

1

lossgainRSL v.6.20a User’s Manual

Contents
1 General information .. 2

2 How to install and test ... 2

2.1 Windows version ... 2

2.2 Linux version ... 3

3 Command line syntax .. 4

4 Input data ... 5

4.1 Table of genes .. 6

4.2 Table of orthologs .. 7

4.3 Table of paralogs ... 8

4.4 Protein similarity matrix .. 8

4.5 Table of orthologous groups .. 9

4.6 Table of protein clusters .. 10

5 Configuration file .. 10

5.1 Program operation modes: [mode]... 10

5.2 Input data location: [data] .. 13

5.3 Relevant field names: [fields] .. 14

5.4 Species and group names: [species] ... 15

5.5 Gene selection predicate: [predicate] ... 16

5.5.1 Operator SET and its variants ... 17

5.5.2 Operator IN ... 19

5.5.3 Labels and operator GOTO .. 20

5.5.4 Operator ADD .. 20

5.5.5 Verification of 2-species conditions and operators BOR/EOR, BAND/EAND 21

5.5.6 Operators OVER/IN2/NEXT and verification of 3-species conditions 24

5.5.7 Predicate debugging ... 27

6 Output data .. 27

6.1 lossgainRSL operation log ... 27

6.2 Output file .. 33

7 Using other input data sources .. 34

7.1 Addition of genomes not included in the Ensembl .. 34

7.1.1 Manual preparation of a new table of genes ... 34

7.1.2 Importing the table of genes from RefSeq.. 35

7.1.3 Augmenting the ortholog and paralog tables by addspecies utility 36

7.2 Using alternative information on gene homology ... 39

2

1 General information
The lossgainRSL program is aimed at the prediction of gene losses and gains between several

groups of species. It allows the user, for a given reference species, to identify its genes that are

present in and/or absent from several groups of species in accordance with a given logical function

(predicate). The elementary condition “gene X is present in the group of species S”, and the

predicate is a Boolean function composed of arbitrary number of such conditions using logical

connectives AND, OR, NOT. A group of species does not need to be a taxonomic group; it can be

formed on the basis of arbitrary traits. In particular, a species may belong to multiple groups and S

may consist of a single species. For a gene X to present in the group S, it is required that X is present

in at least p species from S (p is a parameter of the group). The presence of gene X of the reference

species in some other species is understood as not only presence of gene X' that is an ortholog or

close homolog of X in the genome of other species, but also the synteny: there must be several

distinct genes (“witnesses”) in the vicinity of X, which have respective orthologous witnesses in the

vicinity of X'. The groups of species, predicate, required number of witnesses and other synteny

details, vicinity sizes and the extent of homology – all are the program parameters, which allows its

application to the wide range of studies.

The current version of lossgainRSL is primarily orientated to species and genomic data included in

the Ensembl database (http://www.ensembl.org/), but this user’s manual also describes other

possibilities such as using GenBank (https://www.ncbi.nlm.nih.gov/genbank/) and OrthoDB

(https://www.orthodb.org/) data. The program has been written in C++ as a command line utility for

Windows/Linux. Both 32- and 64-bit OS versions are supported; the latter is highly recommended

for studies with many species because of memory requirements. The program supports parallel

multiprocessing in the MPI environment of version 2.1 or above.

The lossgainRSL program was developed in the Laboratory of Mathematic Methods and Models in

Bioinformatics, Institute for Information Transmission Problems (Kharkevich Institute) of the

Russian Academy of Sciences (http://lab6.iitp.ru) by Lev Rubanov, Alexandr Seliverstov and

Vassily Lyubetsky. The current versions of lossgainRSL executables for Windows and the source

code for Linux under the GNU GPL license are available at http://lab6.iitp.ru/en/lossgainrsl/

together with the test example and this manual.

Minimum program requirements: Windows or Linux OS 32/64 bit (64-bit is recommended), single

CPU with the frequency of 1 GHz (3-4 GHz is recommended), 2 GB RAM (8 GB is recommended

for multi-species studies).

2 How to install and test

2.1 Windows version

No installer is provided for Windows; the user should download zipped archive(s) with chosen

executable and unpack it into a working directory. There are three executable variants:

– lossgainrsl.exe – intended for 32-bit Windows;

– lossgainrsl64nompi.exe – single-CPU version for 64-bit Windows;

– lossgainrsl64.exe – parallel version for 64-bit Windows with MS-MPI installed.

http://www.ensembl.org/
https://www.ncbi.nlm.nih.gov/genbank/
https://www.orthodb.org/
http://lab6.iitp.ru/
http://lab6.iitp.ru/en/lossgainrsl/

3

The third option requires the Microsoft MPI v10.0 redistributable (https://www.microsoft.com/en-

us/download/details.aspx?id=57467) to be installed in Windows system. Different MPI brands or

versions are not supported by the executable.

In addition, for the binary executables to operate under Windows, Microsoft Visual С++ 2008 SP1

redistributable libraries may be required, which are available from:

https://www.microsoft.com/ru-ru/download/details.aspx?id=2092 (x64)

https://www.microsoft.com/ru-ru/download/details.aspx?id=5582 (x86).

The operability testing is accomplished by the test example with six species that is available at the

program webpage, as follows:

1. Download the archive, example.zip, and unpack it to the working directory, where the

example folder will be created.

2. Copy chosen executable(s) to the example folder.

3. Start the Command Prompt and switch to the folder.

4. Depending on the selected variant of the program, run one of the commands:

run for checking the 32-bit version,

run64 for checking the 64-bit version without MPI,

run64mpi for checking the 64-bit version with MPI (on two CPUs).

5. After few minutes, the two first options will display the message:
Test completed OK.

It confirms that respective executable is operable.

6. If the MPI-enabled variant is being checked, the message will read:
Xs: Completed OK.

The user should compare a contents of the created file, result.txt, with that of

result4.txt (or result4.ref) from the same folder. It can be done easier by import to

Excel. The created file has to contains the same four-line groups, possibly in different order.

Discrepancies in the very last column should be ignored.

2.2 Linux version

The lossgainRSL program is installed through the compilation of the source code available for

download at the program webpage. In order to use MPI parallelization, an MPI 2.1 compliant

version of libraries must be installed in the system. The current version of openMPI

(https://www.open-mpi.org/) is recommended for various Linux versions. Though, many clusters

use MVAPICH or other implementations of the MPI which also will do. To install and test the

program, the following steps to be performed:

1. Download the program distribution tarball, usually named lossgainrsl-x.yy.tar.gz,

where x.yy is a version number, to a working directory.

2. Unpack the file with a command:
tar –xf filename

3. Switch to the directory created:
cd lossgainrsl-x.yy

4. In the simplest case, where C++ compiler is named g++ in the system, and parallel

computing is not planned, the make command without parameters can be enough.

5. Otherwise, the Makefile in the current directory should be edited prior to run make. It is

recommended to preserve the source file and edit a copy of it. The user should specify:

CXX= , a command to run the C++ compiler for building mpi-enabled programs; and

https://www.microsoft.com/en-us/download/details.aspx?id=57467
https://www.microsoft.com/en-us/download/details.aspx?id=57467
https://www.microsoft.com/ru-ru/download/details.aspx?id=2092
https://www.microsoft.com/ru-ru/download/details.aspx?id=5582
https://www.open-mpi.org/

4

CXXFLAGS= , required parameters for the compiler. Some typical variants are provided in

commented out form in the beginning of the Makefile.

6. Once the makefile has been edited, run make or make filename (if the new file has been

saved with a name filename).

7. After the successful compilation, a new executable file, lossgainRSL, will be created in the

./bin directory. Error messages or warnings should be analyzed and eliminated e.g. by

editing the Makefile again. Prior to re-run make, the command make clean should be

executed to clear previous results.

8. When the program has been built successfully, run make test.

9. After few minutes, the message Example completed OK is displayed, which confirms that

the program is operable.

10. To test the mpi-enabled version of the program on two CPUs, run the command

make mpitest. In this case, the result should be checked as described in the last section,

item 6.

