
1

The TRAKR Codebook

A Crash Course in C Programming for the Spy Video TRAKR™

©2010 Wild Planet Entertainment, Inc. All rights reserved.

CONTENTS
1. So you wanna write an app for the TRAKR . 2

a. Jargon . 2

 b. Syntax . 2

 c. Functions . 2

 d. Parameters . 3

 e. Data Types . 3

 f. Reference Manuals . 3

 g. Defi ning Functions . 4

 h. Comments . 5

 i. Compiler . 6

2. Strategies . 7

 a. Map Your Idea with a Flow Chart . 8

 b. Things to Remember . 8

3. Now it’s your turn! . 9

 a. Sleeping: Simple Timing . 9

 b. Moving: Control the Motors . 10

 c. Motor Speed and Declaring a Variable . 11

 d. Writing Text: Display Voltage and Current . 12

 e. Polling the Remote: Change the Button States . 14

 f. Using Night Vision: Turn the IR LED On and Off . 16

 g. Recording Audio: Record and Play Back . 17

 h. Logging Your Code: Write Text to a File . 19

4. TRAKR Tools and More Info . 20

 a. TRAKR Code Snippets . 20

 b. Data Types . 23

 c. Hardware and Software . 24

 d. TRAKR Function Reference . 24

2

 SO YOU WANNA WRITE AN APP FOR THE TRAKR

Well, you’ve come to the right place. The TRAKR Codebook wont turn you into a programmer over-
night, but you will be able to build some basic apps for your TRAKR. When you’re ready to learn more
about the world of C programming, go online and take advantage of free
resources like Wikipedia or the spytrakr.com forums. Remember — the
capabilities of the TRAKR are as vast as your imagination!

Read on for a crash course in TRAKR coding basics: TRAKR-specifi c
software functions, some code examples, and even a few implementation
guidelines. Pretty soon that genius app idea will be out of your brain and
on your TRAKR.

if(obvious_meaning()==true){goToSection(examples||reference);}

Uh, What?!?

No, we’re not writing in some robot language from the future — that’s a snippet of C, the
programming language in which the TRAKR’s software is written. Looks cool? Then keep reading.

 Jargon

Jargon is made-up words or regular words which have a different meaning to experts than to the rest
of us. Experts use jargon as shorthand for complex ideas. Learning jargon is a big part of becoming
an expert on anything. For example, if you didn’t know anything about baseball and heard a radio
announcer talking about “knuckle balls” and “bunts”, you wouldn’t have a clue as to what he meant
unless you knew some baseball jargon. As you read through these pages and try some of the examples,
you’ll start using some jargon, too. Jargon saves typing and makes things clear by associating complex
processes with short words.

 Syntax

Syntax refers to the rules for making sentences in a language. Just like French or Spanish, programming
languages use syntax to make sure terms are ordered in a way that can be understood.

There are many special characters used to make syntactical distinctions in programming. For instance,
a semicolon “;” is interpreted in C to be the end of a statement. You can separate two lines by a return,
but they may be read by the machine as being one statement without a semicolon. If you omit a
semicolon, you will be looking for a “syntax error” when you read through your code checking that
your statements all have ends.

Most errors in your programs will be syntax errors. They are the easiest to make and the hardest to fi nd.
As you master the syntax, you’ll fi nd that coding gets a lot more fun!

 Functions

In the C language, a function is a piece of code which runs when it is requested by another piece
of code. Often times, the code which calls a function is expecting to get some data back from the
function. The type of data expected should match the type of data the function will generate.

TRAKR TIP: If this
information is too
complex, try the
App BUILDR at
www.spytrakr.com.

3

For instance, if you had created a function called “TheCurrentTime()”, you would expect to get some
data back which represents the time of day.

Sometimes a function does not return anything to the code which called it. It just runs its own code
and then returns to the code which called it. You might expect a function named “Sleep()” to pause
for a while and then return to the code without producing any data. The function “Sleep()” is, in fact, a
function which the TRAKR understands.

 Parameters

Many functions expect parameters to work with. A parameter is anything passed on to the function
from the code which called it. The parentheses after a function’s name are where the parameters are
specifi ed and multiple parameters can be separated by a comma within the parentheses.

In the example of the Sleep() function, there is the essential parameter of “...for how long?” which
needs to be passed when you call it. You could write “Sleep(for 3 seconds)” but that is too wordy and
not what the function expects. All you need to send is a number which the function can use. You could
write “Sleep(3)” but this function expects the parameter to be in milliseconds. To get 3 seconds of
sleeping, you should write “Sleep(3000)”. This parameter is an integer (a whole number) which
corresponds to the number of 1/1000ths of a second to pause your program.

 Data Types

Data is sent to a function when it is called and it needs to meet the expectations of the function.
The main characteristic to regard is the type of data. “3 seconds”, ,”3” “3000”ms, “3.0” or “00000011”
could all be different ways of expressing the same time to Sleep(), but only the “3000” will get the
expected result. Checking that you are sending the right kind of data in your function calls will be your
fi rst tactic in debugging.

 Reference Manuals

No one could make any progress if they tried to remember every detail of every function they had
used and made, so it’s helpful to store the vital statistics in a list to refer back to as needed. When you
look up Sleep() in the TRAKR Function Reference, you might fi nd something like the following:

Sleep()

Description:
 Pauses the program for the amount of time (in milliseconds) specifi ed as parameter.

