
Validation of the cuIBM code for Navier-Stokes equa-
tions with immersed boundary methods 1

1 License to use this content under
Creative Commons CC BY-NC-SA 3.0.
© 2012 The Authors.

Anush Krishnan, Lorena A. Barba
6 July 2012

We have developed a Navier-Stokes solver, called cuIBM, to simulate
incompressible flows using immersed boundary methods. This doc-
ument provides background on the numerical methods implemented
in the cuIBM code framework and evidence of the validation exercise
carried out by the authors. The code provides a growing set of options
for flows with immersed boundaries, is written in C++ and uses gpu

hardware via Cuda kernels and calls to the Cusp library. The validation
tests in two-dimensions use an analytical solution (Couette flow) and
several experimental results to contrast with the numerical solutions.
The experimental benchmarks include a lid-driven cavity at Re = 100,
impulsively started flow around a circular cylinder at low and moder-
ate Reynolds numbers, cylinder wake flow, and flow over both heaving
and flapping airfoils.

The cuIBM code is open-source under
the MIT license.

Numerical Method

Brief overview of the immersed boundary method

The first immersed boundary method (ibm) was introduced by Pe-
skin for the application of computational fluid dynamics to the sim-
ulation of flow in heart valves.2 His method added a forcing term in 2 C.S. Peskin. Flow patterns around

heart valves: A numerical method.
J. Comput. Phys., 10(2):252–271,
1972. ISSN 0021-9991. URL
http://linkinghub.elsevier.com/

retrieve/pii/0021999172900654

the Navier-Stokes equation to account for the presence of a moving
boundary, modeling the body as a collection of springs. Boundary
points are placed at the equilibrium positions of the springs and
are allowed to move with the flow, and the force is calculated using
Hooke’s law. The force is then transferred from the solid to the fluid
grid by some kind of interpolation. The defining feature of the ibm is
that the computational grid in the fluid domain does not conform to
the geometry of the immersed body. Thus, it allows simulating flows
with moving boundaries without the need of constant re-meshing.

The ibm approach was later extended to treat rigid bodies, and
since then several authors have proposed variants that differ in the
way of obtaining the boundary force. Mittal and Iaccarino give an
excellent overview of the various ibm techniques introduced until
2005.3 These are generally easy to implement, but have some draw- 3 R. Mittal and G. Iaccarino. Im-

mersed boundary methods. Ann.
Rev. Fluid Mech., 37(1):239–261, 2005.
ISSN 0066-4189. doi: 10.1146/an-
nurev.fluid.37.061903.175743. URL
http://arjournals.annualreviews.

org/doi/abs/10.1146%2Fannurev.

fluid.37.061903.175743

backs: most do not directly apply the no-slip boundary condition,
and they often require several ad hoc parameters to be chosen by the
users carefully; many of them also have stringent requirements on
the time step size.

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://linkinghub.elsevier.com/retrieve/pii/0021999172900654
http://linkinghub.elsevier.com/retrieve/pii/0021999172900654
http://arjournals.annualreviews.org/doi/abs/10.1146%2Fannurev.fluid.37.061903.175743
http://arjournals.annualreviews.org/doi/abs/10.1146%2Fannurev.fluid.37.061903.175743
http://arjournals.annualreviews.org/doi/abs/10.1146%2Fannurev.fluid.37.061903.175743

validation of cuibm 2

In the cuIBM code, we aim to provide options to test several ibm

techniques, but in the first instance we only implemented the method
proposed by Taira and Colonius.4 This formulation of the ibm is a 4 K. Taira and T. Colonius. The im-

mersed boundary method: A projection
approach. J. Comput. Phys., 225(2):
2118–2137, 2007. ISSN 00219991.
doi: 10.1016/j.jcp.2007.03.005. URL
http://linkinghub.elsevier.com/

retrieve/pii/S0021999107001234

projection method for the Navier-Stokes equations with the forcing
term that uses the matrix factorization approach of Perot.5 In the

