

Detecting pointing & calculating direction

1) Finding the skin-like pixels
2) Finding the blocks of skin
3) Getting the fingertip
4) Getting the pointing direction
5) Improvements

Skin Probability

Colour Based

Skin is roughly the same colour, so we can find skin
by looking for skin coloured pixels.

This is very fast to calculate.

However, errors occur due to lighting and shading.

Skin Probability

Chromatic Colour Based

We need adjust for the lighting conditions.

We can do this by simply dividing by the total value
at the pixel.

r = r / (r+b+g)
(or r+b+g+1 to avoid divide by 0 errors)

Skin Probability

Chromatic Colour Based

Original image

Skin Probability

Chromatic Colour Based

Chromatic colour image

Skin Probability

Chromatic Colour Based

High contrast chromatic colour image

Skin Probability

Colour -> Skin Probability Value

Now we have a chromatic colour image, but we
need skin probabilities.

We take an average skin colour and use it as the
mean of a normal distribution.

Skin Probability

Colour -> Skin Probability Value

Shamelessly stolen from Face Detection by Henry Chang and Ulises Robles.

Skin Probability

Colour -> Skin Probability Value

Skin Probability

Colour -> Skin Probability Value

Finding the hand

But where's the hand?

We know which pixels are (supposedly) skin.

We need to find connected groups of pixels.

I wrote a 1-2 pass algorithm to do this.

Finding the hand

The Algorithm (1)
Look at each pixel, and check its 8 connected
neighbours.
If they are skin, then look to see which group they
belong to.
Assign the lowest group number to the selected
pixel.
If there are no neighbours, the pixel gets a new
group number, groupNum. This is then incremented

Finding the hand

The Algorithm (1)

X

A B C

D

X=min(A,B,C,D)

Finding the hand

The Algorithm (2)
This isn't quite right though.
If C is lower than D, then D should be set to C.
So, we keep a replacement table.
For every group number, there is a replacement
number.
e.g. replace[10]=4 means group 10 has been seen
to be connected to group 4, so they should be
joined.

Finding the hand

The Algorithm (2)

X

A B C

D

replace[A]=min(replace[A],X)
replace[B]=min(replace[B],X)
replace[C]=min(replace[C],X)
replace[D]=min(replace[D],X)

Finding the hand

The Algorithm (3), the last bit :)
Again, there is a slight problem.
We may have:

replace[10]=4
replace[4]=2

Therefore, 10 should be replaced by 2 in the image.
We loop over the replace array, from
n=length(replace) to 0:
replace[i] = min(replace[i] , replace[replace[i]])

Finding the hand

Now a picture

Finding the finger

Edges

Now we find all the edges.

These are pixels in the largest group that are
connected to pixels that aren't in the group.

Finding the finger

Now a picture

Finding the finger

Edges
● Now we find the edges on the outside of the hand
● This is done by first selecting the extreme left pixel.
● Then we look at its neighbours that are edges.
● We move to one of them, and mark it 'tried'.
● This repeated until either the start (meaning we've
finished) or dead end is found.
● If a dead end is found, backtrack.

Finding the finger

Getting to the point
We now have an outline.

We want to find the finger, though.

Since we are looking for a pointing finger, look for the
pointiest bit of the outline

Finding the finger

edge[i]

edge[i+k]

edge[i-k]
curvature[i]=dotProduct(edge[i]-edge[i+k],edge[i]-edge[i-k])

Finding the finger

Getting to the point
This should give us the fingertip.

Now we trace back from this, along the sides of the
finger.

The average of the vector describing the sides of the
finger gives us the direction.

Finding the direction

Getting to the point

Finding the direction

Getting the direction
Now we have a vector in the 2D image.

Given calibrated stereo cameras, running the detector
on both images will give enough information to
calculate the 3D vector describing the direction of the
finger.

Future work

Improvements
Adaptive threshold

Logical analysis

Motion sensitive

Future work