(There are 1000 milliseconds in a second.)
Syntax:
 Sleep (uint32 us)
Parameters:
 uint32 us: the number of milliseconds to pause (unsigned long, 0 through 4,294,967,295)

TRAKR TIP: Check the TRAKR
Function Reference to fi nd the
correct types for parameters.

4

Returns:
 nothing
Example:

#include “svt.h”

void Start()
{
 // nothing to do here
}

bool Run()
{
 Sleep(1000);
 // do something
 Sleep(1000);
 // do something else
 return true;
}

void End()
{
 // do nothing
}

You can see from this example reference page that Sleep() expects to get a PARAMETER, which in this
case is the number of milliseconds to wait before returning to the program.

 Defi ning Functions

The TRAKR only calls 3 functions when it powers on. These functions are; Start(), Run()and
End().The TRAKR will call each function in this order. Each TRAKR program you create must have
these functions defi ned by your code. How you defi ne them determines what your program will do.
Here is the simplest TRAKR program that can be written, which does nothing but defi ne the 3 manda-
tory functions and load the svt.h fi le (which is the fi le that explains all the default TRAKR functions):

#include “svt.h”
void Start(){}
bool Run(){return true;}
void End(){}

TRAKR TIP: Write TRAKR code more
easily! Copy sample code from the
TRAKR Function Reference into
your own code.

5

The following code functions the same as the above but is much easier to read. Sometimes coders
add extra returns and spaces to reveal the logical structure as well as the order in which various
operations occur.

It is helpful to understand which sections are contained within each other just by how indented the
text is. It might not look much better now but, later on, your ability to debug code will be largely
dependent on understanding the order of operations and subroutines.

#include “svt.h”

void Start()
{
}

bool Run()
{
 return true;
}

void End()
{
}

 Comments

Comments are a tool that gives your code clarity. Comments do not get used by the machine but are
there for you and others to help understand what your code is doing. Adding comments to your code
will give you a much better understanding of how to improve and adjust it. Almost all code contains
comments to help make the code legible or to keep sections of code not in use but available for
reference. Write your comments clearly and revise them as you work so they remain accurate.

Comments in C start with two forward slashes and end with a return. They can be on their own line
or after some functional code. Most of the following examples will use comments to explain their
workings. Below is the same code as above but with some comments:

// we must include the svt.h fi le so that the compiler knows
// how to handle all the special functions for the
// Spy Video TRAKR.
#include “svt.h”
// defi ne the Start function:
void Start()
{
 // this is where things that need to happen at
 // start-up would go.
}
// defi ne Run function:
bool Run()
{
 // This space would contain the main body of our code.

6

 return true;
}
// lastly, the End function:
void End()
{
 // and here is where we can do any fi nal tasks before
 // closing? starting again? resetting?
}

 Compiler

A compiler is a tool to convert your written code into a real, machine readable executable program.
In order for it to make the correct fi les and put them in the correct folders, it must be told where
everything is. The program to do this is “setup”. It is located in the “Trakr” folder which should be
unzipped onto your C:\ drive.

C:\>cd Trakr

C:\Trakr>setup

C:\Trakr>set
Path=c:\trakr\Tools\bin;c:\trakr\Tools\utils

C:\Trakr>cd Internals

Command Prompt

If the setup is successful, you should set the tool paths to defi ne something like the above result.

The compiler runs when you type “make” into a terminal program’s command line so you need to make
sure you navigate to the folder where the makefi le you want to
run is located. The compiler then follows any instructions in that
“makefi le” to convert the “app.c” fi le (the text fi le containing the
source code) into a TRAKR program.

The compiler only looks for the “app.c” fi le in the current folder so
always name your source code app.c. Save your programs in sepa-
rate folders with names which make sense. This helps to keep all
the various “app.c” fi les organized. In the screen shot below, “make
clean” is run from within C:\Trakr\Internals. It reports all the fi les it is removing before returning the
prompt to you. “make” is then typed at the prompt and the compiler uses the “makefi le” to assemble all
the parts of your program (which may include many libraries, images and fi les specifi ed by your code)
into fi le to write to the TRAKR hardware. When done, the last line should look something like:

“arm-elf-objcopy -0 binary ./yourFileName.elf ./yourFileName.bin”

After that, the prompt should be returned to you.
Below is a screenshot of the Internals folder’s makefi le being run:

TRAKR TIP: You can start
fresh and erase any old
temporary fi les by typing
“make clean”.

7

If the compiler encounters something it can not convert into the target format, it will stop trying and
report the place at which it failed. This is often the fi rst time you get
a clue that there is a mistake in your code. By reading the compiler
error and trying to identify what caused it, you can edit your code
until the compiler gets through it with no errors.

The compiler omits all your code comments and streamlines your
text into an application but it can add information as well.

The “#include” statement within your code is an instruction to the compiler to compile the fi le referred
to. Every TRAKR application should have the line: #include “svt.h”. svt stands for Spy Video TRAKR. It is
the fi le which defi nes all the functions which are native to the TRAKR hardware. Without the “svt.h” fi le,
the compiler would not know what to do with anything but regular C functions and the TRAKR would
not be able to run.

