from the data set. For these reasons MLVR is typically not the method of choice for most MS&E ML problems.
[bookmark: _Ref15548069][bookmark: _Toc16204723]Kernel Methods and Kernel Ridge Regression (KRR)
Kernels are an inner product between feature vectors, which effectively define a distance between any two data points in terms of their feature vectors. This distance supports a nonlinear modeling of the data and can be used as basic input to a wide variety of ML methods, including support vector machines, principal component analysis, and spectral clustering. One of the models widely used for simple regression is KRR, which effectively predicts a new target output () from the new input features X* in terms of a linear combination of training data features Xi weighted by their kernel-derived distances from X*, and includes ridge regulation of the coefficients. This method is fairly fast to fit and often provides a good nonlinear model of . The kernel typically introduces at least one hyperparameter. For example, the commonly used Gaussian kernel has a length scale that sets the range over which the distance metric decays, a value that must be similar to length scales within the problem feature set to obtain a good model. Because all kernels go to zero for widely separated points, KRR predicts a value of zero for all points very far from the training data (this can be shifted to predict the mean of Y by normalizing Y to mean of zero before fitting). It should be noted that even with just two hyperparameters for kernel length scale and regularization, one can get strong coupling between them and get families of models where similar CV performance is obtained for a wide subspace of values where the two hyperparameters are linearly correlated.(89)
[bookmark: _Ref15493959][bookmark: _Toc16204724]Gaussian Process Regression (GPR)
GPR is a Bayesian approach that assumes a prior multivariate normal distribution for Y values with a covariance between Yi and Yj given by the distance between feature vectors Xi and Xj, and then modifies this distribution using the training data and Bayes theorem.(90) The distance is determined by a kernel, described in Sec. 3.4.2, making its predictions similar to KRR. However, GPR predicts a distribution of for any new X*, and the first and second moment of the distribution can be used to estimate the predicted value and its variance (see Sec. 4.6 of the main text for some assessment of GPR predicted standard deviations).
[bookmark: _Ref15494082][bookmark: _Toc16204725]Random Forest Decision Trees (RFDTs)
RFDTs are often the preferred method to for ML modeling for simple regression problems as they are highly accurate, very fast to train and evaluate, effectively perform their own feature selection and yield features ordered by importance, and provide intrinsic error estimates on predictions. A single DT is created by iterative splitting the data on features (nodes) so as to maximize some score metric (e.g., entropy reduction) until reaching a the end of the tree (leaf), and a tree classifies any input into a leaf. Mean values or linear fits to data within each leaf provide regression estimates. Single trees are prone to overfitting, a problem solved by the random forest approach, which creates an ensemble of DTs through training many DTs on partial samplings of the data (using bootstrap aggregating, or bagging) while simultaneously altering the available split criteria at nodes.(91) RFTDs therefore predict a distribution of values, one from each DT, for any new data point, and the first and second moments of this distribution can be used to predict new values and their variance. RFDTs have a number of hyperparameters (e.g. maximum depth of tree) but sensible defaults can often be chosen such that results depend only weakly on the hyperparameters. The accuracy of RFDTs often approaches that of a highly trained NNs but with a fraction of the time taken in training and hyperparameter optimization. As an ensemble method, RFDTs produce a distribution of predictions, and the first and second moment of the distribution can be used to estimate the predicted value and its variance (see Sec. 3.7 for some assessment of GPR predicted standard deviations).