5 J. B. Perot. An analysis of the frac-
tional step method. J. Comput. Phys.,
108(1):51–58, 1993. ISSN 0021-9991.
URL http://www.ecs.umass.edu/mie/

faculty/perot/Papers/FSM0.pdf

general projection method for incompressible Navier-Stokes, the
pressure acts as a Lagrange multiplier to ensure the zero-divergence
condition on velocity. Similarly, Taira and Colonius consider the
body forcing term as a Lagrange multiplier that ensures the no-slip
condition on the solid boundary. During the projection step, the
velocity field is updated so that both of these constraints are satisfied.
They also use an implicit scheme for diffusion, allowing relatively
large time steps, with CFL numbers as high as 1. One shortcomings
of this method is the requirement that boundary-points be separated
by distances that are nearly equal to the grid spacing.

Mathematical formulation of the ibm used in this work

The governing equations are:

∂u
∂t

+ u ·∇u = −∇p + ν∆u +
∫

s
f(ξ(s, t))δ(ξ − x)ds (1a)

∇ · u = 0 (1b)

u(ξ(s, t)) =
∫

s
u(x)δ(x− ξ)dx

= uB(ξ(s, t)), (1c)

where f is a singular force distribution along the solid boundary
and uB is the velocity of the body. After discretization, we obtain the
following set of algebraic equations: The velocity at the current time step

un is known and gives the values of
the convective terms r̂n; b̂c1 and bc2
are the boundary conditions on the
velocity. Ĝ and D̂ are discrete gradient
and divergence operators. Ĥ and Ê are
the regularization and interpolation
matrices, used to transfer values of the
flow variables between the Eulerian
fluid grid and the Lagrangian body
grid.

Âun+1 − r̂n = −Ĝφ + b̂c1 + Ĥ f

D̂un+1 = bc2 (2)

Êun+1 = un+1
B ,

which is written in matrix form as Â Ĝ Ĥ
D̂ 0 0
Ê 0 0


 un+1

φ

f

 =

 r̂n

0
un+1

B

+

 b̂c1

−bc2

0

 . (3)

Here, φ is a vector of pressure values and f is a vector of force values
at the boundary points. The interpolation in (1c) can be discretized
as: The velocity uk at a point (ξk , ηk) on

the immersed boundary is calculated
by convolving the velocities ui at points
(xi , yi) on the Eulerian fluid grid with a
discrete two-dimensional delta function.

uk = ∑
i

uid(xi − ξk)d(yi − ηk)∆x∆y, (4)

http://linkinghub.elsevier.com/retrieve/pii/S0021999107001234
http://linkinghub.elsevier.com/retrieve/pii/S0021999107001234
http://www.ecs.umass.edu/mie/faculty/perot/Papers/FSM0.pdf
http://www.ecs.umass.edu/mie/faculty/perot/Papers/FSM0.pdf

validation of cuibm 3

The discrete delta function is a product of smoothed one-dimensional
delta functions dh(r) along each Cartesian direction. We choose the
following, where h is the cell width,6 6 A.M. Roma, C.S. Peskin, and M.J.

Berger. An adaptive version of the
immersed boundary method. J. Comput.
Phys., 153(2):509–534, 1999

dh(r) =



1
6h

(
5− 3 |r|h −

√
−3
(

1− |r|h
)2

+ 1

)
, 0.5 < |r|

h ≤1.5

1
3h

(
1 +

√
−3
(
|r|
h

)2
+ 1

)
, 0 < |r|

h ≤0.5

0, otherwise.

From the above, we obtain the elements of matrix Ê, Use of the discrete delta function
requires the grid to be uniform near
the immersed boundary. Sufficient
number of boundary points need to
be chosen to prevent flow leakage,
and the spacing between boundary
points should be nearly equal to the cell
spacing of the Eulerian fluid grid.

Êk,i = ∆x∆y d(xi − ξk) d(yi − ηk). (5)

The matrix Ĥ is obtained similarly, discretizing the forcing term in
(1a). Appropriate transformations result in a system for the momen-
tum fluxes at cell boundaries, qn+1, and modified forces f̃ , which can
be written as: The transformation makes the left-

hand-side matrix symmetric and
we drop the hats from the symbols
representing the transformed sub-
matrices.