 STRATEGIES

Things may seem more complicated than they need to be, but consider that computers do not know
anything which is not defi ned in advance for them. Even words which you might understand to have a
single and clear meaning will have to be defi ned for the machine before it can do anything with them
and every time we use a function or a term, it will have to look up the defi nition again. This means you
must be VERY specifi c when you defi ne something. Your defi nition will have to make sense in all the
foreseeable instances in which it may be called. You can only use previously defi ned terms in your new
defi nitions. You can then use these new parts to create even more complex structures.

C:\Trakr\Internals>make clean
rm -f ./startS.o
rm -f ./svt.o ./trakr.o ./audio.o ./apu.o ./adc.o
rm -f ./trakr.a
rm -f ./trakr_start.a
rm -f ./Test.elf
rm -f ./Test.elf.exe*
rm -f

C:\Trakr\Internals>make
test -d API_LIBs.o || arm-elf-ar x JAPI.a API_LIBs.o
Compiling svt.c
Compiling trakr.c
Compiling audio.c
Compiling apu.c
Compiling adc.c
arm-elf-ar rcs ./trakr.a ./svt.o ./trakr.o ./audio.o ./apu.o ./adc.o KimCharLib.o
API_LIBs.o SubroutineAsm.o Images/Test1.o Images/Test2.o Images/Spec.o
Images/PlayCircle1.o Images PlayCircle2.o Images/PlaySquare.o
Images/PlayTriangle1.o Images/PlayTriangle2.o Images/KimCharLib.o
Images/OutOfMemory.o
Compiling startS.Sarm-elf-ar rcs ./trakr_start.a ./startS.o ./main.o
Linking...
Creating file Test.elf...
arm-elf-objcopy -O binary ./Test.elf ./Test.bin

C:\Trakr\Internals>

Command Prompt

TRAKR TIP: Connect the
TRAKR to your computer
via USB so you can run
your code right away

8

 Map Your Idea with a Flow Chart

When writing an app for the TRAKR, you can plan out its functions using a fl ow chart. When every element in
the fl ow chart is simple enough so that you can navigate from your starting condition to the desired ending
condition without any confusion, then you are ready to execute your plan.

If you drew a fl ow chart for drinking water, it would look like the chart in Fig. 1. This chart assumes there is
water to drink, but what if there is none? You would need to add a thread for that. The chart in Fig. 2 shows
the further evaluation of whether there is water or not along with the action to take in either possible state.

So, just as you can plan your own action with a fl ow chart, you can plan a program using elements
interconnected by their logical relationships. A basic TRAKR program would look like Fig. 3. Each fi eld would
be expanded as you came to new things to evaluate or do. If you can plan your ideas like this and keep your
chart updated as you work, you will be well on your way to being able to solve the most complicated
programming challenges.

 Things to Remember

Before we jump into the examples, take some time to ponder a few things we have
covered and how they can be used.

• Programming is Language
 - Come up with a great idea
 - Write it down in your own words
• Translate (code) your idea into C
• Computers can’t infer
 - Syntax is key
 - Capitalization and spelling are important
• Stay organized
 - Names must match
 - Folders must be located as expected
• Be Patient and Relaxed
 - Be prepared to try everything a few times before it works
 - Go slow and pay attention to each step

Start()

End()

Drink Watertrue

false

Thirsty?

Start()

Thirsty?

End()

Have Water?

Drink Water

Get Water

true
false

true

false

Run()

Start()

End()

true

Fig. 1 Fig. 2 Fig. 3

9

• Take notes on what steps you have already done
• Looking for bugs is very much like looking for bugs
 - Stretch your body as often as you can remember
• That is where your brain lives
• Look away from the screen to see the forest through the trees

 NOW IT’S YOUR TURN!

Ready to dig in to some code? The following examples are organized from the simple (so simple it
doesn’t even try to DO anything) to the complex. Even if you’re new to programming, try running some
code on your TRAKR by modifying these examples.

Examples
Sleeping: Simple Timing
Moving: Control the Motors
Motor Speed: Control the Speed of the Motors
Writing Text: Display Voltage and Current
Polling the Remote: Change the Button States
Using Night Vision: Turning the IR LED On and Off
Recording Audio: Record and Play Back
Logging to File: Writing Text to a File

 Sleeping: Simple Timing

The program on the TRAKR runs as fast as it can. As soon as it fi nishes one operation it begins the
next. It is often useful to slow things down. One way to do this is to simply stop the program for some
specifi c amount of time. In this example, the Sleep() function stops the program by taking whatever
integer value it gets and waiting that number of milliseconds (1/1000 of a second) before returning
the processor to work on the next item.

// don’t forget the svt.h fi le
#include “svt.h”
// defi ne the Start function:
void Start()
{
 // nothing to do here...
}

bool Run()
{
 Sleep(1000);
 // do something
 Sleep(1000);
 // do something else
 return true;
}

void End()
{
}

TRAKR TIP: Try storing
your code on a USB fl ash
drive. You can use data
from previously written
apps or save information
to upload to another sys-
tem later.

10

 Moving: Control the Motors

This example will show you how to program your TRAKR to move automatically. It will make the TRAKR
take control away from the remote, pause for 1 second, spin counter-clockwise for 1 second, pause for
1 second, spin clockwise for 1 second and then allow the remote to control the TRAKR for 5 seconds
before repeating.

To do this, you need to take and let go of control of the motors. Many of the functions which allow
your code to control the TRAKR depend on you opening and closing a connection to a particular
device. Sometime you can skip this step but, if you really want to be understood and get an answer
the fi rst time, it is often necessary to explicitly “open” a dialog with the OpenMotors() function. Another
important reason for take control of devices is so that your processes will not be interrupted.