[bookmark: _Ref16110996][bookmark: _Toc16204726]Basic Neural Networks (NNs)
NNs are in many ways the most powerful and versatile ML tools. A node takes input data, weights it, and then passes that weight through an activation function, yielding an output value. A layer has many nodes, and multiple layers can be connected. We use “basic” neural networks to refer ones with up to just a few layers that have no special processing to enable effective training of many layers or feature reduction through convolution or pooling. Networks with these additional features are called deep NNs and discussed in Sec. 3.4.5. Basic NNs have many adjustable weights and are typically trained by simple steepest descent optimizations, which typically yield different final weights for different weight initializations. This is in contrast to the MVLR, KRR, and GPR discussed above, which are essentially uniquely determined in a fit. NNs also have a large space of hyperparameters, like number of nodes and layers and activation function type, which can significantly impact their results. For these reasons, training an optimized robust NN is generally significantly more challenging and time consuming than any of the above methods and often yields only modest improvements. These methods are therefore typically tried after those discussed above if needed for standard MS&E regression problems.
[bookmark: _Ref15492701][bookmark: _Toc16204727]Deep Neural Networks (DNNs) and Deep Learning
DNNs represent a significant step in ML that we briefly summarize here.(29, 88) DNNs can be most simply thought of as a NN with many layers (hence the terminology “deep”), but to make the models effective and trainable new types of layers (e.g., convolution, pooling) and optimizations (e.g., residual fitting(92)) are used. DNNs have a number of distinct features compared to traditional methods which we briefly summarize here. Below we will frequently compare to the human brain as this makes a helpful analogy, but we do not mean to imply that these DNNs are actually working by mechanisms equivalent to our brain or make any it suggestions that they are human in some meaningful way.
1. Dimensional reduction and feature map development: Deep NNs typically involve stages that reduce the complexity of the input data, e.g., through convolutions or pooling. These allow extremely large and complex initial feature sets to be used, including ones where related data (e.g., nearby image pixels or connected atom and bond properties) are not co-located in the feature vector, and can effectively extract a reduced set of essential features without human intervention. Compared to human feature generation this process can be much faster, much easier to apply to new situations, and more accurate. Just as your brain can identify key features of a picture of a cat without defining them explicitly, so can a DNN extract the features without having to write them down in advance.
2. Highly flexible weights: Deep NNs can easily have millions of adjustable weights which gives and incredibly rich model for connecting inputs and outputs. This richness means that model fits are not unique (i.e., two users fitting to the same data with the same tools will not get the same weights). However, it also means that weights can be tuned to perform many tasks, e.g., to identify multiple properties from an input molecular structure. These weights also mean DNNs require extensive training, often done on GPUs and taking multiple hours for typical materials problems (e.g., with hundreds to thousands of data points or images).
3. Scalable fitting: The weight fitting typically uses backpropagation to push weights in the direction that minimizes a loss function (e.g. RMSE). However, such pushes can be done sequentially, allowing training on subsets of the data, generally called batches. In this way one can easily train on almost any size data by simply breaking it up into manageable batches. Our brains work similarly, learning more about how to identify a cat with each cat we see, but not needing to see all cats at once.
4. Transfer learning: The weights contain such a rich map of key features that they can often be very effectively transferred from one problem to another, a method called transfer learning. Transfer learning can reduce the size of data set needed for training in images from tens of thousands to just hundreds.
5. Data hungry: DNNs typically require large data sets to fit the large sets of weights, although transfer learning can greatly reduce these requirements.