3 Command line syntax
In a single-CPU operating mode, lossgainRSL should be run by the following command line:

lossgainRSL [-x|--x] [-q|-qq] [-gM] [-n] [%name=value...] [config] [outfile]

Here, the program name is shown for Linux; in Windows use lossgainrsl (32-bit version) or

lossgainrsl64nompi (64-bit version without MPI) or lossgainrsl64 (64-bit version

supported by MS-MPI). The command line is case-insensitive except for file names in Linux. All

command line arguments are optional. Short help on the command line syntax and options will be

displayed if the program is run with any of the arguments ? -? –h. The program options are

specified by a dash (-) or slash (/) followed by a letter and value if any (parameters are specified in a

different form). The following options are supported by the current version of lossgainRSL:

-x Outputs only sought-for genes of the reference species along with their homologs in

other species even if entire synteny blocks (i.e., including witnesses) were requested in

the configuration file. And vice versa, --x option instruct the program to output genes

of any species together with witnesses in that species irrespective of the configuration

setting.

-q|-qq This option allows shortening the program log output to console. Default is a maximum

detailed log. If -q is specified, the program does not output a list of species and

predicate specified in the configuration file. If -qq is specified, the program in addition

does not output details of reading input files and searching genes, and output only final

result thus producing the shortest log.

-gM Controls the frequency of output during the search of candidate genes. The value of M is

a step of displaying serial numbers of genes in each genomic sequence under analysis

(chromosome, scaffold, contig, etc.). Zero value cancels this output. The step of 10 is

used by default.

-n Prevent the program from using MPI e.g. in case of incompatible version of MPI

libraries installed in the OS. If lossgainRSL fails due to the lack of MPI, first it is

5

recommended to try this option. If the error persists, use the program version compiled

without MPI support.

%name=value The program allows the user to specify numerical parameters in the configuration file

(in the form of %name, where name is an identifier); the effective values of the

parameters to be specified in the command line by this argument(s). Separate argument

is required for each named parameter; the order is arbitrary. Numerical values may be of

integral or fractional types, written in fixed or scientific form. To use the command in

Windows scripts, the percent character should be doubled.

Above options may appear in any order at any place of the command line. The first argument that is

neither option nor parameter is used as the name of configuration file (config), the second – as the

name of output file (outfile).

config The name of configuration file including optional path. Default is file config.ini in

the current directory. The configuration file is described in section 0.

outfile The name of output file including optional path. Default is file result.txt in the

current directory. The output file is described in section 0 of this manual.

The lossgainRSL program outputs its log (6.1) to the standard stream stdout (the console by default)

which can be redirected to a file if desired. Debug information, if requested in the configuration file,

will output to the standard stream stderr and can be redirected to a separate file by adding the

argument, 2>debugfile, to the command line.

The lossgainRSL program (64-bit version only) supports parallelization in the MPI environment.

The following command line should be used for multiprocessing:

mpirun –np P lossgainRSL [-x|--x] [-q|-qq] [-gM] [%name=value...] [jobfile] [outfile]

where P is the number of logical CPUs the program will run on. Here, the program names in Linux

are shown; Windows users should specify mpiexec and lossgainrsl64 instead. Other arguments

of the command line were described above.

4 Input data
Preferred use of the lossgainRSL program relies on input data from the Ensembl database

(www.ensembl.org). Doing so, the set of species in a study is naturally limited to those included in

the database (as of March 2019, version 95 of the vertebrate database includes 162 genomes). The

program ability of working with species that are absent from Ensembl is discussed in chapter 7.

When using input data from Ensembl, the program requires two or three types of input files

depending on the configuration file. These files are described in below sections 4.1–4.3. The user

can choose from the two ways for obtaining these files:

1) The user submits a proper SQL query to a public Ensembl MySQL server (see

http://www.ensembl.org/info/data/mysql.html for details) through a client application. We do

not describe this option in detail as it is intended for skilled users who know SQL and have

learned the Ensembl database schemes. In addition, a complex SQL query can take much

http://www.ensembl.org/
http://www.ensembl.org/info/data/mysql.html

6

time to process so the public server will forcedly terminate it. In such cases users are

recommended to set up a mirror database at their premises, which can be rather difficult.

2) The user enters the BioMart data-mining tool interface at the Ensembl web site

(http://www.ensembl.org/biomart/martview/), in order to obtain necessary data interactively.

It does not require deep skills but can be tedious. In some cases the files have to be merged

from parts using some ancillary facilities such as OS shell or text editor. It is precisely this

method that we describe below in sections 4.1–4.3 for each data type.

As is described in chapter 7, the lossgainRSL program allows using, instead of Ensembl, some other

sources such as GenBank and OrthoDB, but the user must compose the necessary files manually or

with assistance of his/her own software. Yet three alternative types of input data supported by the

current program version are described in sections 4.4–4.6.

4.1 Table of genes

This table is required for each species involved in the study. It contains IDs of all proteins and genes

of this species as well as gene coordinates, names and annotations. The table is a TSV (tab-separated

values) formatted text file containing field names in the first line. Each subsequent line describes a

protein (for protein-encoding genes) or RNA (transfer, ribosomal etc.). These lines appear in

arbitrary order. The name of the table must coincide with a species name in the configuration file;

all such tables must be in the same directory and have the same extension(s) of the file name.

The set and order of fields in the tables of genes may differ, but each table must include at least the

fields listed in Table 1.

Table 1. Obligatory fields of the table of genes.

Name in Ensembl v95 Description

Protein stable ID Identifier of the protein in the Ensembl database

Gene stable ID Identifier of the gene in the Ensembl database

Chromosome/scaffold name Identifier of the top-level genomic sequence (chromosome, scaffold,

contig...)

Gene start (bp) Starting position of the gene in the sequence

Gene end (bp) Ending position of the gene in the sequence

Strand Indication of the strand: 1 is positive (forward), –1 is negative

Gene name* Symbolic name of the gene

Gene description* Description or annotation of the gene

Note: The fields labeled with *, strictly speaking, are not required by the program, but highly

recommended for inclusion in the table of genes.

Field names in the table corresponds to Ensembl version 95. The lossgainRSL program does not

assume these names unchangeable, but all tables must use the same name of each field. Moreover,

the field names at output may differ from those shown in Table 1; the mapping can be set in the

configuration file and does not require modifying the program.

http://www.ensembl.org/biomart/martview/

7

Examples of the table of genes are provided in genes directory within the test example

(http://lab6.iitp.ru/ru/lossgainrsl/example.zip). Let us give the sequence of actions resulting in e.g.

Human.tsv file in that directory:

1. Enter the BioMart interface (http://www.ensembl.org/biomart/martview/)

2. In the CHOOSE DATABASE list box, select Ensemble Genes 95 (or later).

3. In the CHOOSE DATASET list box, select Human genes (...).

4. Click Filters in the left, then expand REGION in the right.

5. Check Chromosome/scaffold box and select Y chromosome from the list.

6. Click Attributes in the left and select Features in the right, then expand GENE below.

7. Uncheck all fields, then check the fields listed in Table 1. Those fields will appear in each line of

the file in the order they were checked.

8. Press Results button in the top left. In the right, select Export all results to File, TSV and check

Unique results only, then press Go button.

9. A file named mart_export.txt will be downloaded to the user’s directory for downloads. Rename

this file to Human.tsv and move it to the directory containing all tables of genes.

4.2 Table of orthologs

This table is required for the reference species as well as for each substitute species mentioned in a

3-species condition (see 5.5.6 for details). The table is a TSV-formatted text file; heading line is not

needed and ignored if appears. Each line of the table contains two fields with Ensembl IDs of two

orthologous genes: the first one of the species the table is pertinent to (i.e., the reference or

substitute species), and the second gene of some other species.

Notice that the table of orthologs for the reference or substitute species must contain orthologs of

each gene of this species in all other species, therefore it can be voluminous. No order of lines is

assumed but can be helpful. The name of the table must coincide with the species name in the

configuration file; all such tables must be in the same directory and have the same extension(s) of

the file name.

Example of the table of orthologs is provided in orthologs directory within the test example

(http://lab6.iitp.ru/ru/lossgainrsl/example.zip). Let us give the sequence of actions resulting in

Mouse.tsv file in that directory:

1. Enter the BioMart interface (http://www.ensembl.org/biomart/martview/)

2. In the CHOOSE DATABASE list box, select Ensemble Genes 95 (or later).

3. In the CHOOSE DATASET list box, select Mouse genes (...).

4. Click Filters in the left, then expand REGION in the right.

5. Check Chromosome/scaffold box and select Y chromosome from the list.

6. Click Attributes in the left and select Homologues in the right, then expand GENE below.

7. Leave checked only Gene stable ID field, then shrink GENE panel.

8. Expand ORTOLOGUES panel below and scroll it to a species to look for orthologs in, e.g.

Human. Check Human gene stable ID box.

9. Click Filters in the left, then shrink REGION and expand MULTI SPECIES COMPARISONS.

Check Homologue filters box, choose Only, then select Orthologous Human Genes from the list

box.