(
A Q

QT 0

)(
qn+1

λ

)
=

(
r1

r2

)
(6)

where

Q =
[

G ET
]

, λ =

(
φ

f̃

)
, r1 = rn + bc1, r2 =

(
−bc2

un+1
B

)
(7)

Perot’s approximate factorization results in the following set of
equations, giving velocity field at time step n + 1:

Here, q∗ is the intermediate solution for
the fluxes, used in the projection step,
and BN is an Nth-order approximation
of A−1.

Aq∗ = r1 (8a)

QT BNQλ = QTq∗ − r2 (8b)

qn+1 = q∗ − BNQλ (8c)

Numerical schemes

The cuIBM code uses a staggered grid, with pressure defined at the
center of each grid cell, and velocity fluxes defined on the cell faces.
The convection terms are discretized using a symmetric, conservative
finite-difference scheme with explicit second-order Adams-Bashforth
time stepping. Diffusion terms are discretized using central differ-
ences and advanced in time with the Crank-Nicolson scheme. The
pressure and body forces are calculated implicitly. Note that no ex-
plicit boundary conditions need to be specified for the pressure or
the intermediate velocity, which is an advantage of Perot’s matrix
factorization approach. The above system of equations is solved to
obtain the velocity field at time step n+ 1, the pressure (to a constant)
and the body forces. For the two systems of algebraic equations, (8a)
and (8b), we use a conjugate gradient solver.

validation of cuibm 4

0 0.2 0.4 0.6 0.8 1

−0.5

0

0.5

1

y−coordinate

C
en

te
rl

in
e

u
−

v
el

o
ci

ty

cuIBM
Ghia et al (1982)

(a) Velocity along the vertical centerline, Re = 100.

0 0.2 0.4 0.6 0.8 1

−0.5

0

0.5

1

x−coordinate

C
en

te
rl

in
e

v
−

v
el

o
ci

ty

cuIBM
Ghia et al (1982)

(b) Velocity along the horizontal centerline, Re = 100.

0 0.2 0.4 0.6 0.8 1

−0.5

0

0.5

1

y−coordinate

C
en

te
rl

in
e

u
−

v
el

o
ci

ty

cuIBM
Ghia et al (1982)

(c) Velocity along the vertical centerline, Re = 1000.

0 0.2 0.4 0.6 0.8 1

−0.5

0

0.5

1

x−coordinate

C
en

te
rl

in
e

v
−

v
el

o
ci

ty

cuIBM
Ghia et al (1982)

(d) Velocity along the horizontal centerline, Re = 1000.

Figure 1: Validation using a
lid-driven cavity.Validation

Lid-driven cavity

One of the simplest validation tests for a two-dimensional Navier-
Stokes solver is the lid-driven cavity: the flow in a square cavity, with
the top wall of the cavity (the lid) moving horizontally with constant
velocity. This benchmark does not make use of the immersed bound-
ary method but it is a test for the underlying Navier-Stokes solver.
The Reynolds number is calculated using the speed of the lid, the
length of the side of the square cavity and the kinematic viscosity of
the fluid. The numerical solution was advanced in time until a steady
state was reached, and the results were compared with those ob-
tained by Ghia et al. 7 See Figure 1. We used uniform grids, 32× 32 7 U. Ghia, K. N. Ghia, and C. T.

Shin. High-Re solutions for incom-
pressible flow using the Navier-
Stokes equations and a multigrid
method. J. Comput. Phys., 48(3):
387–411, 1982. doi: 10.1016/0021-
9991(82)90058-4. URL http:

//www.sciencedirect.com/science/

article/pii/0021999182900584

for the Re = 100 case and 128× 128 for the the Re = 1000 case.

http://www.sciencedirect.com/science/article/pii/0021999182900584
http://www.sciencedirect.com/science/article/pii/0021999182900584
http://www.sciencedirect.com/science/article/pii/0021999182900584

validation of cuibm 5

Couette flow between concentric cylinders

This is a simple validation test using an analytical solution, with the
immersed boundary method in internal-flow mode. We calculate the
flow between two concentric cylinders of radii ri = 0.5 and ro = 1,
centered at the origin. The outer cylinder is held stationary while
the inner cylinder is impulsively rotated from rest with an angular
velocity Ω = 0.5. The cylinders are contained in a square, stationary
domain of side 1.5, centered at the origin.