6. Flexible architecture: DNNs are highly flexible and come in many forms. Some are just different types of layers in different orders with different connections between them, e.g., varying numbers of convolution layers or connection their output across many layers to avoid fitting problems. However, many DNNs have very profound changes compared to a simple multilayered NN. A common approach is to have multiple NN active in a single method. Faster-RCNN uses this approach identify objects in images, having one NN trained to propose bounding box regions for objects and another to fit the object location. Other important architectures distinct from simple layered networks include Generative Adversarial Networks (GANs) and recurrent neural networks (in particular, long-short term memory NNs), where the latter are extremely successful for data that comes in a series, e.g., time series or games or text.
7. Generative ability: An exciting area of DNNs for materials are generative models, which learn to propose new members of a distribution of samples and can therefore actually propose new materials no human has considered. A recent notable development in this area are Generative Adversarial Networks (GANs). GANs contain two NNs, one that proposes candidates (generator) and one which screens for real candidates (discriminator), and by training them together GANs find an optimal joint performance that can generate new examples of a class. These have been able to generate extremely realistic images of desired types as well new molecules with desired properties.(93)(94)
Methods for small datasets
Datasets in MS&E are often small, and techniques adapted to this type of data are particularly useful. a simple approach to obtain useful predictions from small datasets is to simplify the physics of the target quantity by subtracting a relevant reference, then fitting a model to this shifted target quantity.(95) A more complex but powerful approach is transfer learning, which uses results from ML on a different data set to inform the target modeling effort.(96) Transfer learning can be done by using ML to create improved features that might not be readily available, or predicting a useful reference to shift the target quantity. One can also train the same model on multiple data sets (either sequentially or simultaneously), an approach widely used in text mining and machine vision (see Sec. S4.6. In materials, pretrained DNNs have been used in a number of microstructure image processing tasks.(97)(98)
Some checks for model value against a naïve model reference
In any modeling exercise it is useful at the end to check against some simple baseline reference cases to be sure the model has value. Here are a few such tests that are recommended. Note that we follow the notation introduced in Sec. S4.
· Permuted data: We note a simple way to check if overfitting is playing a major role in the model is to permute the Y values randomly so that they have no physical connection with the X features (but still have identical properties in terms of sizes, distribution, etc.) and repeat the model development strategy (e.g., as done in Ref. (99)). One should obtain significantly worse performance than the unpermuted model and ideally RMSE/ 1 and R2 0.
· Dummy regressor/classifiers: Perhaps the simplest prediction model is to guess a simple value derived from the data (e.g., mean, median, constant, specific quantile). One’s model should do much better than this method on all basic metrics (e.g., RMSE, R2, etc.). Scikit learn(52) implements a number of dummy classifier and regression functions.
· Nearest neighbor: A simple model for predicting Y* from X* is to take the Yi value from the Xi that is closest to X*.(100) Closeness can be measured by a simple Euclidean distance or some more complex kernel. This type of model may actually work quite well in some cases and it is not necessarily a problem for a develop ML model if it has a similar performance in some aspects, but it is worth being aware how accurate one can be with such a simple approach so one does not use a much more complex model unnecessarily.
Comparison of computed residuals vs. model errors
[image:]
[bookmark: _Ref16202155][bookmark: _GoBack]Figure S1: Comparison of root mean square absolute value of the residuals versus the binned model error values for (A) GPR and (B) random forest tests. Both the x- and y-axes values are normalized by the dataset standard deviation, which is 0.4738 eV. The values are taken over leave out group tests on the same grouped datasets used in the analysis presented in the main text Sec. 4.6. The linear fits have intercepts that are forced to equal 0. In (B), the linear fit is done only on the blue data points, which have normalized binned RF model errors about 1.02 and lower.