#include “svt.h”

void Start()
{
 // Take control of the motors:
 OpenMotors();
}
bool Run()
{
 // Pause 1 second
 Sleep(1000);
 // Set the Right motor speed to go full forward
 SetRightMotor(10000);
 // Set Left motor to go full backwards
 SetLeftMotor(-10000);

 // Pause 1 second
 Sleep(1000);
 // Stop both motors
 SetMotors(0, 0);

 // Pause 1 second
 Sleep(1000);
 // Set the Right motor speed to go backwards
 SetRightMotor(-10000);
 // Set Left motor to go forwards
 SetLeftMotor(10000);

 // Pause 1 second
 Sleep(1000);
 // Stop both motors
 SetMotors(0, 0);

 // Release the motors so the remote can regain control
 CloseMotors();
 // Do nothing for 5 seconds:
 Sleep(5000);

11

 // Take back control of the motors:
 OpenMotors();
 return true;
}
void End()
{
 // remember to let go before you fi nish...
 CloseMotors();
}

 Motor Speed and Declaring a Variable

A variable is a name given to a place in the computer’s memory where you can record and recall data.
It is important to tell the machine what kind of data and how much of it you need to store so that
enough room is set aside for it in advance. If you try to put a value into a variable which is not of the
correct type, you will get an error, but even worse, you might lose data and not even know it.

This example will also declare a variable to store an integer. An integer is a positive or negative whole
number. It can have no decimal point. A 32bit integer is a whole number between −2,147,483,648 and
2,147,483,647. You will use the variable to keep track of the last speed value and add or subtract or
invert it as appropriate.

As you have seen, by setting the motors to 0 you are telling them to stop, 10,000 is full ahead and
-10,000 is full reverse. As you might guess, 5,000 is half speed forward. In fact, any integer between
-10,000 and 10,000 corresponds to a speed from fast to slow to fast again in the opposite direction.

This example uses the for() function to count from one value to another. This is a useful C function
which will be a part of most any program. You can learn more about it from any C reference guide. It
will serve you well. By counting from 0 to 1000 with a tiny pause between each iteration, we can make
the motors go from stopped to full speed in a smooth ramp. This program below will set the TRAKR
spinning faster and faster until it reaches full speed and then start slowing down until stopped. Then it
will wait 5 seconds before repeating the program.

#include “svt.h”

void Start()
{
 // Take control of the motors:
 OpenMotors();
}
bool Run()
{
 // create and integer variable called “i”
 int i;
 // put a count from 0 to 10000 in “i”
 for (i=0; i<=10000; i++)
 {
 // Pause 1 millisecond
 Sleep(1);

12

 // Set the Right motor speed to the current count
 SetRightMotor(i);
 // Set Left motor to the negative of the current count
 SetLeftMotor(-i);
 }
 // count from 0 to 10000
 for (i=10000; i>=0; i--)
 {
 // Pause 1 millisecond
 Sleep(1);
 // Set the Right motor speed to the current count
 SetRightMotor(i);
 // Set Left motor to the negative of the current count
 SetLeftMotor(-i);
 }
 // Release the motors so the remote can regain control
 CloseMotors();
 // Do nothing for 5 seconds:
 Sleep(5000);
 // Take back control of the motors:
 OpenMotors();
 return true;
}
void End()
{
 // remember to let go before you fi nish...
 CloseMotors();
}

 Writing Text: Display Voltage and Current

This example will take control of the remote display to show the data returned by the analog to
digital converters (ADC) on board the TRAKR. The screen on the remote has a resolution of 160 pixels
across by 80 pixels high. Everything you put on the screen needs to be placed by referring to the top
left corner where we want to start drawing or writing as a set of coordinates. These coordinates are
commonly referred to as “x” and “y”. “x” is the number of pixels from a spot to the left side of the screen
and “y” is the number of pixels from that spot to the top of the screen.

By giving your function these parameters, you can tell each function call to place its data at
a specifi c place.

In the case of the DrawText() function, this data is text which is drawn starting from the fi rst letter’s top
left corner at the “x,y” coordinates you specify and fl owing to the right until it reaches the edge of the
screen at which point it will wrap down and to the left and continue.

This example also incorporates the idea of checking for change to avoid needlessly re-writing the
same data over and over. To do this you use two variables for each kind of data you want to evaluate.
One variable to read the data into and another variable to store the last value. This way, by comparing
them, you know when something has changed and can take action.

13

// This example will use the graphics functions to write
// the values of the ADCs to the Remote screen
#include “svt.h”

//declare some variables to use:
int mVolts;
int lastmVolts;
int LMC;
int lastLMC;
int RMC;
int lastRMC;

void Start()
{
 //take control of the display:
 OpenGraphics();
}

bool Run()
{
 // read values of ADCs:
 LMC=GetLeftMotorCurrent();
 RMC=GetRightMotorCurrent();
 mVolts=GetBatteryVoltage();
 //if values have changed:Update screen
 if (LMC!=lastLMC || RMC!=lastRMC||mVolts!=lastmVolts)
 {
 //clear graphcs buffer:
 ClearScreen();
 //load the buffer with some new drawing instructions:
 DrawText(5,5,”Battery: %d mV”, mVolts);
 DrawText(5,25,”Motor current”);
 DrawText(5,45,”in miliampres”);
 DrawText(5,65,”left: %d”, LMC);
 DrawText(85,65,”right: %d”, RMC);
 //Update buffer to screen:
 Show();
 //reset “last” values:
 lastLMC=LMC;
 lastRMC=RMC;
 lastmVolts=mVolts;
 }
 //if no change, wait a little while before checking again:
 else
 {
 Sleep(100);
 }
 return true;
}

14

void End()
{
CloseGraphics();
}

 Polling the Remote: Change the Button States

This example checks all the buttons on the TRAKR remote and uses the display to show which
are ones are pressed. The two functions which return button states are; GetRemoteKeys() or
GetRemoteKeyStatus().