10. Press Results button in the top left. In the right, select Export all results to File, TSV and check

Unique results only, then press Go button.

http://lab6.iitp.ru/ru/lossgainrsl/example.zip
http://www.ensembl.org/biomart/martview/
http://lab6.iitp.ru/ru/lossgainrsl/example.zip
http://www.ensembl.org/biomart/martview/

8

11. A file named mart_export.txt will be downloaded to the user’s directory for downloads. Rename

this file to Mouse_Human.txt.

12. Click Attributes in the left and uncheck the box previously checked in item 8. Then repeat items

8-12 with another species until all “second” species are examined for given “first” one.

13. Merge all files obtained in item 11. For example, the following Windows command will do:
copy /a Mouse_*.txt /b Mouse.tsv

14. Move the result file, Mouse.tsv, to the directory containing all tables of orthologs.

4.3 Table of paralogs

This table is needed if orthologous genes should be selected from not only orthologs but also

paralogs of them as specified in the configuration file. The table is required for each species whose

paralogs should be considered. It is a TSV-formatted text file; heading line is not needed and

ignored if appears. Each line of the table contains two fields with Ensembl IDs of two paralogous

genes of the same species this table is pertinent to. The table must contain all ordered (i.e. including

transpositions) pairs of paralogous genes of given species; the order of pairs does not matter. The

name of the file must coincide with a species name in the configuration file; all such tables must be

in the same directory and have the same extension(s) of the file name.

Example of the table of paralogs is provided in paralogs directory within the test example

(http://lab6.iitp.ru/ru/lossgainrsl/example.zip). Let us give the sequence of actions resulting in

Mouse.tsv file in that directory:

1. Enter the BioMart interface (http://www.ensembl.org/biomart/martview/)

2. In the CHOOSE DATABASE list box, select Ensemble Genes 95 (or later).

3. In the CHOOSE DATASET list box, select Mouse genes (...).

4. Click Filters in the left, then expand REGION in the right.

5. Check Chromosome/scaffold box and select Y chromosome from the list.

6. Shrink REGION in the right, then expand MULTI SPECIES COMPARISONS. Check

Homologue filters box, choose Only, then select Paralogous Mouse Genes from the list box.

7. Click Attributes in the left and select Homologues in the right, then expand GENE below.

8. Leave checked only Gene stable ID field, then shrink GENE panel.

9. Ensure that below Attributes in the left the only field is Gene stable ID, otherwise uncheck extra

fields under GENE or ORTHOLOGUES in the right. Then expand PARALOGUES in the right

and check Mouse paralogue gene stable ID box.

10. Press Results button in the top left. In the right, select Export all results to File, TSV and check

Unique results only, then press Go button.

11. A file named mart_export.txt will be downloaded to the user’s directory for downloads. Rename

this file to Mouse.tsv and move it to the directory containing all tables of paralogs.

4.4 Protein similarity matrix

This data type is an alternative for the tables of orthologs and paralogs from Ensembl (4.2, 4.3).

Notice that the table of genes (4.1) is still required for each species involved in the study though in

general case such table may contain protein and gene IDs not from Ensembl.

The protein similarity matrix is required for each species. It is a TSV-formatted text file without

heading line, which is ignored if appears. Each data line of the matrix file must contain four fields

listed in Table 2. The name of the file must coincide with the species name in the configuration file;

all matrices must be in the same directory and have the same extension(s) of the file name.

http://lab6.iitp.ru/ru/lossgainrsl/example.zip
http://www.ensembl.org/biomart/martview/

9

The matrix lines can appear in an arbitrary order, but the values of fields 3 and 4 must be consistent

over all matrices. Thus, if the matrices are formed using BLASTP, the same parameters have to be

used everywhere, including the amino acid substitution table such as BLOSUM62. The entries may

be non-unique: multiple occurrence of the same protein pair is allowed, and lossgainRSL will use

one corresponding to the maximum Row score and minimum E-value.

Table 2. Fields of the protein similarity matrix entry.

No. Description

1 A protein identifier of the species corresponding to the matrix name. If all tables of genes

comply with section 4.1, the Ensembl protein ID has to be used as the identifier. If a table of

genes has compatible format but relies on other protein identifiers, those ID have to be used

in the protein similarity matrix. If a line of the matrix contains unknown protein ID, such

line will be skipped with a warning.

2 A protein identifier of the same or other species. Similar to field 1 notes apply.

3 The raw score amount for optimal local alignment of the two amino acid sequences for the

proteins specified in the fields 1 and 2.

4 The expectation (E-value) for such alignment.

An opening portion of the protein similarity matrix imported to Excel is exemplified in the

Xenopus_scores sheet of the file http://lab6.iitp.ru/ru/lossgainrsl/dataformat.xlsx. Such matrix can

be formed with BLASTP, provided that amino acid sequences for all species and protein IDs have

been prefetched from the Ensembl or another source.

4.5 Table of orthologous groups

This data type is concentrated in a single table, which substitutes for all data normally obtained from

Ensembl as described in 4.1–4.3. The table is a TSV-formatted text file generated by the user’s

software from the available data, in particular, OrthoDB (https://www.orthodb.org/). The table may

be physically split into several files as listed in the configuration, but they shall be logically merged

by the lossgainRSL program.

First line of the table must contain the field names for all subsequent lines excepting empty ones,

which separates the groups. The heading line allows any order and set of fields, but they must

include at least the fields listed in Table 1 with the only exception: instead of the Protein stable ID

field (which contains the protein identifier), the Species field is required that contains the identifier

of a species from the configuration file. The names and order of fields may differ from those shown

in Table 1; actual names have to be specified in the configuration file. Here, gene and sequence IDs

are taken from the source used to build the table of orthogroups.

Let us stress that here one table contains the information on genes of all species participating in the

study. The order of lines in the table is an important part. Each line describes a gene of some

species, and such lines are grouped in orthogroups composed of pairwise orthologous genes from

same or different species. The genes that have no orthologs are omitted from the table.

A portion of the table of orthogroups imported to Excel is exemplified in the Orthogroups sheet of

the file http://lab6.iitp.ru/ru/lossgainrsl/dataformat.xlsx.

http://lab6.iitp.ru/ru/lossgainrsl/dataformat.xlsx
https://www.orthodb.org/
http://lab6.iitp.ru/ru/lossgainrsl/dataformat.xlsx

10

4.6 Table of protein clusters

This data type is concentrated in a single table, which substitutes for orthology/paralogy data

normally obtained from Ensembl (sections 4.2, 4.3). However, the table of genes (4.1) is still

required for each species involved in the study. The table is a TSV-formatted text file generated with

use of previously developed program for protein clustering (http://lab6.iitp.ru/ru/pr_protclust/). The

table may be physically split into several files as listed in the configuration, but they shall be

logically merged by the lossgainRSL program.

First line of the table must contain the field names for all subsequent lines excepting empty ones,

which separates the clusters. The heading line allows any order and set of fields, but they must

include at least the field with gene or protein identifier from those listed in Table 1.

Let us stress that here one table contains the information on proteins or genes of all species

participating in the study. The order of lines in the table is an important part. Each line describes a

protein or gene of some species, and these lines are grouped in clusters. The cluster is composed of

pairwise orthologous genes/proteins of the same or different species. The clusters are separated by

empty line; the order of lines within a cluster does not matter. The orthology of genes is determined

by the splice variant that result in proteins of greater likeness. Thus, each gene occurs in the table

only once or never, since clusters composed of one gene (singletons) are omitted from the table.

A portion of the table of protein clusters imported to Excel is exemplified in the Gene_clusters sheet

of the file http://lab6.iitp.ru/ru/lossgainrsl/dataformat.xlsx.

5 Configuration file
The configuration file is used to define a task in hand and to control the lossgainRSL operation. The

file is crucial as in most cases the program operation fails due to erroneous configuration. The

configuration file is required to run the program; a name of this file must be specified in the

command line or coincide with the default name (ref. to 3).

The file should be created in usual text format, line breaks are not allowed. If a line of the file

contain several fields, they should be separated by at least one tabulation character. A dot, comma

and blank characters are not delimiters; they can occur inside the fields as desired. The configuration

file may include comments, which are ignored. The entire line of comments should begin with

semicolon (;) or double slash (//). Also ignored is the line part that starts with double slash.