References
1. 	Rajan K. 2015. Materials Informatics: The Materials “Gene” and Big Data. Annu. Rev. Mater. Res. 45(1):153–69
2. 	Broderick S, Rajan K. 2015. Informatics derived materials databases for multifunctional properties. Sci. Technol. Adv. Mater. 16(1):1–8
3. 	Mueller T, Kusne AG, Ramprasad R. 2016. Machine learning in materials science: Recent progress and emerging applications. Rev. Comput. Chem. 29:186–273
4. 	Jain A, Hautier G, Ong SP, Persson K. 2016. New opportunities for materials informatics: Resources and data mining techniques for uncovering hidden relationships. J. Mater. Res. 31(8):977–94
5. 	Hill J, Mulholland G, Persson K, Seshadri R, Wolverton C, Meredig B. 2016. Materials science with large-scale data and informatics: Unlocking new opportunities. MRS Bull. 41(5):399–409
6. 	Agrawal A, Choudhary A. 2016. Perspective: Materials informatics and big data: Realization of the “fourth paradigm” of science in materials science. APL Mater. 4(5):53208
7. 	Audus DJ, De Pablo JJ. 2017. Polymer Informatics: Opportunities and Challenges. ACS Macro Lett. 6(10):1078–82
8. 	Voyles PM. 2017. Informatics and data science in materials microscopy. Curr. Opin. Solid State Mater. Sci. 21(3):141–58
9. 	Liu Y, Zhao T, Ju W, Shi S, Shi S, Shi S. 2017. Materials discovery and design using machine learning. J. Mater. 3(3):159–77
10. 	Ramprasad R, Batra R, Pilania G, Mannodi-Kanakkithodi A, Kim C. 2017. Machine Learning and Materials Informatics: Recent Applications and Prospects. npj Comput. Mater. 3(54):1–13
11. 	Ward L, Wolverton C. 2017. Atomistic calculations and materials informatics : A review. Curr. Opin. Solid State Mater. Sci. 21(3):167–76
12. 	Meredig B. 2017. Industrial materials informatics: Analyzing large-scale data to solve applied problems in R&D, manufacturing, and supply chain. Curr. Opin. Solid State Mater. Sci. 21(3):159–66
13. 	Rupp M, Von Lilienfeld OA, Burke K. 2018. Guest Editorial: Special Topic on Data-Enabled Theoretical Chemistry. J. Chem. Phys. 148(24):241401
14. 	Correa-Baena J-P, Hippalgaonkar K, Duren J Van, Jaffer S, Chandrasekhar VR, et al. 2018. Accelerating Materials Development via Automation, Machine Learning, and High-Performance Computing. Joule. 2(8):1410–20
15. 	Dimiduk DM, Holm EA, Niezgoda SR. 2018. Perspectives on the Impact of Machine Learning, Deep Learning, and Artificial Intelligence on Materials, Processes, and Structures Engineering. Integr. Mater. Manuf. Innov. 7:157–72
16. 	Tabor DP, Roch LM, Saikin SK, Kreisbeck C, Sheberla D, et al. 2018. Accelerating the discovery of materials for clean energy in the era of smart automation. Nat. Rev. Mater. 3(5):5–20
17. 	Butler KT, Davies DW, Cartwright H, Isayev O, Walsh A. 2018. Machine learning for molecular and materials science. Nature. 559(7715):547–55
18. 	Gubernatis JE, Lookman T. 2018. Machine learning in materials design and discovery: Examples from the present and suggestions for the future. Phys. Rev. Mater. 2(12):1–15
19. 	Ye W, Chen C, Dwaraknath S, Jain A, Ong SP, Persson KA. 2018. Harnessing the Materials Project for machine-learning and accelerated discovery. MRS Bull. 43(9):664–69
20. 	Seko A, Toyoura K, Muto S, Mizoguchi T, Broderick S. 2018. Progress in nanoinformatics and informational materials science. MRS Bull. 43(9):690–95
21. 	Senderowitz H, Tropsha A. 2018. Materials informatics. J. Chem. Inf. Model. 58(12):2377–79
22. 	Nash W, Drummond T, Birbilis N. 2018. A review of deep learning in the study of materials degradation. npj Mater. Degrad. 2(1):1–12
23. 	Schleder GR, Padilha ACM, Acosta CM, Costa M, Fazzio A. 2019. From DFT to machine learning: recent approaches to materials science–a review. J. Phys. Mater. 2(3):32001