The steady-state analytical solution for this flow is known. In
the interior of the inner cylinder we have solid body rotation while
between the two cylinders the azimuthal velocity is given by:

uθ(r) = Ω ri
(ro/r− r/ro)

(ro/ri − ri/ro)
. (9)

We set the kinematic viscosity to ν = 0.03 and obtained the nu-
merical solution using six different grid sizes, ranging from 75× 75 to
450× 450, to calculate the observed order of convergence. Figure 2(b)
shows plots of the L2 and L∞ norms of the relative errors, verifying
that the scheme provides first-order accuracy in space, as expected
for the ibm formulation we used.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

u
(r)

r

150x150 grid
Analytical Solution

(a) Comparison of the numerical and analytical solutions.

 0.001

 0.01

 0.1

 1

 0.01 0.1

Er
ro

r n
or

m

Cell width

L-2 norm
L-inf norm

1st Order convergence

(b) Convergence, showing errors for different grid sizes.

Figure 2: Validation using the
Couette flow problem.To verify the temporal order of convergence, we ran a simulation

from t = 0 to t = 8 on a 151× 151 grid, using different time steps
(∆t = 0.01, 0.005 and 0.0025). Both first- and third-order accurate
expansions of BN were used and the calculated orders of convergence
(using the L2 norms of the differences in the solutions) at various
times have been summarised in Table 1, and are as expected.

validation of cuibm 6

Order of convergence Order of convergence
Time (N = 1) (N = 3)

0.8 0.97 2.67
2 0.99 2.85
4 0.93 2.73
8 0.97 2.83

Table 1: Observed temporal or-
der of convergence at different
times for Couette-flow test.

Flow over an impulsively started cylinder

We also obtained numerical solutions of the flow over an impulsively
started circular cylinder at Reynolds numbers 40, 550 and 3000, look-
ing at the vorticity contours and also comparing the steady-state drag
coefficient with experimental values published in the literature8 and 8 D. J. Tritton. Experiments on the flow

past a circular cylinder at low Reynolds
numbers. J. Fluid Mech., 6(04):547–567,
1959

with past computations.9 The cylinder has diameter d = 1, is cen-

9 P. Koumoutsakos and A. Leonard.
High-resolution simulations of the flow
around an impulsively started cylinder
using vortex methods. J. Fluid Mech.,
296:1–38, 1995

tered at the origin and is placed in an external flow with free-stream
velocity u∞ = 1. The initial velocity is uniform throughout the do-
main, a square centered at the origin with sides of length 30. The
fluid flows from left to right, and the velocity on the left, top and bot-
tom edges was set to the free-stream velocity. A convective boundary
condition (∂u/∂t + u∞∂u/∂x = 0) was used on the right edge of the
domain. The minimum cell widths used near the solid boundaries
were 0.02, 0.01 and 0.004 respectively for the three cases. The grid
is stretched exponentially away from the body, outside a near-body
region with uniform grid. See Table 2 for all grid details.

-1 0 1 2 3 4
-2

-1.5
-1

-0.5
 0

 0.5
 1

 1.5
 2

(a) Steady state vorticity field.

 0

 1

 2

 3

 4

 5

 0 2 4 6 8 10 12 14 16 18 20

D
ra

g
Co

ef
fic

ie
nt

Time
(b) Time-varying drag coefficient.

Figure 3: Validation with exter-
nal flow over a circular cylinder
at Re = 40. Contour lines in (a)
are drawn from −3 to 3 in steps
of 0.4.

The flow at Re = 40 reaches a steady state with a drag coefficient
of 1.57, which matches the experimental value. The vorticity fields
and the unsteady drag coefficients for the cases with Re = 550 and
3000 also agree well with past computations of Koumoutsakos and
collaborators. The results are presented in Figures 3–4.

validation of cuibm 7

Re nx × ny ∆xmin Extent of uniform grid rstretching

40 330× 330 0.02 [−0.54, 0.54] 1.02
550 450× 450 0.01 [−0.54, 0.54] 1.02
3000 986× 986 0.004 [−0.52, 0.52] 1.01

Table 2: Grid information for
the impulsively started cylinder
tests.