For the lossgain RSL program use, the configuration file must include the five sections which are

described below in the order they should appear in the file. Extra sections may present but will be

ignored. Each section begins with a heading line containing the section name in brackets. The

section data lines follow until a new section heading or end of file is met. Several configuration file

variants are provided in the test example (http://lab6.iitp.ru/ru/lossgainrsl/example.zip).

5.1 Program operation modes: [mode]

In most cases this section consists of a single data line containing one field. The field should contain

in arbitrary order some of uppercase letters explained in Table 3. Not all letters may co-occur; each

group of mutually exclusive letters is shown between horizontal rules. Characters that are absent

from the table, such as blank, comma, tabulation, etc. will be ignored; one can use them for

legibility.

http://lab6.iitp.ru/ru/pr_protclust/
http://lab6.iitp.ru/ru/lossgainrsl/dataformat.xlsx
http://lab6.iitp.ru/ru/lossgainrsl/example.zip

11

Table 3. lossgainRSL mode characters.

Letter Description

 Variant of input data – one option must be chosen

H Principal mode of the program. Input data from Ensembl are used: the tables of genes

(4.1), orthologs (4.2) and paralogs (4.3) as needed.

A The tables of genes (4.1) and protein similarity matrices (4.4) are used as input data.

Q The only input data is the table of orthogroups (4.5).

C The tables of genes (4.1) and united table of protein clusters (4.6) are used as input data.

 Variant of the distance between genes (Fig. 1)

E Specified radius of neighborhood will be compared to the distance between most distant

ends of the genes (default mode).

B The radius of neighborhood will be compared to the distance between the gene middles.

S The radius of neighborhood will be compared to the intergenic distance, i.e. the distance

between proximate ends of the genes (negative if the genes overlap).

 Synteny extra options* – any combination thereof (Fig. 2)

O Mutually orthologous genes of two synteny blocks must occur in the same order ignoring

their orientation.

D Mutually orthologous genes of two synteny blocks must have the same direction, but

their order does not matter.

M Synteny conditions also include the mirror pattern, where both orientation and order of

all genes are inverted.

 Presentation of output data

X In this mode, for each synteny block only sought-for gene of the reference species and its

homologs in other species will appear in the output file as single line. Otherwise, the

entire synteny block will be output as several lines; but first line always contain the data

as in X mode. This setting can be changed in the command line, see chapter 3.

I In X mode, this option is ignored. If X was not specified, synteny blocks will be

separated by empty line in the output file.

J In X mode, this option is ignored. If X was not specified, two fields are appended to each

line of the output file, including empty line due to I option. First field contains ID of the

sought-for gene pertinent to this synteny block, second field is for a line number in the

block. Thus, if a synteny block in the reference species consists of gene Id and two

witnesses, such block will be presented as four lines in the output file: for Id, first

witness, second witness, and empty line. These line contain the following data pairs in

the two appended fields: (Id, 0), (Id, 1), (Id, 2) and (Id, 3) respectively. This allow

sorting the output file by genes found e.g. in the Id ascending order.

 Debug mode – ignored in MPI parallel environment

G Declares that additional lines of the [mode] section contain IDs of one or more genes of

the reference species, and those genes processing must be detailed in the debug log. Such

log will be output to the standard stream, stderr (ref. to chapter 3).

12

Letter Description

P The same, but additional lines contain protein IDs of the reference species. The

processing of genes encoding such proteins will be detailed in the debug log.

T The same, but additional lines contain names of sequences (chromosomes, contigs, etc.)

in the reference species genome. The debug log will detail the processing of each gene of

a sequence.

N The same, but additional lines contain serial numbers of sequences in the reference

genome with optional number of a gene (separated by underscore). All numbers are zero

based. For instance, 493_5 means sixth gene in the 494th sequence of the reference

genome.

V This option can be used together with any other from this group; it enables the verbose

debug output. However, it can result in a log of huge size. It is not recommend to specify

more than one gene in this mode.

Note:

* This group options are not mutually exclusive; they may appear in any combination or absent at

all. The latter means that the only condition of synteny is the presence of witnesses in the

specified neighborhood irrespective of the order and orientation of these genes.

After the line of mode letters, one or more data lines can follow. These lines specify objects to

obtain debug information for. Such objects may be IDs or serial numbers of proteins, genes or

genomic sequences. Each data line contain one or more objects separated by tabulation characters.

These data are processed in accordance with specified debug mode from Table 3; invalid IDs or

numbers are ignored. If no debug mode was specified, all debug lines are ignored. More information

on debugging is provided in section 5.5.7.

The following figures illustrate variants of the distance between genes and synteny extra options

currently implemented in the lossgainRSL program.

Fig. 1. Variants of distance for the proximity checking.

E B S

13

Fig. 2. Synteny extra options for two loci.

O: same order of genes, D: same orientation of genes, M: allow mirror arrangement.

5.2 Input data location: [data]

This section of the configuration file is to specify directories, where each type of input data is stored

as well as corresponding file names and extensions. In most cases, a file name coincides with a

species name from those listed in the [species] section, see 5.4. Thus, the wildcard (*) is normally

used for file names in this section.

This section consists of several lines in the same format. They can appear in arbitrary order. Each

line describes one of input data types and contains two fields separated by at least one tab character.

First field of the line contains an uppercase letter as per data type, respective second field is

described in Table 4. The program uses only appropriate data types for the mode selected and ignore

extra lines. Therefore, this section of the configuration file can follow a generic pattern, e.g. in

Windows:

[data]

I genes*.tsv

O orthologs*.tsv

P paralogs*.tsv

H homologs*.tsv

A scores*.tsv

Q orthogroups\odb10.tsv

C protein-clusters.tsv

O

locus 1

locus 2

D

locus 1

locus 2

M

locus 1

locus 2

14

Table 4. Input data types.

Type Description of the second field

I An absolute or relative path to the directory containing the tables of genes (ref. to 4.1). The

wildcard * should be specified as a file name followed by the extension(s) if any. Thus, all

tables of genes must localize in this directory and have the same extension(s).

O An absolute or relative path to the directory containing the tables of orthologs (ref. to 4.2).

The wildcard * should be specified as a file name followed by the extension(s) if any. Thus,

all tables of orthologs must localize in this directory and have the same extension(s).

P An absolute or relative path to the directory containing the tables of paralogs (ref. to 4.3).

The wildcard * should be specified as a file name followed by the extension(s) if any. Thus,

all tables of paralogs must localize in this directory and have the same extension(s).

H An absolute or relative path to the directory containing joint tables of orthologs and

paralogs for all or some species. In fact, such table is a union of the two tables described in

sections 4.2 and 4.3. The wildcard * should be specified as a file name followed by the

extension(s) if any. Thus, all tables of homologs must localize in this directory and have the

same extension(s).

A An absolute or relative path to the directory containing the protein similarity matrices (ref.

to 4.4). The wildcard * should be specified as a file name followed by the extension(s) if

any. Thus, all protein similarity matrices must localize in this directory and have the same

extension(s).

Q An absolute or relative path and name of the file containing the table of orthogroups (ref. to

4.5). If the table was split into several parts, multiple lines with different file names should

be specified in this section. These parts will be merged in the order specified. The head line

with field names is required only in the first part, but may also be present in other parts.

C An absolute or relative path and name of the file containing the table of protein clusters (ref.

to 4.6). If the table was split into several parts, multiple lines with different file names

should be specified in this section. These parts will be merged in the order specified. The

head line with field names is required only in the first part, but may also be present in other

parts.

5.3 Relevant field names: [fields]

The table of genes (4.1), orthogroups (4.5), and protein clusters (4.6) can contain many fields in

each entry and have rather free format: both list and order of fields are unrestricted, which simplify

the preparation of input data. However, there are several fields analyzed by the algorithm or

transferred to output data. So we require that these files always contain the names of all fields in the

head (first) line, and this section of the configuration file has to specify what field name corresponds

to a certain data type. In addition, it is possible to specify optional alias of a field for convenience.

This section consists of six or more lines. Each line contains one or two tab-separated fields. First

field is the name of a data field in the head line, and second field defines optional alias. These six

lines must appear in the following strict order:

1) Protein/Species. If the gene tables (4.1) with or without protein clusters (4.6) is used, it is a

name of the input field that contains a protein identifier in the Ensembl or other source.

Otherwise, if the table of orthogroups (4.5) is used, it is a species identifier (see 5.4).

15

2) Gene. This is a name of the input field that contains a gene identifier in the Ensembl or other

source.

3) Contig. This is a name of the input field that contains the identifier of a top level sequence

(chromosome, scaffold, contig, etc.) in the Ensembl or other source.