This example uses the GetRemoteKeys() function which sets an 8 bit variable to represent the button
states at that moment. Remember; a bit is a single place to store a 1 or a 0 and 8 bits are in a byte.
Bytes are often represented as decimal integers where each bit is a digit in a binary number. TRAKR
takes advantage of this easy conversion to be able to store every possible combination of button
presses as a single number value between 0 and 255. You can then use a bit comparison (which is the
ampersand logogram, “&”) between that number and a value of the “KEY_*” constants to check if that
bit is high or low.

#include “svt.h”
int LastKeyState;

void Start(){
 OpenGraphics();
}

void End(){
 CloseGraphics();
}
// consolidating code by declaring a custom function:
void display(int keyState)
{

INPUT 2INPUT 1

SPEAKER

MENUHOME

FORWARD

BACK

FORWARD

BACK

SELECT / RUN

15

 ClearScreen();
 DrawText(5, 0, “Key: %d”, keyState);
 //show the 8 bits of key State as an integer
 int y=30; // variable to increment text display downward

 if(keyState&KEY_LEFT_BACK){
 // if bit in “keyState” associated with “KEY_LEFT_BACK” is high
 DrawText(5, y, “LEFT BACK”);// draw text
 y=y+15; //move text “pen” down
}

if(keyState&KEY_LEFT_FORWARD){
 DrawText(5, y, “LEFT FORWARD”);
 y=y+15;
}

if(keyState&KEY_RIGHT_BACK){
 DrawText(5, y, “RIGHT BACK”);
 y=y+15;
}

if(keyState&KEY_RIGHT_FORWARD){
 DrawText(5, y, “RIGHT FORWARD”);
 y=y+15;
}

if(keyState&KEY_INPUT1){
 DrawText(5, y, “LEFT INPUT”);
 y=y+15;
}

if(keyState&KEY_INPUT2){
 DrawText(5, y, “RIGHT INPUT”);
 y=y+15;
}

if(keyState&KEY_RUN){
 DrawText(5, y, “GO”);
 y=y+15;
}

if(keyState&KEY_MENU){
 DrawText(5, y, “MENU”);
 y=y+15; //move draw “pen” down
}

if(keyState==0){
 DrawText(5, 30, “NONE PRESSED”);
}
Show();

16

}

bool Run()
{
 int KeyState = GetRemoteKeys();// load button states
 if(LastKeyState!=KeyState)// if buttons are in new state...
{
 display(KeyState);// show the names of pressed buttons
 LastKeyState=KeyState;// update the old state to the new
}
 Sleep(100); no need to keep the radio working constantly.
 return true;
}

 Using Night Vision: Turn the IR LED On and Off

The TRAKR camera can perceive light beyond the range which is visible to us into the Infrared (IR)
spectrum. The TRAKR has an IR light next to its camera. When it is active, there will be a faint red glow
visible to the naked eye, but to the camera it is a bright fl ood of light. In this example, if you drive the
TRAKR in the dark, the image on the TRAKR’s remote control screen will appear rendered in gray tones
with the brightness representing the amount of IR light being detected. If you were to drive the TRAKR
in the light, the image would appear in full color.

#include “svt.h”
int BlinkSpeed=3000; // Variable to set frequency of blinking
bool state; // variable to toggle IR LED state

void Start()
{
 OpenIR(); // Take control of IR LED
}

bool Run()
{
 //As long as the INPUT1 key is not pressed...
 while (GetRemoteKeyStatus(KEY_INPUT1)==0)
 {
 if (ReadTimer()>BlinkSpeed)// If enough time has passed
 {
 state = !state;// toggle the value of “state”
 SetIR(state);// Set IR to new state
 ResetTimer();// reset timer to 0
 }
 }
// If the INPUT1 key is pressed:
 return false;
}

// When The Run() function returns false, the TRAKR calls the End()

17

function
void End()
{
 CloseIR();
}

 Recording Audio: Record and Play Back

To record audio, a fi le needs to be created which will be written to. Since audio can take up a lot of
space in memory very quickly, it works best with an SD card inserted in the TRAKR (you will write the
fi le to the SD card). In this example, the audio will start recording 3 seconds of audio when the remote
“GO” button is pressed. It will then play whatever was recorded when the “GO” button is pressed again.