24. 	Wan X, Feng W, Wang Y, Wang H, Zhang X, et al. 2019. Materials Discovery and Properties Prediction in Thermal Transport via Materials Informatics: A Mini Review. Nano Lett. 19(6):3387–95
25. 	Rickman JM, Lookman T, Kalinin S V. 2019. Materials informatics: From the atomic-level to the continuum. Acta Mater. 168:473–510
26. 	Balachandran P V. 2019. Machine learning guided design of functional materials with targeted properties. Comput. Mater. Sci. 164:82–90
27. 	Gomes CP, Selman B, Gregoire JM. 2019. Artificial intelligence for materials discovery. MRS Bull. 44(7):538–44
28. 	Ramakrishna S, Zhang TY, Lu WC, Qian Q, Low JSC, et al. 2019. Materials informatics. J. Intell. Manuf. 30(6):1–20
29. 	Agrawal A, Choudhary A. 2019. Deep materials informatics: Applications of deep learning in materials science. MRS Commun., pp. 1–14
30. 	Himanen L, Geurts A, Foster AS, Rinke P. 2019. Data-driven materials science: status, challenges and perspectives. arXiv:1907.05644, pp. 1–25
31. 	Reyes KG, Maruyama B. 2019. The machine learning revolution in materials? MRS Bull. 44(7):530–37
32. 	Ong SP. 2019. Accelerating materials science with high-throughput computations and machine learning. Comput. Mater. Sci. 161:143–50
33. 	Venkatasubramanian V. 2019. The promise of artificial intelligence in chemical engineering: Is it here, finally? AIChE J. 65(2):466–78
34. 	Aggour KS, Gupta VK, Ruscitto D, Ajdelsztajn L, Bian X, et al. 2019. Artificial intelligence/machine learning in manufacturing and inspection: A GE perspective. MRS Bull. 44(7):545–58
35. 	Schmidt J, Marques MRG, Botti S, Marques MAL. 2019. Recent advances and applications of machine learning in solid-state materials science. npj Comput. Mater. 5(83):1–46
36. 	Arróyave R, McDowell DL. 2019. Systems Approaches to Materials Design: Past, Present, and Future. Annu. Rev. Mater. Res. 49(1):103–26
37. 	Peerless JS, Milliken NJB, Oweida TJ, Manning MD, Yingling YG. 2019. Soft Matter Informatics: Current Progress and Challenges. Adv. Theory Simulations. 2(1):1800129
38. 	Gu GH, Noh J, Kim I, Jung Y. 2019. Machine learning for renewable energy materials. J. Mater. Chem. A. 7(29):17096–117
39. 	Chen CT, Gu GX. 2019. Machine learning for composite materials. MRS Commun., pp. 556–66
40. 	Boyce BL, Uchic MD. 2019. Progress toward autonomous experimental systems for alloy development. MRS Bull. 44(4):273–80
41. 	Barnard AS, Motevalli B, Parker AJ, Fischer JM, Feigl CA, Opletal G. 2019. Nanoinformatics, and the big challenges for the science of small things. Nanoscale
42. 	Alberi K, Nardelli MB, Zakutayev A, Mitas L, Curtarolo S, et al. 2019. The 2019 materials by design roadmap. J. Phys. D. Appl. Phys. 52(1):13001
43. 	Google Colab. https://colab.research.google.com
44. 	NVIDIA NGC
45. 	NanoHub. https://nanohub.org/
46. 	Chard R, Li Z, Chard K, Ward L, Babuji Y, et al. 2018. DLHub : Model and Data Serving for Science. arXiv:1811.11213
47. 	DataRobot. https://www.datarobot.com/
48. 	Amazon Sagemaker. https://aws.amazon.com/sagemaker/
49. 	Microsoft Azure. https://azure.microsoft.com/en-us/services/machine-learning-studio/
50. 	Ferrucci D, Brown E, Chu-carroll J, Fan J, Gondek D, et al. 2010. Building Watson: An Overview of the DeepQA Project. AI Mag. 31(3):59–79
51. 	IBM Watson. https://www.ibm.com/cloud/machine-learning
52. 	Pedregosa F, Varoquaux G. 2011. Scikit-learn: Machine learning in Python, Vol. 12. 2825-2830 pp.
53. 	Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH. 2009. The WEKA Data Mining Software: An Update. ACM SIGKDD Explor. Newletter. 11(1):
54. 	The R Project for Statistical Computing. https://www.r-project.org/
55. 	Abadi M, Barham P, Chen J, Chen Z, Davis A, et al. 2016. TensorFlow: A System for Large-Scale Machine Learning