-0.5 0 0.5 1 1.5

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

-0.5 0 0.5 1 1.5

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

(a) Vorticity field at non-dimensional time 3.0

 0

 0.5

 1

 1.5

 2

 0 0.5 1 1.5 2 2.5 3

D
ra

g
 C

o
ef

fi
ci

en
t

Non-dimensional Time

Current Work
Koumoutsakos Leonard (1995)

(b) Time-varying drag coefficient.

-0.5 0 0.5 1 1.5

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

-0.5 0 0.5 1 1.5

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

(c) Vorticity field at non-dimensional time 3.0

 0

 0.5

 1

 1.5

 2

 0 0.5 1 1.5 2 2.5 3

D
ra

g
 C

o
ef

fi
ci

en
t

Non-dimensional Time

Current Work
Koumoutsakos Leonard (1995)

(d) Time-varying drag coefficient.

Figure 4: Validation with im-
pulsively started flow over a
circular cylinder at Reynolds
550 (top) and 3000 (bottom).
The contour lines in (a) are
drawn from −32 to 32 in steps
of 2, and in (c) from −56 to 56
in steps of 4, both excluding the
zero contour.

Unsteady flow over a circular cylinder

We obtained longer runs of flow around a circular cylinder, resulting
in a von Kármán vortex street. The cylinder of diameter 1 is placed
at the center of a domain of size 30× 30, its initial position slightly
offset in the y-direction and then brought to the center at the begin-
ning of the run to trigger the instability in the flow and cause vortex
shedding. The minimum cell width in the grids was 0.02, maintained
in the wake region behind the cylinder. To the left, top and bottom of
the cylinder, the grid stretches with an exponential ratio of 1.02. Table
3 lists the results obtained at different Reynolds numbers, comparing
the Strouhal number of the vortex shedding with the experimental
results of Williamson.10 10 C. H. K. Williamson. Vortex dynamics

in the cylinder wake. Ann. Rev. Fluid
Mech., 28:477–539, 1996

validation of cuibm 8

Re Cl Cd St Stexp

100 ±0.339 1.37± 0.009 0.166 0.164
150 ±0.532 1.35± 0.026 0.185 0.184
200 ±0.688 1.36± 0.042 0.197 0.197

Table 3: Computed data for
flow past a circular cylinder
at different Reynolds numbers
and comparison with experi-
mental results.

 0 2 4 6 8 10 12 14

-3

-2

-1

 0

 1

 2

 3

 0 2 4 6 8 10 12 14

-3

-2

-1

 0

 1

 2

 3

Figure 5: Flow over a circular
cylinder at Reynolds 200. Vor-
ticity contours from −5 to 5 in
increments of 0.4.

The results above validate our code with both analytical results
and experimental benchmarks for flows with stationary solid inter-
faces. The following cases demonstrate the capability of the code to
reproduce past results for flows with moving boundaries. The first
case is the heaving airfoil in a uniform flow computed by Lewin
and Haj-Hariri11 and the second case is an airfoil that performs both 11 G. C. Lewin and H. Haj-Hariri.

Modelling thrust generation of a two-
dimensional heaving airfoil in a viscous
flow. J. Fluid Mech., 492:339–362, 2003

pitching and heaving motions, simulating the flapping motion of an
insect wing, as computed by Wang et al.12

12 Z. J. Wang, J. M. Birch, and M. H.
Dickinson. Unsteady forces and flows
in low Reynolds number hovering
flight: two-dimensional computations
vs. robotic wing experiments. J. Exp.
Biol., 207(3):449–460, 2004