// As always
#include “svt.h”

// substitutes “AudioFile” with a fi le path
#defi ne AudioFile “A:\\Test\\Audio.wav”

int length = 10000; // recording length

void Start()
{
 OpenGraphics(); // we’ll need the display
}

bool Run()
{
 // display some instructions:
 ClearScreen();
 DrawText(35, 5, “Press Go”);
 DrawText(35, 30, “to record”);
 DrawText(25,55, “%d seconds”, length/1000);
 DrawText(30, 80, “ of Audio”);
 Show();
 //wait for the keypress
 while (!GetRemoteKeyStatus(KEY_RUN))
 {
 Sleep(10);
 }
 // start recording
 ClearScreen();
 DrawText(15, 30, “Recording”);
 Show();
 StartAudioRecording(AudioFile);
 // creates or overwrites fi le to write in

 ResetTimer();
 while(ReadTimer() < length)
 {

18

 Sleep(10);// wait while coolecting some sound
 WriteAudioData(); // write whatever has been recorded
 }

 StopAudioRecording(); //close recorded fi le
 // display fi nished message
 ClearScreen();
 DrawText(15, 30, “DONE”);
 Show();
 Sleep(1500);
 // display instruction
 ClearScreen();
 DrawText(35, 5, “Press Go”);
 DrawText(25, 30, “to playback”);
 DrawText(15,55, “Audio tecording”);
 Show();
 // wait for key press
 while (!GetRemoteKeyStatus(KEY_RUN))
 {
 Sleep(10);
 }
 // play back fi le
 ClearScreen();
 DrawText(15, 30, “Playing”);
 Show();
 CloseGraphics();
 // free up our processor to do audio digitizing
 StartAudioPlayback(AudioFile); // begin playing fi le
 // wait for audio to fi nish
 while(IsAudioPlaying())
 {
 Sleep(500);
 }
 //report fi nished
 OpenGraphics();// open the display again
 ClearScreen();
 DrawText(5, 80, “DONE”);
 Show();
 Sleep(2000);
 //run again
 return true;
}

void End()
{
 CloseGraphics();
}

19

 Logging Your Code: Write Text to a File

A log is a list of entries made as events occur. Just as weather and the passage of time is logged in a
ship’s logbook, a program can use a text fi le to record events by writing to it as things happen. It is
very useful to know that a section of code has run and in what order, or what a variable’s value is at
a specifi c time. In this example, you will count the iterations of Run() as well as log each press of the
remote keys. A text fi le for logging is created on the fl ash memory card as soon as the Log() function
is fi rst called. The fi le is named “Trakr.log”.

#include “svt.h”

int RunCounter=1; // variable to store numbr of Run() calls
int RemoteState; // integer to store RemoteState() into
int LastRemoteState; // remember the last to compare to
int secondCount=1; // counting seconds passed

void Start()
{
 ResetTimer();
 Log(“Starting...”); //The fi rst line of the “A:\Test\Trakr.log”
}

bool Run()
{
 //note as the seconds pass
 if (ReadTimer() >= secondCount*1000)
 {
 Log(“%d Seconds”, secondCount);
 secondCount+=1;
 }
 // Log when the Remote Keys Change
 RemoteState=GetRemoteKeys();
 if (LastRemoteState!=RemoteState)
 {
 Log(“Run count %d, Remote state: %d”, RunCounter, RemoteState);
 LastRemoteState=RemoteState;
 }
 // Check if time is up
 if (ReadTimer()>5000)
 {
 Log(“Time is up”);
 return false;
 }
 // Wait a moment and then increment the run count before going again
 Sleep(10);
 RunCounter+=1;
 return true;
}

void End()
{
 //On last Log Entry
 Log(“Signing off.”);
}

20

 TRAKR TOOLS AND MORE INFO

 TRAKR Code Snippets

Theses TRAKR Code Snippets are an easy way to build an app using pre-written code for the TRAKR.
The following code block does not work as a whole, but instead contains commonly used parts of
code for you to copy into your own programs and modify.

// Go Forward, Stop
SetMotors(10000, 10000);
// Turn the left & right motors to full forward 10000
Sleep([Duration]); // Wait for the right number of milliseconds
SetMotors(0, 0); // Turn the left & right motors off

// Go Backward, Stop
SetMotors(-10000, -10000); // Turn the left & right motors to 10000
Sleep([Duration]); // Wait for the right number of milliseconds
SetMotors(0, 0); // Turn the left & right motors off

// Spin Clockwise
SetMotors(10000, -10000);
// Turn the left motor forward & right motors back
Sleep([Duration]); // Wait for the right number of milliseconds
SetMotors(0, 0); // Turn the left & right motors off

// Spin Counter Clockwise
SetMotors(-10000, 10000);
// Turn the left motor back & right motors forward
Sleep([Duration]); // Wait for the right number of milliseconds
SetMotors(0, 0); // Turn the left & right motors off

//Arc Left Forward
SetMotors(5000, 10000);
// Turn the right motor forward a little faster than the left
Sleep([Duration]); // Wait for the right number of milliseconds
SetMotors(0, 0); // Turn the left & right motors off

// Arc Right Forward
SetMotors(10000, 5000);
// Turn the left motor forward a little faster than the right
Sleep([Duration]); // Wait for the right number of milliseconds`
SetMotors(0, 0); // Turn the left & right motors off

// Arc Left Backward
SetMotors(-5000, -10000);
// Turn the right motor backward a little faster than the left
Sleep([Duration]); // Wait for the right number of milliseconds
SetMotors(0, 0); // Turn the left & right motors off

21

// Arc Right Backward
SetMotors(-10000, -5000);
// Turn the left motor backward a little faster than the right
Sleep([Duration]); // Wait for the right number of milliseconds
SetMotors(0, 0); // Turn the left & right motors off