4) Start. This is a name of the input field that contains first position of a gene in the respective

DNA sequence. (The first position is always less than the last one irrespective of strand.)

5) End. This is a name of the input field that contains last position of a gene in the respective

DNA sequence. (The last position is always greater than the first one.)

6) Strand. This is a name of the field that contains 1 if the gene occurs in a positive (forward)

strand, and –1 for negative (complement) strand. Otherwise, the characters ‘+’ and ‘–’ can be

used.

These six fields are required for the lossgainRSL program to operate. Additional lines may follow to

describe other necessary fields such as gene name, annotation and so on. For input data field to

appear in output file, such field must be described in this configuration section. Specifically, if the

gene tables are obtained from Ensembl v95, this section can look as follows:

[fields]

Protein stable ID Protein

Gene stable ID Gene

Chromosome/scaffold name Contig

Gene start (bp) Start

Gene end (bp) End

Strand

Gene name Name

Gene description Description

5.4 Species and group names: [species]

This section of the configuration file is intended to list names of all species involved and to define

groups uniting some of these species as appropriate. Any identifier may be used as a species name,

if it satisfies OS requirements for a file name. We recommend to use only alphanumeric characters

in the names, substituting underscores for blanks. The use of uppercase/lowercase characters must

be consistent throughout the configuration file even if the file system does not distinguish them.

Each species must occupy the separate line of this section. The first species is always considered as

the reference one, subsequent species may appear in arbitrary order.

Sometimes conditions for the selection of desired genes can be formulated more concisely using a

notion of species group which unite several species to be tested identically. Such group can be

established on the basis of any trait, not only a taxonomic one. The syntax of this section does not

allow a species to belong to several groups; as a workaround the user can repeatedly include such

species in the list.

The name of a group always begins with asterisk (*) to distinguish it from species names. To define

a group, its name should be specified in a separate line among the names of species. The group will

be composed of the species listed from the next line on, until the name of another group or end of

the section. Examples of this section can be found in the configuration files of the test example

(http://lab6.iitp.ru/ru/lossgainrsl/example.zip).

http://lab6.iitp.ru/ru/lossgainrsl/example.zip

16

5.5 Gene selection predicate: [predicate]

This section of the configuration file is the most both complex and important one, because it is the

predicate what determines selected genes and output data. The section uses a special procedural

language which is similar to a programming language having some peculiarities and a limited set of

functions. The user should keep in mind that he/she is fully responsible for the predicate correctness,

while lossgainRSL performs only superficial checking. From our experience, in most cases the

program failure and misoperation result from mistaken predicate.

The predicate definition language allows user to specify rather complex conditions for gene

selection and easily adjust those conditions with no change of the program. However, the language

does not pretend to applicability in all situations and does not allow formulating arbitrary complex

conditions either. This language just offers a number of typical elements to be checked, and methods

of combining such elements in a complex test. The user should decide on suitability of these

facilities for the task in hand and draw a suitable predicate himself. Sometimes the solution can be

obtained by running the program several times with different predicates and then building the

sought-for set of genes as a union or intersection of the sets resulted from certain runs.

The program lossgainRSL uses the predicate as follows. With each next gene of the reference

species, the predicated is interpreted from the very beginning with no regard to previous gene

processing history. The first operator, SET, sets the parameter values which will be used for the

current gene of the reference species as well as for other species unless otherwise specified. For

those non-reference species, the parameters can be changed by another SET operator(s) or a variant

thereof, but such change is in effect only until a new change or end of current gene processing.

The initial SET of the predicate is followed by a series of testing user-specified conditions. Each

condition is related to genes of either the reference species and another species (2-species condition)

or the reference species, substitute species and another species (3-species condition). The conditions

are tested as they appear in the predicate, but this order of execution can be modified using

unconditional and conditional (depending on result of the last test) branches. To this end, labels are

used including two predefined labels, YES and NO, which mean that the current gene of the

reference species satisfies the predicate (the gene is selected) or does not satisfy the predicate (the

gene is skipped), respectively. The ADD operator allows the user to specify, for a gene selected in

any species, its data field to be copied to output file.

The sequential interpretation of the predicate normally yields one of the two results: (1) the program

reaches the YES label or the predicate end (implicitly followed by YES label), therefore the current

gene of the reference species is selected and present in the output file; or (2) the program reaches the

NO label, therefore the current gene is skipped and absent from the output file. In either case the

program proceeds to the predicate evaluation with the next gene of the reference species. After all

genes of the reference species have been tried, lossgainRSL finishes.

The following subsections formally describe all means and capabilities of the predicate definition

language. Examples of complete predicates can be found in the test example configuration files

(http://lab6.iitp.ru/ru/lossgainrsl/example.zip).

http://lab6.iitp.ru/ru/lossgainrsl/example.zip

17

5.5.1 Operator SET and its variants

This operator is intended for setting or changing parameters of the sought-for gene selection. Like

other operators, it must be entirely written in a single line of the configuration file. The operator

contains from 1 to 8 fields separated by the tab character. The syntax is:

SET[,w,r,b,h1,h2,e] [WIT[NESS]=w] [RANGE=r] [{ORTH|BBH}=b] [HOLD1=h1]

[HOLD2=h2] [EVAL=e] [HEAD[ING]=comma-separated-text]

There are six numerical parameters which can be set in two ways. First, comma-separated values of

the parameters can be specified in the first field in fixed order just follow the operator code.

Unchanged parameters may be skipped still preserving commas if other values follow. Second, the

parameters can be set in any number and order in the subsequent fields of the operator; each

parameter is recognized by the keyword assigned to it. The parameter description, allowable and

default values as well as the keyword are given in Table 5. Also included is optional text parameter

of the program which cannot be set in the first field of the operator, but only in a separate field (or

operator) with the keyword HEAD or HEADING.

The value of a numerical parameter can be specified as an integer/real number or a symbol in the

form %name, where name is an identifier different from other keywords. In the latter case, the

parameter value will be specified in the command line as described in chapter 3.

Table 5. The parameters changeable by SET operator.

Symbol Keyword Values Default Description
w WIT

WITNESS

0, 1, 2 2 Number of witness genes in a synteny block besides

the current gene X.
r RANGE > 0 2000000 The half-size of a vicinity, where witnesses of the

current gene are looked for (see also Fig. 1). The

value of r is rounded to the nearest integer; it may

include the suffix K|k or M|m for values in kilobases

or megabases, respectively. Thus, a vicinity with the

half-size of 200 kbp can be specified as 200000,

200K or 0.2M.
b ORTH

BBH

0...511 0 1) For input data from Ensembl, values 0...7 (i.e.,

three bits) are allowed, where each bit controls the

way an orthologous gene is defined: 1 means the

ortholog, and 0 – the ortholog or any of its paralogs.

Bit 0 (least significant bit, LSB) corresponds to the

current gene X, bit 1 – to first witness Y, bit 2 – to

second witness Z. For instance, b=1 means that only

orthologs are selected for X, and orthologs or their

paralogs for Y and Z; b=7 means that only orthologs

of X, Y, and Z are considered.

2) If the protein similarity matrices are used at input

(see 4.4), this parameter specifies requirements for

homologs in terms of the raw score magnitude. The

meanings of individual bits are as follows:

1 – BBH (bidirectional best hit) is taken for gene Х,

18

Symbol Keyword Values Default Description

2 – BBH is taken for gene Y,

4 – BBH is taken for gene Z,

8 – BHF (best hit forward) is taken for gene Х,

16 – BHF is taken for gene Y,

32 – BHF is taken for gene Z,

64 – BHB (best hit backward) is taken for gene Х,

128 – BHB is taken for gene Y,

256 – BHB is taken for gene Z.

Notice that if both BHF and BHB are specified for a

gene, respective BBH bit is set automatically.
h1 HOLD1 0...7 1 The purpose of a 3-bit value of this parameter is to

instruct the program, for the current gene of the

reference species, which genes vary during the

predicate evaluation and which ones are invariable.

The meanings of individual bits are as follows:

1 – the test must be done with the same gene X,

2 – the test must be done with the same witness Y

(otherwise the predicate is not satisfied),

4 – the test must be done with the same witness Z.