Unsteady flow of a heaving airfoil

We computed the flow of an elliptic airfoil of thickness-to-chord ratio
0.12 and chord length c = 1 submerged in a free stream with velocity
u∞ = 1.0. The airfoil oscillates in the direction perpendicular to
the free-stream velocity with frequency f and amplitude Ymax. The
problem parameters are the reduced frequency k = 2π f c/u∞ = 2, the
non-dimensional maximum heaving velocity kh = kYmax/c = 0.8, and
the Reynolds number, Re = u∞c/ν = 500. The domain size is 30× 30
and the near-body region in [−0.52, 0.52]× [−0.52, 0.52] has a uniform
grid of width 0.005, and exponentially stretched grids apply in front
of the airfoil (stretching ratio of 1.02), in the y-direction above and
below the body (stretching ratio 1.015), and in the region [0.52, 0.78]
immediately behind the airfoil (stretching ratio 1.02); a uniform grid
of size 0.01 follows from that region to the edge of the domain. The
total size of the mesh is 1339× 686 and the time step used was 0.0005.
The boundary conditions are the same as those used for the earlier
cases of external flow over a cylinder. The vorticity field as shown in
Figure 6 matches the results in Fig. 3 of Lewin and Haj-Hariri.

validation of cuibm 9

(a) t∗ = 7.125 (b) t∗ = 7.3125

(c) t∗ = 7.5 (d) t∗ = 7.6875

(e) t∗ = 8.0625 (f) t∗ = 8.4375

Figure 6: Vorticity field for the
downstroke of the heaving air-
foil, with contours drawn at
levels ±2, ±6, ±10, etc.

validation of cuibm 10

Flow due to a flapping airfoil

We consider a flapping airfoil, the motion of which is described by

x(t) =
A0

2
cos(2π f t)

α(t) = α0 + β sin(2π f t + φ),

where x(t) is the position of the center of the airfoil and α(t) is the
angle made by the airfoil with the line of oscillation. The airfoil is
elliptical with a thickness-to-chord ratio of 0.12 and rotates about
its center. The Reynolds number is calculated using the maximum
translational velocity of the airfoil and the chord length. We consider
the case with symmetrical rotation (φ = 0) at Reynolds number 75
and with A0/c = 2.8, α = π/2, β = π/4 and f = 0.25 Hz.

The airfoil has chord length 1 and oscillates at the center of a do-
main, each side of which is 30 chord-lengths long. The grid is uni-
form in the region [−2, 2] × [−0.52, 0.52] with cell width 0.01 and
beyond this region it is stretched with a ratio of 1.01 on all sides, re-
sulting in a mesh size of 930× 654 cells. The time step used is 0.001.

The vorticity field at different times during the first cycle is shown
in Figure 8 and a comparison of the unsteady lift coefficient with
the computational and experimental results presented by Wang et
al. is plotted in Figure 7. The experiments were conducted with a
three-dimensional wing and both simulations were performed in two
dimensions, hence we don’t expect them to exactly match. But we
note that the computational results follow the expected trend and
agree reasonably well with the experimental results.

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 0.5 1 1.5 2 2.5 3

Lift Coefficient

Current Work
Computational: Jane Wang et al (2004)

Experimental: Jane Wang et al (2004)

Figure 7: Unsteady lift coeffi-
cient for the first three cycles
of a flapping airfoil. Time is
non-dimensionalized with the
period of oscillation and the
lift coefficient is calculated by
normalizing the lift force with
respect to the maximum of the
quasi-steady force experienced
by the airfoil.

validation of cuibm 11

Figure 8: Vorticity field of the
flow around a flapping airfoil
at equally spaced time instants
in the first cycle of flapping:
T = 0.125, 0.25, 0.375,

validation of cuibm 12

Implementation details

The various formulations of the ibm that have been published in the
open literature can all be written in a form similar to Equation (6).
We view this form as a general framework to implement a variety
of fluid solvers. If there is no immersed body, then the matrices E
and ET are zero and the system solves the unmodified Navier-Stokes
equations. In another ibm technique, known as the direct-forcing
method,13 the E matrix is again absent, while the matrix A can be 13 E Fadlun, R. Verzicco, P. Orlandi, and

J. Mohd-Yusof. Combined Immersed-
Boundary Finite-Difference Methods
for Three-Dimensional Complex Flow
Simulations. J. Comput. Phys., 161(1):
35–60, 2000

appropriately modified so that the no-slip condition is enforced at the
boundary locations that intersect with the grid. In this way, we build
the cuIBM framework to allow the testing of different solvers and the
development of new ones.