// Display Text
ClearRectangle(20, 10, 140, 40); // First clear the text region
DrawText(20, 10, “[Text]”); // Draw the text
Show(); // Show the graphics

// Display Image
ClearRectangle(40, 60, 120, 110); // First clear the image region
DrawImage(40, 60, [Image]); // Draw the image
Show(); // Show the graphics

// Display Battery Voltage
ClearScreen(); // First Clear the Screen
v = GetBatteryVoltage(); // Read the battery voltage into variable v
if (v < 5000) // Check the battery. If it’s low… (less than 5 volts,
//5000 millivolts)
Color RED; //Defi ne the colors using RGB
Red.R=225;
Red.G=0;
Red.B=0;
Red.Transparent=0;
Color GREEN;
Green.R=0;
Green.G=225;
Green.B=0;
Green.Transparent=0;
Color WHITE;
White.R=225;
White.G=225;
White.B=225;
White.Transparent=0;
{
 SetTextColor(Red); // Set the color to RED
}
else // else
{
 SetTextColor(Green); // Set the color to GREEN
}
DrawText(20, 10, “Batt : %d”, v);
// Draw the fi xed text, with the number v replacing the %d
Show(); // Show the graphics
SetTextColor(WHITE); // Put the text color back to white

22

// Wait for a Key
while(! GetRemoteKeys() = 0)
// Keep doing the wait until the key is pressed
{
 Sleep(100); // Wait for 100ms, then loop again!
}

// Wait for a Key to Release
while(ReadKey([Key]))
// Keep doing the wait until the key is NOT pressed
{
 Sleep(100); // Wait for 100ms, then loop again!
}

// Go Back
SetMotors(-1000, -1000);
// Turn the left & right motors to full forward 100

// Stop //
SetMotors(0, 0); // Turn the left & right motors off

// Wait
Sleep([Duration]); // Wait for the right number of milliseconds

// Add Message
DrawText(20, 10, “[text]”); // Draw the text at screen co-ord (20, 10)

// Clear Screen
ClearScreen(); // Clear the display

// Clear Image Region
ClearRectangle(40, 60, 120, 110); // Clear the image region

// Clear Text Region
ClearRectangle(20, 10, 140, 40); // Clear the text region

// Show Screen
Show(); // Show all graphics since last Show

// Read Battery
v = GetBatteryVoltage(); // Read the battery voltage into variable v

// Read Timer
v = ReadTimer(); // Read the timer value into variable v

// Reset Timer
ResetTimer(); // Reset the timer

23

// Display Number
DrawText(20, 10, “[Text] : %d”, v);
// Draw the fi xed text, with the number v replacing the %d

 Data Types
 Hardware and Software

• TRAKR and remote control
• USB cable
• Computer with one of the following operating systems: Windows, Mac, Linux
• Software: text editor, command line terminal program
• Files: TRAKR folder

Function Description Size Range

char Character or small integer. 1byte signed: -128 to 127
unsigned: 0 to 255

short int Short Integer. 2bytes signed: -32768 to 32767
unsigned: 0 to 65535

int Integer. 4bytes signed: -2147483648 to 2147483647
unsigned: 0 to 4294967295

long int Long integer. 4bytes signed: -2147483648 to 2147483647
unsigned: 0 to 4294967295

bool Boolean value. It can take
one of two values: true or
false.

1bit true or false

fl oat Floating point number. 4bytes +/- 3.4e +/- 38 (~7 digits)

double Double precision fl oating
point number.

8bytes +/- 1.7e +/- 308 (~15 digits)

long double Long double precision
fl oating point number.

8bytes +/- 1.7e +/- 308 (~15 digits)

wchar_t Wide character. 2 or 4 bytes 1 wide character

24

- The TRAKR’s on-board computers are a pair of ARM 9 processors (one in the TRAKR and one
in the remote) with 8MB of RAM. These microprocessors are preloaded with the TRAKR fi rm-
ware which allows you to code in C and use the library of TRAKR functions.

- The computer you use to upload code to the TRAKR must support USB. You must have
administrative privileges so that you can move, write and erase fi les in the root folder.

- You should use a text editor which is able to save fi les as plain text. there are many editors
for coding which have extra features for organizing your ideas and formatting your code but
the free editors which come with most computers are fi ne as well.

- In order to get your code from a text editor on your computer to the TRAKR, you will need to
compile your text fi le into a binary fi le (.bin) and then upload it via a USB cable connection.
The program which does this is run from a command line prompt in a terminal program. In
Windows, this is the “Command Prompt” program in the start menu. The compiler is run from
the command prompt by typing “make” while in the folder where your app is located. The
compiler then reads the “makefi le” in that folder for instructions on how to name and where
to place the new .bin fi le it will create.

- All the fi les you need are available to download from the spytrakr.com website. The down-
load, called the App Primer, includes installation instructions, templates for making your
own apps and all the example apps used in this introduction.

- Follow all the instructions contained in the download for your operating system. Pay special
attention to the location of the folders and the order of each operation.

 TRAKR Function Reference

The TRAKR Function Reference is an essential guide to all the native TRAKR functions.

TRAKR TIP: Download
all of these tools here.