For example, if the value of 7 is specified and the

predicate includes two elementary conditions, both

must be verified with the same triplet of genes.
h2 HOLD2 0...7 1 This parameter affects only 3-species conditions

(5.5.6); it is similar to h1, but controls the

relationship between two elementary conditions

behind the 3-species condition. The value of 1 should

be specified in case of input data from the Ensembl.
e EVAL ≥ 0 1e-5 This parameter is actual only if input data include the

protein similarity matrices (4.4). The specified value

is a cut-off: two proteins are considered homologous

if local alignment of them yields E-value that is less

or equal to such cut-off.
– HEAD

HEADING

The value of this parameter is a text string that specifies comma-separated

headings of the fields in the output file, left to right. Thus, comma should not

be used in a heading text. If the parameter is omitted, field headings in the

output file equal to those at input or their aliases as specified in the [fields]

section of the configuration file (ref. to 5.3).

SET must be the first operator and can also appear later in the predicate in order to modify some

parameter(s). Doing so, one should take account of: (а) modified parameter values will be in effect

until the next alternation or end of predicate; (b) the size of vicinity in the reference species cannot

be modified dynamically; the value specified in the initial SET operator is always used, and

modified r will apply only to other species.

If not all but only few parameters of the lossgainRSL are to be modified, it can be more convenient

to specify new values not following the operator code, but in subsequent fields with use of a

19

corresponding keyword from the Table 5, for example:
SET RANGE=1M WITNESS=1

There are also variants of the SET operator, where the keyword is used as the operator code (first

field). and the value is specified in second field, e.g.:
RANGE 500K
WITNESS 1

Besides the SET operator and its variants, for brevity parameters can be set directly in operators that

verify conditions (such as IN, OVER, IN2), similar to the first field of SET. Such local modification

is applied only to the operator, where it is specified.

5.5.2 Operator IN

This operator verifies the presence of current gene X of the reference species in other species or a

group thereof. This check is successful if the two sub-conditions are simultaneously satisfied: (1) the

other species includes gene X' that is a homolog of X in the sense of active parameter settings, e.g.

an ortholog of X; and (2) there exist specified number of distinct witness genes in the r-sized vicinity

of X, e.g. Y and Z, which respective homologs, Y' and Z', co-localize in the r'-sized vicinity of X' in

the other species (Fig. 3). The size of a vicinity is treated as per chosen variant of the distance

between genes (ref. to Table 3 in 5.1), in Fig. 3 it is the ‘E’ variant. Such condition involves two

species, therefore it is referred to as 2-species condition.

Fig. 3. Satisfied 2-species condition for a certain variant of synteny.

The syntax of IN operator includes up to three fields:

IN[,w,r,b,h1,h2,e] species [yes-label|-no-label]

Here, the first field of the operator allows modifying current parameter values just the same as in the

first field of the SET operator, in order to use new values only in this check, not later. The value of r

is interpreted in a special way: if specified, it determines the size of vicinity only in the other (non-

reference) species, i.e. it is r' in Fig. 3, while for the vicinity size r in the reference species the

program always uses a value specified in the initial SET operator or set by default.

Genomic sequence of

the other species

Genomic sequence of

the reference species

Y X Z

Y' X' Z' ≤ r'
≤ r'

≤ r
≤ r

homology

20

In the second field of the operator, instead of species the name of the other species or a species

group should be specified, i.e., one of the names listed in the [species] section of the configuration

file (5.4). Recall that the name of a species group always starts with asterisk (*). If a group has been

specified, all species from it are tried in turn until the condition is satisfied; in such case the

condition for entire group is satisfied and remaining species are not tried. Otherwise the condition

for the species group is unsatisfied.

Optional third field of the IN operator is a label to go to if the condition is (un)satisfied. Specifically,

if a minus sign does not precede the label (yes-label) then the program proceeds to this label when

the condition is satisfied, otherwise it proceeds to the next operator. Conversely, if the minus sign

does precede the label (-no-label) then the program proceeds to the next operator when the

condition is satisfied, and proceeds to the label otherwise. If this field is omitted, the program

proceeds to the next operator in both cases. Further information on labels is provided in the next

section.

In fact, the IN operator defines a nested loop to verify the condition over species from the group,

then over homologs in the other species, then over putative witnesses and their homologs, etc. The

verification continues until a homolog X' and witnesses are found that satisfy the condition or all

variants were tried. In the former case the check was successful and the program proceeds to the

yes-label (if specified), in the latter – unsuccessful and the program proceeds to the no-label (if

specified). Notice that the loop does not contain any inner operators and consists of a single IN. Any

subsequent actions are performed only after completion or termination of the loop.

5.5.3 Labels and operator GOTO

Labels within the predicate serve to change the normal sequence of operators execution. Any unique

identifier can be used as a label provided that it does not coincide with a species name, field name or

operator code. The labels are case sensitive. Two labels, YES and NO, are defined implicitly (ref. to

section 5.5). An explicitly defined label should follow a colon in the separate line, for example:
:RareСase

The branch to the RareСase label means that the next executed operator will be one specified in the

line following the label.

The conditional operator IN (5.5.2) is a typical operator that uses a label. Other conditional branch

operators are described below which also use labels.

To define predicates having a complex branched structure, the unconditional branch GOTO

operator is provided. It is specified in a separate line with the following syntax:

GOTO label

where one of existing labels appears in the second field, for example:
GOTO RareCase

GOTO YES

5.5.4 Operator ADD

This operator helps to form the output file of the desired structure and contents. It allows the user to

copy necessary fields from a certain line of the table of genes, for the given species, to the current

line of the output file. The syntax of ADD operator is as follows:

21

ADD species [[-]field1[,field2...]]

Second field of the operator should contain a species or group name from those specified in the

[species] section of the configuration file (5.4). Optional third field contains the comma-separated

list of field names from those specified in the [fields] section of the configuration file (5.3); these

fields of the gene table for given species will be copied to the output file in the order specified. If

this field is omitted, all fields will be copied to the output file in the order they are stored in the table

of genes. If the list follows a minus sign, all fields except the listed ones will be copied to the output

file in the order they are stored in the table of genes.

Let us define more exactly what species and gene are selected for copying the data from the table of

genes:

– If the reference species appears in ADD operator, the program selects currently tested gene X of

the reference species.

– If other species is specified, for which IN operator was successfully verified earlier in the

predicate, the program selects the gene that satisfied a condition of the IN operator, i.e., homolog

X' in this species of the current gene X in the reference species.

– If other species is specified, for which no IN operator was executed or its condition was not

satisfied (no homolog or witnesses exist in this species), the program will copy to the output file

the equal number of empty fields.

– If the name of a species group appears in the second field of ADD operator, the program selects

data for the species and gene that first satisfied the condition of previous IN operator or,

otherwise, copies empty fields.

Above definitions are for the operation mode of lossgainRSL that requires one line of the output file

per selected gene of the reference species. Such line contain data of the selected gene X and,

optionally, its homologs X' in one or more other species (Fig. 3). The alternative mode is output of

several additional lines for each witness such as Y, Z in the reference species and, optionally, their

homologs in other species. If the latter mode is specified in the [mode] section of the configuration

file (5.1), the ADD operator controls the output to all these line similarly. The order of lines in such

synteny block is fixed: X, Y, Z (or X, Y). Thus, the sought-for gene of the reference species is always

in the first line of the block.

Final recording of data prepared with the current gene X to the output file is performed only if the

whole predicate is satisfied for the gene, i.e. YES label or the end of predicate is reached. Otherwise,

the results of all ADD operators for the current gene are lost and no data is copied to the output file.

5.5.5 Verification of 2-species conditions and operators BOR/EOR, BAND/EAND

Let us describe the verification of 2-species conditions in different flavors by an example. Assume

that a frog of the Xenopus genus is the reference species, and two more groups of species are

considered, fishes and mammals, consisting of two species each. We also choose 2 megabases as the

vicinity half-size in all species, and need to find each frog gene that is present in fish as an ortholog

supported by two witnesses, but is absent from mammals even as a paralog of the ortholog and with

at least one witness. In this example, the [species] section of the configuration file (5.4) can be as

follows:
[species]

Xenopus

*Fish

22

Danio

Fugu

*Mammal

Mouse

Human

(A) The elementary variant of the predicate:
[predicate]

SET,2,2000K,7

IN *Fish -NO

ADD Xenopus -Protein

ADD *Fish Gene,Name

IN,1,,2 *Mammal NO

Here, the first SET operator sets the standard values of parameters: two witnesses, vicinity half-size

of 2 megabases, orthologs to be considered as homologs. The next operator, IN, verifies whether any

fish has an ortholog of this gene, X', supported by two orthologous witnesses Y', Z' in the specified

vicinity of X'. If neither fish has such X', the current frog’s gene X is skipped and the program

proceeds to the next X; nothing is written to the output file. Otherwise, the ADD operator copies to

the output file all but protein ID fields of the table of genes for current frog’s gene X. One more

ADD operator appends to the current line of the output file two fields with ID and name of X' gene

found. (We assume that the program operates in X mode from 5.1, and field names are as per 5.3).