The code is written in C++ and uses gpu hardware via Cuda. It
consists of a base class, NavierStokesSolver, which stores all the
matrices required for the solution of the Navier-Stokes equations in a
rectangular domain without immersed bodies. The class NSWithBody

inherits from this class and also stores the information regarding any
bodies present in the flow domain. The different ibm solvers such as
TairaColoniusSolver and FadlunEtAlSolver inherit from this class.
Each derived class makes use of the body information and has its
own version of the methods used to generate the sub-matrices A and
Q, specific to the solver used.

The flow description and the simulation parameters are supplied
to the code using input files. There are four input files:

. Flow file: Specifies the velocity boundary conditions on the do-
main and the kinematic viscosity of the fluid.

. Domain file: Provides information regarding the grid and flow
domain. Currently, only Cartesian grids are supported but the
mesh can be stretched exponentially whenever required.

. Body file: Specifies the locations of the boundary points and the
rigid-body motion that the body undergoes during the simulation.

. Simulation file: Contains the numerical parameters relevant for
the simulation, such as the time step, ibm schemes, time-stepping
schemes, etc.

The various time-stepping schemes available are explicit Eu-
ler, second-order Adams-Bashforth and third-order Runge-Kutta
methods for the convection terms, and explicit Euler, implicit Euler,
second-order Adams-Bashforth and Crank-Nicolson schemes for the
diffusion terms. All spatial discretizations have been evaluated using
central differences.

validation of cuibm 13

The matrices and linear systems are stored and solved using the
Cusp library,14 distributed freely by the nvidia Corporation un- 14 Nathan Bell and Michael Garland.

Cusp: Generic parallel algorithms for
sparse matrix and graph computations,
2012. URL http://cusp-library.

googlecode.com

der the Apache License. This library provides storage formats and
routines for sparse linear algebra and has been optimized to run on
nvidia gpus when compiled using the nvcc compiler. The same
code can also be compiled to run on cpus, when it makes use of the
Math Kernel Library from Intel. The entire code is written using the
Thrust library that now ships with the Cuda compiler, which consists
of a number of basic algorithms that are gpu-optimized versions of
those in the C++ Standard Template Library. These functions are tem-
plated over the memory type, and the same code can be compiled to
run on both cpus and gpus.

We use yaml
15 to parse the human-readable input files. This code 15 Oren Ben-Kiki, Clark Evans, and

Brian Ingerson. YAML ain’t markup
language (YAML) (tm) version 1.2.
Technical report, YAML.org, 9 2009.
URL http://www.yaml.org/spec/1.2/

spec.html

is distributed under the MIT license and we have included parts of it
in our code base.

The use of the Cusp library gives us access to the different solvers
and pre-conditioners it provides. All the sparse linear algebra is
performed using Cusp functions. Several custom Cuda kernels wwer
written so that all operations take place on the gpu and the data
transfer between the host and the device is minimized. It is well
known that sparse matrix computations are memory-bound, and the
greater memory bandwidth that gpus can provide result in a speed-
up compared to the code running on a cpu.

We release the cuIBM code under the MIT License, and maintain a
Bitbucket repository at https://bitbucket.org/anushk/cuibm/.
We also provide matlab and Gnuplot postprocessing scripts to plot
the various flow variables. User documentation is currently being
written.

References

Nathan Bell and Michael Garland. Cusp: Generic parallel algo-
rithms for sparse matrix and graph computations, 2012. URL
http://cusp-library.googlecode.com.

Oren Ben-Kiki, Clark Evans, and Brian Ingerson. YAML ain’t
markup language (YAML) (tm) version 1.2. Technical report,
YAML.org, 9 2009. URL http://www.yaml.org/spec/1.2/spec.

html.