56. 	Chollet F. 2015. Keras. https://github.com/keras-team/keras
57. 	Paszke A, Gross S, Chintala S, Chanan G, Yang E, et al. 2017. Automatic differentiation in PyTorch. 31st Conf. Neural Inf. Process. Syst.
58. 	Niitani Y, Ogawa T, Saito S, Saito M. 2017. ChainerCV: a Library for Deep Learning in Computer Vision. Proc. 25th ACM Int. Conf. Multimed., pp. 2–5
59. 	DeepChem. https://deepchem.io/
60. 	Tropsha A, Toher C, Carrete J, Gossett E, Oses C, et al. 2018. AFLOW-ML: A RESTful API for machine-learning predictions of materials properties. Comput. Mater. Sci. 152:134–45
61. 	Jha D, Ward L, Paul A, Liao W, Choudhary A. 2018. ElemNet : Deep Learning the Chemistry of Materials From Only Elemental Composition. Sci. Rep. 8(17593):1–13
62. 	Choudhary K, Decost B, Tavazza F. 2018. Machine learning with force-field-inspired descriptors for materials: Fast screening and mapping energy landscape. Phys. Rev. Mater. 2(8):83801
63. 	Unke OT, Meuwly M. 2019. PhysNet: A Neural Network for Predicting Energies, Forces, Dipole Moments and Partial Charges. arXiv:1902.08408
64. 	University of Wisconsin-Madison MAST-ML development team. 2018. The MAterials Simulation Toolkit for Machine Learning (MAST-ML). https://github.com/uw-cmg/MAST-ML
65. 	Ward L, Dunn A, Faghaninia A, Zimmermann NER, Bajaj S, et al. 2018. Matminer : An open source toolkit for materials data mining. Comput. Mater. Sci. 152:60–69
66. 	Himanen L, Jäger MOJ, Morooka E V., Canova FF, Ranawat YS, et al. 2019. DScribe: Library of Descriptors for Machine Learning in Materials Science. arXiv:1904.08875
67. 	O’Mara J, Meredig B, Michel K. 2016. Materials Data Infrastructure: A Case Study of the Citrination Platform to Examine Data Import, Storage, and Access. JOM. 68(8):2031–34
68. 	Picklum M, Beetz M. 2019. MATCALO: Knowledge-enabled machine learning in materials science. Comput. Mater. Sci. 163:50–62
69. 	Chen C, Ye W, Zuo Y, Zheng C, Ong SP. 2019. Graph Networks as a Universal Machine Learning Framework for Molecules and Crystals. Chem. Mater. 31(9):3564–72
70. 	Schütt KT, Sauceda HE, Kindermans PJ, Tkatchenko A, Müller KR. 2018. SchNet - A deep learning architecture for molecules and materials. J. Chem. Phys. 148(24):241722
71. 	veidt. 2015. https://github.com/materialsvirtuallab/veidt
72. 	Brough DB, Wheeler D, Kalidindi SR. 2017. Materials Knowledge Systems in Python—a Data Science Framework for Accelerated Development of Hierarchical Materials. Integr. Mater. Manuf. Innov. 6(1):36–53
73. 	Olson RS, Moore JH. 2016. TPOT : A Tree-based Pipeline Optimization Tool for Automating Machine Learning. JMLR Work. Conf. Proc. 64:66–74
74. 	Artrith N, Urban A. 2016. An implementation of artificial neural-network potentials for atomistic materials simulations: Performance for TiO2. Comput. Mater. Sci. 114:135–50
75. 	Khorshidi A, Peterson AA. 2016. Amp: A modular approach to machine learning in atomistic simulations. Comput. Phys. Commun. 207:310–24
76. 	Lee K, Yoo D, Jeong W, Han S. 2019. SIMPLE-NN: An efficient package for training and executing neural-network interatomic potentials. Comput. Phys. Commun. 242:95–103
77. 	Abbott AS, Turney JM, Zhang B, Smith DGA, Altarawy D, Schaefer HF. 2019. PES-Learn: An Open-Source Software Package for the Automated Generation of Machine Learning Models of Molecular Potential Energy Surfaces. J. Chem. Theory Comput. 15(8):4386–98
78. 	Wang H, Zhang L, Han J, E W. 2018. DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics. Comput. Phys. Commun. 228:178–84
79. 	Ryczko K, Mills K, Luchak I, Homenick C, Tamblyn I. 2018. Convolutional neural networks for atomistic systems. Comput. Mater. Sci. 149:134–42
