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Supporting Information S3. Mathematical analysis of difference equations of axon growth 

The monotonic growth of axons along the longitudinal direction 

In some particular cases the dynamical behaviour of solutions of system (main text Eq. 4) can 

be studied analytically to highlight certain important features of growing axons. In particular, it 

will provide a useful comparison between the generation of biologically realistic axons and the 

behaviour of the underlying difference equations. This Section provides a qualitative analysis for 

two simplified versions of the axon growth model.  

Reduction of the axon growth model to a one-dimensional map. Let us assume that the 

dorso-ventral gradient and the random variable are absent and the rostro-caudal gradient is 

constant as well. With these assumptions the axon growth model (main text Eq. 4) is simplified 

to the following equations: 

nRnn

nnn

nnn

g

yy

xx

θθθ
θ
θ

sin

sin

cos

1

1

1

−=
∆+=
∆+=

+

+

+

 

where Rg  is a positive constant.  

The third equation, for the growth angle, is independent of the two other equations. Thus, we 

study the dynamics of the following one-dimensional difference equation (map): 

.sin1 nRnn g θθθ −=+  

There are two fixed points for this map: πθθ == *
2

*
1 ;0 . To find stability of these fixed points we 

calculate the derivative of the right hand side of the map:  
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The fixed point 0*
1 =θ  is stable under the condition 20 << Rg  and the fixed point πθ =*

1  is 

unstable for any positive value of parameter Rg . Thus, the growing axon tends to grow 

monotonically along the longitudinal axis if both the dorso-ventral gradient and the random 

perturbation are absent. The critical parameter value 2=Rg  corresponds to the flip bifurcation 

and for 2>Rg  the stable 2-cycle appears. It means that the axon growth is in the oscillating 

regime.   

Reduction of axon growth model to a two dimensional map. Next, let us assume that all 

sensitivities to gradients are constant. In this case the last two equations of the model (main text 
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Eq. 3) depend on y  and θ  only. Thus, the model (main text Eq. 3) can be reduced to the 

following two-dimensional map: 
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Also, we assume that the random variable is not present ( 0=ξ ). There are two fixed points in 

this two dimensional map )0,( y  and ),( πy . Here y  is an intersection of graphs of the dorsal 

[ ))(exp( DnDD yyg −β ] and ventral [ ))(exp( VnVV yyg −−β  gradients Figure shows these graphs 

of two exponentials and their intersection y .  

 

 

 

 

 

 

 

 

 

 

 

 

Figure. Longitudinal axon growth. A. Profiles of the dorsal (red) and ventral (blue) gradients 

with their intersection y  shown by the green dot. B. Critical boundaries corresponding to 

different polarities are shown by curves of different colours. For each curve the bottom left 

corner relates to the stable fixed point )0,( y . 

To find the analytical expression for the value of y  a system for the fixed points is considered 

(we neglect the random variable and assume that step length 1=∆ ): 
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It follows from the first equation of system (S1) that either 0=θ  or πθ =  and from the second 

equation the value of y  is: 
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Stability of these fixed points )0,(y  and  ),( πy  follows from a consideration of the linearization 

matrix: 
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For this matrix the trace and the determinant are: 
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The multipliers are roots of the characteristic equation: 

.02 =+− DetTr µµ           (S3) 

The criterion of fixed point stability requires that both multipliers are located inside the unit circle. 

A remarkable finding is that for all parameter sets (corresponding to different neuron types and 

different parts of growing axon), which have been identified by the optimization procedure, the 

fixed points )0,(y  is stable and the fixed point ),( πy  is unstable. It means that the growing 

axon tends to grow monotonically along the longitudinal axis and the axon asymptotically 

approaches the dorso-ventral position y .  

Application of this analysis to a specific example of model axon growth. This section 

illustrates the analytical findings and shows the influence of the random variable on the shape of 

axon growth. In reality, other factors influence the tendency of axons towards monotonic 

longitudinal growth near a particular dorso-ventral position. To explore this we again consider 

the case of ascending axon growth in tadpole aIN neurons. Details of the tadpole CNS, its 

spinal cord neurons, and the specific adjustments to the equations that must be made to model 

axon growth in the tadpole were described in the main text above. Values of the environmental 

parameters are: 

.5,30/)10ln(,145,30/)10ln( ==== VVDD yy ββ  

Values of parameters specific for neurons of aIN type are: 
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.13.0,038.0,054.0 === VDR ggg  

These parameter values have been found by using the stochastic optimization procedure. 

Substitution of these parameter values to formulas (S2) and (S3) gives the following results: 

.2.83=y  

For the fixed point )0,( y  the roots of the characteristic equation are  .95.0,99.0 21 == µµ  This 

means that the fixed point is stable. For the fixed point  ),( πy  the roots are the complex 

conjugate  i33.097.02,1 ±=µ  and these roots are outside of the unit circle: ,02.12,1 =µ  

therefore the fixed point is unstable. 

Figure S2B shows critical boundaries in the plane of two parameters ),( DV gg  for three values 

of the polarity .Rg . The black line corresponds to the value 007.0=Rg  and in the region under 

the curve (bottom left corner) the fixed point )0,( y  is stable. The red line is the critical boundary 

for 02.0=Rg  and in the region under this red line the fixed point )0,( y  is stable. Respectively, 

the blue line is the critical boundary for 05.0=Rg  and in the region under this blue curve the 

fixed )0,( y  is stable. Of course, in each of these three cases the complimentary region shows 

the instability. Figure S2B clearly shows that the tendency for longitudinal  growth is highly 

stable except towards very low sensitivities for the rostral polarity. 