Then the second IN operator checks if the gene X is present in mammals. Doing so, the operator

modifies the standard parameter values: only one witness is sufficient and X' can be not only an

ortholog of the gene X, but also a paralog of ortholog if any. If such gene and witness exists in either

mammal, the program branches to the NO label (X is skipped, nothing is written to the output file,

the program proceeds to the next X). Otherwise, the predicate end is reached, i.e. it is satisfied, and

the program writes the composed line to the output file. The line contains all requested fields for the

selected frog’s gene and its homolog in a fish.

A disadvantage of the above predicate is that the output file does not clarify which fishes have the

selected gene. Each line contains only one homolog of X, which was found earlier in a fish not

saying about other fishes. The precedence of fishes is not fixed, but depends on order of records in

the tables of orthologs and paralogs. Such limitation is even more obstructive, when groups of

species under consideration include much more species than two ones like in our example.

(B) To improve the mentioned disadvantage, the more complex predicate can be used:
[predicate]

SET,2,2000K,7

HEADING Xenopus,Contig,Start,End,Name,Description,Danio,Name,Fugu,Name

IN Danio -NotDanio

ADD Xenopus Gene,Contig,Start,End,Name,Description

ADD Danio Gene,Name

IN Fugu

ADD Fugu Gene,Name

GOTO Final

:NotDanio

IN Fugu -NO

ADD Xenopus Gene,Contig,Start,End,Name,Description

ADD Danio Gene,Name

ADD Fugu Gene,Name

23

:Final

IN,1,,2 *Mammal NO

In this case, each field of the output line either contains or does not contain the data of the certain

species, which allow assigning individual heading to each column of the file with use of HEADING

operator (a variant of the SET operator). Recall that each operator must be entirely written in one

line despite some lines may be lengthy such as this one.

Here, first IN operator reveals if the current gene X is present in zebrafish (Danio rerio), then the

check forks: if the gene is not present in zebrafish, the program branches to NotDanio label.

Otherwise, the following ADD operator copies necessary fields of the gene X of the reference

species to output line in the order corresponding to above headings. Then one more ADD operator is

executed, which adds two fields of X' ortholog in zebrafish to the same output line. The second IN

operator checks whether the gene X is present in fugu. If so, two fields for its ortholog X' in fugu

will be added to output line, otherwise ADD operator adds two empty fields. In both cases testing

proceeds to Final label.

In another branch, starting from NotDanio label, the IN operator checks whether the gene X is

present in fugu. If that is not the case, the program proceeds to NO label and nothing is written to

the output file. Otherwise, first ADD operator copies necessary fields of the current frog’s gene to

output line. The second ADD operator adds two empty fields to that line because previous IN

operator for zebrafish was unsatisfied. The last ADD operator adds two fields of X' ortholog in fugu

to that output line. Thus, an output line with planned structure is composed in this branch too.

Starting from the Final label, the two branches merge again and the final check is performed like

in the predicate (A). Depending on its result, the composed line is either written to output or lost if

the gene X is rejected.

One can conclude that such method is rather inconvenient and results in excessive complication of

the predicate, especially if the group consists of much more than two species. In addition, it is

difficult to control how many species of the group must have the gene X. This is why the predicate

definition language includes a pair of bracket operators, BOR/EOR, that envelop several

independent checks which success is determined by a quantitative threshold.

(C) The equivalent of the predicate (B) with use of these operators can be as follows:
[predicate]

SET,2,2000K,7

HEADING Xenopus,Contig,Start,End,Name,Description,Danio,Name,Fugu,Name

BOR

IN Danio

ADD Xenopus Gene,Contig,Start,End,Name,Description

ADD Danio Gene,Name

IN Fugu

ADD Fugu Gene,Name

EOR,1 -NO

IN,1,,2 *Mammal NO

The BOR operator has no arguments and should be specified in a line preceding the first alternative

condition to be verified. In fact, the alternatives themselves are verified unconditionally: since IN

24

operators lack labels, they are followed by next ADD operator(s) irrespective of the verification

result. However, if the check was unsuccessful, added fields are empty. The aggregate condition is

tested by the EOR operator, which follows the last alternative and has the following syntax:

EOR[,n] [yes-label|-no-label]

Here n is a permissible minimum number of satisfied alternatives for the aggregate condition to be

satisfied. If n is omitted, the default zero value means that the aggregate condition is always satisfied

as well as if the label were not specified. Otherwise, the label is treated similar to the IN operator

(5.5.2). The capability to change a single value of n, the more so as through a symbolic parameter

directly in the command line, facilitates experimenting with various conditions for genes selection.

The pair of BOR/EOR operators can be used more than once in a predicate provided that such pairs

do not nest.

Another pair of bracket operators, BAND/EAND, is somewhat dual. Unlike the EOR operator that

counts the number of satisfied alternative conditions and compares it with a threshold, the EAND

operator counts the number of unsatisfied alternatives:

EAND[,m] [yes-label|-no-label]

where m is a permissible minimum number of unsatisfied alternatives for the aggregate condition to

be satisfied. In other respects, this pair of operators is similar to the first one; however, the user

should also keep in mind the difference: unsatisfied condition results in blank fields in the output

line. Therefore, in the extreme case of BOR/EOR, when all alternatives are satisfied, the output line

will contain all fields. On the contrary, in the extreme case of BAND/EAND, when all alternatives

are unsatisfied, the output line will be empty. Nevertheless, this pair of operators can be more

suitable for some predicates. The example in question unlikely illustrates this point, but let us

provide without comment the same predicate using these operators:

(D) The equivalent of the predicate (C) with use of the BAND/EAND operators:
[predicate]

SET,2,2000K,7

HEADING Xenopus,Contig,Start,End,Name,Description,Danio,Name,Fugu,Name

BAND

IN Danio

ADD Xenopus Gene,Contig,Start,End,Name,Description

ADD Danio Gene,Name

IN Fugu

ADD Fugu Gene,Name

EAND,2 NO

IN,1,,2 *Mammal NO

5.5.6 Operators OVER/IN2/NEXT and verification of 3-species conditions

Besides the above described 2-species condition, the lossgainRSL program is capable to verify more

complicated condition which involve two species, apart from the reference one. The first of these

two species must have a homolog of the current gene X in the reference species supported by the

required number of witnesses; such species (and homolog) is referred to as substitute. The second

species either includes or lacks a homolog of the substitute gene (Fig. 4). This condition is referred

25

to as 3-species one; it is unsatisfied if either no substitute exist or another species does not have a

homolog of any substitute.

Fig. 4. Satisfied 3-species condition for a certain variant of synteny.

If the homology relation in use makes up a transitive closure, the 3-species condition can be useful

only in the situation, where the neighborhood of the X gene lacks homologs of the U" and V" genes,

and the neighborhood of the X" gene lacks homologs of the Y и Z, otherwise a 2-species condition

were satisfied. The existence of a substitute species with the X' gene whose neighborhood includes

both pairs of homologs can be considered as an evidence of the conclusion that the X gene has the

homolog, X", in another species with the synteny conserved.

As in the 2-species condition, here the homology either means an orthology or also accounts for

paralogy or relies on protein similarity etc.; and the certain number of witnesses and neighborhood

size is specified for each species. These settings can be made in preceding SET operators (5.5.1) or

directly in the conditional operators OVER and IN2 described below.

When verifying the 3-species condition, the HOLD1 parameter is normally used to control the

permanence of X, Y, and Z genes during the evaluation of the entire predicate with current X. The

usual value of 1 means that the same X shall be used in all tests within the predicate, whereas the

witnesses Y and Z can be selected independently in each elementary condition.

The value of HOLD2 parameter allows the user to specify which genes are held in transition from

the upper test to the lower one, see Fig. 4. This is a 3-bit value with the following meaning of

individual bits:

1 – the same homolog of the X gene shall be used (designated as X' in Fig. 4),

2 – the same homolog of the first witness shall be used, i.e., U' = Y',

Genomic sequence of the

substitute species

Genomic sequence of the

reference species

Y X Z

Y' X' Z' ≤ r'
≤ r'

≤ r
≤ r

homology

Genomic sequence of the

other species

U' V'

U" V" X"
≤ r"

≤ r"

26

4 – the same homolog of the second witness shall be used, i.e., V' = Z'.