E Fadlun, R. Verzicco, P. Orlandi, and J. Mohd-Yusof. Com-
bined Immersed-Boundary Finite-Difference Methods for Three-
Dimensional Complex Flow Simulations. J. Comput. Phys., 161(1):
35–60, 2000.

http://cusp-library.googlecode.com
http://cusp-library.googlecode.com
http://www.yaml.org/spec/1.2/spec.html
http://www.yaml.org/spec/1.2/spec.html
https://bitbucket.org/anushk/cuibm/
http://cusp-library.googlecode.com
http://www.yaml.org/spec/1.2/spec.html
http://www.yaml.org/spec/1.2/spec.html

validation of cuibm 14

U. Ghia, K. N. Ghia, and C. T. Shin. High-Re solutions for incom-
pressible flow using the Navier-Stokes equations and a multigrid
method. J. Comput. Phys., 48(3):387–411, 1982. doi: 10.1016/0021-
9991(82)90058-4. URL http://www.sciencedirect.com/science/

article/pii/0021999182900584.

P. Koumoutsakos and A. Leonard. High-resolution simulations
of the flow around an impulsively started cylinder using vortex
methods. J. Fluid Mech., 296:1–38, 1995.

G. C. Lewin and H. Haj-Hariri. Modelling thrust generation of a
two-dimensional heaving airfoil in a viscous flow. J. Fluid Mech.,
492:339–362, 2003.

R. Mittal and G. Iaccarino. Immersed boundary methods. Ann.
Rev. Fluid Mech., 37(1):239–261, 2005. ISSN 0066-4189. doi:
10.1146/annurev.fluid.37.061903.175743. URL http://arjournals.

annualreviews.org/doi/abs/10.1146%2Fannurev.fluid.37.

061903.175743.

J. B. Perot. An analysis of the fractional step method. J. Comput.
Phys., 108(1):51–58, 1993. ISSN 0021-9991. URL http://www.ecs.

umass.edu/mie/faculty/perot/Papers/FSM0.pdf.

C.S. Peskin. Flow patterns around heart valves: A numeri-
cal method. J. Comput. Phys., 10(2):252–271, 1972. ISSN 0021-
9991. URL http://linkinghub.elsevier.com/retrieve/pii/

0021999172900654.

A.M. Roma, C.S. Peskin, and M.J. Berger. An adaptive version of the
immersed boundary method. J. Comput. Phys., 153(2):509–534, 1999.

K. Taira and T. Colonius. The immersed boundary method: A
projection approach. J. Comput. Phys., 225(2):2118–2137, 2007. ISSN
00219991. doi: 10.1016/j.jcp.2007.03.005. URL http://linkinghub.

elsevier.com/retrieve/pii/S0021999107001234.

D. J. Tritton. Experiments on the flow past a circular cylinder at low
Reynolds numbers. J. Fluid Mech., 6(04):547–567, 1959.

Z. J. Wang, J. M. Birch, and M. H. Dickinson. Unsteady forces and
flows in low Reynolds number hovering flight: two-dimensional
computations vs. robotic wing experiments. J. Exp. Biol., 207(3):
449–460, 2004.

C. H. K. Williamson. Vortex dynamics in the cylinder wake. Ann.
Rev. Fluid Mech., 28:477–539, 1996.

http://www.sciencedirect.com/science/article/pii/0021999182900584
http://www.sciencedirect.com/science/article/pii/0021999182900584
http://arjournals.annualreviews.org/doi/abs/10.1146%2Fannurev.fluid.37.061903.175743
http://arjournals.annualreviews.org/doi/abs/10.1146%2Fannurev.fluid.37.061903.175743
http://arjournals.annualreviews.org/doi/abs/10.1146%2Fannurev.fluid.37.061903.175743
http://www.ecs.umass.edu/mie/faculty/perot/Papers/FSM0.pdf
http://www.ecs.umass.edu/mie/faculty/perot/Papers/FSM0.pdf
http://linkinghub.elsevier.com/retrieve/pii/0021999172900654
http://linkinghub.elsevier.com/retrieve/pii/0021999172900654
http://linkinghub.elsevier.com/retrieve/pii/S0021999107001234
http://linkinghub.elsevier.com/retrieve/pii/S0021999107001234

	Numerical Method
	Validation
	Implementation details