Function Description Syntax Parameters Returns

ClearRectangle() Clears an area in the buffer
defi ned by top/left and
bottom/right coordinates

ClearRectangle(int, int,
int, int)

4 ints, top/left x,y and
bottom/right x,y

none

ClearScreen() Clear all graphics from
screen buffer

ClearScreen() none none

CloseFile() Closes the specifi ed fi le CloseFile(File f) none

CloseFileSystem() Shuts down the fi le system CloseFileSystem() none none

CloseGraphics() Shuts down the graphic
system

CloseGraphics() none none

CloseImageRegister() Completes the Image Regis-
ter function

CloseImageRegister() none none

25

Function Description Syntax Parameters Returns

CloseIR() Releases control of the
InfraRed LED on the Trakr
car

CloseIR() none none

CloseMotors() Releases Motor control CloseMotors() none none

CreateFile(String pathName) Creates and opens the
named fi le

long CreateFile(String
pathName)

path name of the fi le

DeleteFile(String pathName) Deletes the named fi le long DeleteFile(String
pathName)

path name of the fi le

DrawImage() Renders an image into buf-
fer starting at coordinates
and applying transparency

DrawImage(int, int, int,
Color.transparent)

int imageIndex, int x,
int y, Color transparent

none

DrawRectangle() Draws a rectangle from
top/left to bottom/right
coordinates

DrawRectangle(int, int, int,
int, Color rgba)

lt, ty, rx, by none

DrawText() Begins writing text at
coordinates

DrawText(int, int, String) int x, int y, String fmt, ... ?

FlushFile() Completes all previous fi le
operations

long FlushFile(File f)

GetBatteryVoltage() Returns the voltage level
in millivolts from the Car
Batteries

GetBatteryVoltage() none int

GetLeftMotorCurrent() Returns the Left Motor cur-
rent use in milliamps

GetLeftMotorCurrent() none int

GetRemoteKeys() Queries all the remote
buttons

GetRemoteKeys() int

GetRemoteKeyStatus() Queries a specifi ed remote
button

GetRemoteKeyStatus(int
key)

int bool

GetRightMotorCurrent() Returns the Right Motor
current use in milliamps

GetRightMotorCurrent() none uint16

IsAudioPlaying() Checks status of audio fi le
playback

IsAudioPlaying() bool

OpenFile(String fi lename) Opens a specifi ed fi le for
reading or writing to

File OpenFile(String
fi lename)

path name of the fi le

OpenFileSystem() Opens the fi le system for
use

long OpenFileSystem() none

OpenGraphics() Opens the buffer for the
display

OpenGraphics() none none

OpenImageRegister() Signals the beginning of
an operation to register
images

OpenImageRegister() none none

OpenIR() Takes control of InfraRed
LED on Trakr car

OpenIR() none none

OpenMotors() Takes control of motors OpenMotors() none none

26

Function Description Syntax Parameters Returns

ReadFile() Reads (at current fi le
position) up to a specifi ed
number of bytes into a
buffer, and writes the
number of bytes read into
a variable

long ReadFile(File f, void*
buffer, bufferLength)

ReadTimer() Returns the number of
millisecond since last
ResetTimer() call

ReadTimer() none int

RegisterImage() Registers an image and gets
back a handle

int RegisterImage(void*
image, int size)

pointer to bitmap,
length

int

ResetTimer() Sets value of internal timer
clock to 0

ResetTimer() none none

SeekFile() Sets pointer to a place in fi le
(byte count)

long SeekFile(File f, long
pos)

SetIR() Sets the state of the Infra-
Red LED on the Trakr car

SetIR(bool) bool, 1 for on, 0 for off none

SetLeftMotor() Sets speed of left motor.
-10,000=full reverse, 0=stop,
10,000=full ahead

SetLeftMotor(int speed) int (-10,000 to
10,0000)

none

SetLineWidth() Sets the pixel width of lines
used in drawing

SetLineWidth(int) int, number of pixels none

SetMotors() Defi ne speed of left and
right motors at once with 2
integers

SetMotors(int leftSpeed,
int rightSpeed)

int, int (-10,000 to
10,0000)

none

SetRectangle() Draws a solid rectangle SetRectangle(int lx, int ty,
int rx, int by, Color rgba)

4 ints, top/left x,y and
bottom/right x,y AND
a Color

none

SetRightMotor() Sets speed of right
motor. -10,000=full reverse,
0=stop, 10,000=full ahead

SetRightMotor(int speed) int (-10,000 to
10,0000)

none

SetScreen() Set screen color and
transparancy

SetScreen(Color) Color variable structure none

SetTextColor() Sets color and
transparency of text

SetTextColor(Color) Color variable structure none

Show() Updates the display with all
graphics in buffer

Show() none none

Sleep() Pauses the program for
the amount of time (in
milliseconds) specifi ed as
parameter. (There are 1000
milliseconds in a second.)

Sleep(uint32 us) the number of mil-
liseconds to pause

none

StartAudioPlayback() Begins playing fi le at
specifi ed address

StartAudioPlayback(char*
fi lename)

the address of a WAV
fi le

bool

StartAudioRecording() Creates fi le at specifi ed
location, and starts writing
audio to buffer internal

StartAudioRecording(
char* fi lename)

path name of the fi le bool

27

Function Description Syntax Parameters Returns

StopAudioRecording() Stops writing audio data to
the buffer, and closes fi le

StopAudioRecording() none

WriteAudioData() Moves recorded data from
buffer to fi le, clears buffer

WriteAudioData() bool

WriteFile() Writes bytes in buffer to fi le
at current fi le position

long WriteFile(File f, void*
buffer, uint32 bufferLength,
uint32* bytesRead)