80. 	Yao K, Herr JE, Toth DW, McKintyre R, Parkhill J. 2018. The TensorMol-0.1 model chemistry: A neural network augmented with long-range physics. Chem. Sci. 9(8):2261–69
81. 	Schütt KT, Kessel P, Gastegger M, Nicoli KA, Tkatchenko A, Müller KR. 2019. SchNetPack: A Deep Learning Toolbox for Atomistic Systems. J. Chem. Theory Comput. 15(1):448–55
82. 	Chmiela S, Sauceda HE, Poltavsky I, Müller KR, Tkatchenko A. 2019. sGDML: Constructing accurate and data efficient molecular force fields using machine learning. Comput. Phys. Commun. 240:38–45
83. 	Mikolov T, Chen K, Corrado G, Dean J. 2013. Efficient Estimation of Word Representations in Vector Space. arXiv:1301.3781
84. 	Pennington J, Socher R, Manning CD. 2014. GloVe: Global Vectors for Word Representation. Proc. 2014 Conf. Empir. Methods Nat. Lang. Process., pp. 1532–43
85. 	dos Santos CN, Gatti M, Santos CN dos, Gatti M. 2014. Deep Convolutional Neural Networks for Sentiment Analysis of Short Texts. Proc. COLING 2014, 25th Int. Conf. Comput. Linguist. Tutoal Abstr., pp. 69–78
86. 	Raschka S, Mirjalili V. 2017. Python Machine Learning: Machine Learning and Deep Learning with Python, scikit-learn, and TensorFlow. Packt Publishing. 2nd ed.
87. 	Alpaydin E. 2014. Introduction to Machine Learning. Boston, MA: MIT Press
88. 	Y. Lecun, Y. Bengio, G. Hinton. 2015. Deep learning. Nature. 521(7553):436–44
89. 	Liu Y, Wu H, Mayeshiba T, Afflerbach B, Jacobs R, et al. Machine Learning Predictions of Irradiation Embrittlement in Steels. Prep.
90. 	Schulz E, Speekenbrink M, Krause A. 2018. A tutorial on Gaussian process regression: Modelling, exploring, and exploiting functions. J. Math. Psychol. 85:1–16
91. 	Schwaighofer A, Schroeter T, Mika S, Blanchard G. 2009. How Wrong Can We Get? A Review of Machine Learning Approaches and Error Bars. Comb. Chem. High Throughput Screen. 12(5):453–68
92. 	He K, Zhang X, Ren S, Sun J. 2016. Deep Residual Learning for Image Recognition. 2016 IEEE Conf. Comput. Vis. Pattern Recognit., pp. 770–78
93. 	Sanchez-Lengeling B, Aspuru-Guzik A. 2018. Inverse molecular design using machine learning: Generative models for matter engineering. Science (80-.). 361(6400):360–65
94. 	Schwalbe-Koda D, Gómez-Bombarelli R. 2019. Generative Models for Automatic Chemical Design. arXiv:1907.01632, pp. 1–25
95. 	Zhang Y, Ling C. 2018. A strategy to apply machine learning to small datasets in materials science. npj Comput. Mater. 4(25):1–8
96. 	Hutchinson ML, Antono E, Gibbons BM, Paradiso S, Ling J, Meredig B. 2017. Overcoming data scarcity with transfer learning. arXiv:1711.05099
97. 	DeCost BL, Francis T, Holm EA. 2017. Exploring the microstructure manifold: Image texture representations applied to ultrahigh carbon steel microstructures. Acta Mater. 133:30–40
98. 	Li W, Field KG, Morgan D. 2018. Automated defect analysis in electron microscopic images. npj Comput. Mater. 4(1):1–9
99. 	Liu Y, Jacobs R, Lin S, Morgan D. 2019. Exploring effective charge in electromigration using machine learning. MRS Commun. 9:567–75
100. 	Meredig B, Antono E, Church C, Hutchinson M, Ling J, et al. 2018. Can machine learning identify the next high-temperature superconductor? Examining extrapolation performance for materials discovery. Mol. Syst. Des. Eng. 3(5):819–25

1

image1.png
(A) *

o o o
N 0o o

o
o))

RMS Absolute residuals/ dataset stdev
© o o o
N w H (0]

o©
[EN

GPR model errors / dataset stdev

e ©
o P
- P d
o -
o - o
o i _” 1) L d
(] 'Y 2
e y = 0.6095x
-~ R?=-3.66
P d
P d
P d
”
0.2 0.4 0.6 0.8

(B)

RMS Absolute residuals/ dataset stdev

o
[N}

=
N

[E

o
o0

o
o))

o
>

e © °
/
e ‘o]
/‘ []
/
(X ¥ J
/
) /
/
o/
/
y = 1.1539x [4
R?=0.9497 /
/
/
O
/
/
s 90 ¢
, @
0
/
ne
0.2 0.4 0.6 0.8 1 1.2 1.4

RF model error bins/ dataset stdev

1.6