As explained above, if the homology relation is transitive, which is true for OrthoDB orthogroups

and protein clusters, but sometimes is broken in the Ensembl orthology, the value of 1 should be

specified for HOLD2.

Recall that the 2-species condition consists of the single IN operator which establishes the nested

loop for selection of genes in the specified non-reference species or species group (ref. to 5.5.2 for

detail). In order to define the 3-species condition, three operators are used: OVER, IN2, and NEXT.

The OVER and IN2 operators define two nested loops (outer and inner ones, respectively) for the

selection of genes in the two non-reference species, and the NEXT operator points out the end of

outer loop body. The order and syntax of these operators are as follows:

OVER[,w,r,b,h1,h2,e] species1 [yes-label|-no-label]

IN2[,w,r,b,h1,h2,e] species2 [yes-label|-no-label]
...

NEXT

The outer loop is defined by the OVER operator, where species1 is the name of a substitute species

(or species group). The substitute gene, X', in this species has to be a homolog of the current gene X

in the reference species, and the neighborhood of X' has to include the witness genes, Y' and Z', that

are respective homologs of Y and Z genes in the neighborhood of X. The half-size r' of the

neighborhood in the substitute species genome, number of witnesses, and homology variant, if differ

from those initially set for the whole predicate, can be specified in preceding SET operator or just in

the first field of the OVER operator.

The operator execution depends on the label specified. If the label is specified without preceding

minus sign, the program jumps to this label, when first substitute gene is found irrespective of the

inner loop conditions, otherwise the program proceeds to the next operator. Such variant of the

condition seems to be senseless and is described here only for completeness. In typical situations,

the label follows minus sign, i.e., -no-label is specified in the OVER operator. If this is the case, the

program jumps to the label after all genes of the species (or species group) were tried, and none of

them satisfies the conditions of both loops. If the label is omitted, it is interpreted as if a -no-label

were specified pointing at the line following the NEXT operator.

The inner loop is defined by the IN2 operator, which is similar to the IN operator (5.5.2) with the

only difference that instead of the X gene whose homologs to be selected in species2 species (or

species group), the current X' gene selected in the outer loop is used. The parameter values and

labels in this operator are processed the same as in the IN operator. For instance, if a yes-label is

specified (without preceding minus sign), and lossgainRSL finds a homolog of the X' gene along

with witnesses in the species2 genome, the program jumps to that label which can be inside or

outside (such as NO) the outer loop. Otherwise, if species2 lacks such homolog, X", the program

proceeds to subsequent operator of the outer loop body (behind ellipsis). In particular, it can be

another IN2 operator that checks the current X' against other species, and so on.

The outer loop body ends with parameterless NEXT operator. It gives a signal for the interpreter to

proceed back to the OVER operator with the next substitute gene X'.

27

The user should be careful with inclusion of side-effect operators (such as ADD) in the loop body,

because of possible output of lines with unlimited length or at least variable format. The following

rule of thumb is recommended to obey: once any data is written to the output file, the outer loop

should be broken by jumping to a label outside the loop body.

5.5.7 Predicate debugging

In fact, the predicate in the configuration file is a program which the lossgainRSL program

interprets for each gene X. Like any program, the predicate can include errors leading to wrong

results and failures in the lossgainRSL operation, e.g. crashes or looping. Some errors such as

invalid syntax of operators, incorrect names or labels etc. will be found during the parsing of the

configuration file, but other errors become evident only at runtime or even in the analysis of output

results. Not attempting to suggest any universal method for debug, let us confine ourselves to

describing the debug capabilities provided by the lossgainRSL and several typical ways.

During the program operation, it outputs to the console; the log can be redirected to a file by

conventional means of the operating system. The program log is described in section 6.1. In case of

any errors, the user should first verify in this log the following information:

– the command line used to run lossgainRSL e.g. options, parameters, and file names;

– the program version number;

– the program mode(s) as defined in 5.1;

– the list of species and species groups as well as the list of species in each group;

– the results of the predicate parsing. Ensure that after substituting the operator numbers for

labels all jumps are correct as well as the species name and parameter values in each

operator;

– the information on each data file read including its quantitative characteristics.

If the program crashes or gets in an endless loop, the console log informs about the last contig and

gene of the reference species being processed, see the last line with the cKKK xLLL format. Since

gene X numbers are printed with the default step of 10, it is a good idea to repeat the run with

the -G1 option (ref. to chapter 3).

The reported values of KKK and LLL can be used to request more detailed debug log. To this end, in

the [mode] section of the configuration file the program debug mode N should be added in the first

line, and one more line should be added containing KKK_LLL (see section 5.1 and Table 3 for

detail). The debug log is directed to the standard stream stderr which is recommended to redirect to

a file.

6 Output data

6.1 lossgainRSL operation log

The program log is mostly self-explanatory. Provided below is a sample of real log which is split

into several blue-shaded fragments for explanation convenience.

Synteny analysis utility (version 6.20)

Taxa: 4 Species: 20 Mode: H E I J

28

In the first line, the program version number is shown. Below is the number of species groups

defined in the configuration file (4) and the total number of species (20) as well as active modes of

the program (ref. to 5.1). When running in MPI environment, the number of parallel branches is also

displayed.

*[1]: mus_musculus

*Long-lived[3]: heterocephalus_glaber_female homo_sapiens cebus_capucinus

*Putative_long-lived[6]: nannospalax_galili fukomys_damarensis nomascus_leucogenys pan_troglodytes

pongo_abelii gorilla_gorilla

*Short-lived[10]: peromyscus_maniculatus_bairdii cavia_porcellus ictidomys_tridecemlineatus

oryctolagus_cuniculus mesocricetus_auratus rattus_norvegicus microcebus_murinus

rhinopithecus_roxellana otolemur_garnettii rhinopithecus_bieti

Then these groups are listed together the species they contain. Each group or starts on a new line.

Here, the groups are: the nameless * group that includes only mouse genome; the *Long-lived group

consisting of three genomes (naked mole-rat female, human, capuchin); the *Putative_long-lived

group consisting of six genomes (Upper Galilee mountains blind mole rat, Damaraland mole rat,

gibbon, chimpanzee, orangutan, gorilla); and the *Short-lived group consisting of 10 genomes

(Northern American deer mouse, Guinea pig, ground squirrel, rabbit, golden hamster, rat, mouse

lemur, golden snub-nosed monkey, bushbaby, black snub-nosed monkey). This fragment is omitted

if the command line includes -q or -qq options.

Then the predicate parsing results are shown (also omitted if -q or -qq options was specified).

The predicate (scenario) consists of 59 terms:

 0 SET 1 2 5000000 7 1 1 1.0e-005

 1 IN *Long-lived NO 2 2 5000000 6 1 1 1.0e-005

First line informs of the total number of operators recognized in the predicate definition (59). Thus,

subsequent 59 lines of the log begin with the operator number. These numbers start from 0 and it is

the SET operator (5.5.1). Each operator is reported in the log as several fields; some fields can be

empty or have a special value depending on the specific operator. As for this SET operator, the line

contains the operator number (0), its code, the number of the operator to execute next (1), and the

parameter values: the required number of witness genes (2), the half-size of the vicinity (5 Mbp),

ORTH (7), HOLD1 (1), HOLD2 (1), and E-value cut-off (10
-5

). The IN operator in the line 1 checks

whether the current mouse gene is present in any long-lived species (*Long-lived group). If yes, the

program jumps to the NO label (the current gene is skipped). Otherwise, the program transits to the

next operator, 2. Further in this line are the parameter values to be used in the check. These are

equal to initially set ones with the only exception: ORTH=6 means that in the long-lived species not

only orthologs of the mouse gene are considered, but also paralogs of them (see 5.5.1 for detail).

 2 BOR 3

 3 IN peromyscus_maniculatus_bairdii 4 2 5000000 7 1 1 1.0e-005

 4 ADD mus_musculus 5 Fields: Gene ID,Region,Start,End,Strand,Label,Description

 5 ADD peromyscus_maniculatus_bairdii 6 Fields: Gene ID

The BOR operator in the beginning of this fragment informs that a series of checks starts from

operator 2. At least a certain (yet unknown) number of these checks must be satisfied for the gene to

be selected. The first check together with accompanying actions is included in this fragment of the

log. The IN operator verifies whether the current mouse gene is present in the deer mouse genome

together with two witness genes. Independently of the verification result, the program proceeds to

the operator 3, because there was no label in the IN operator. If a label were specified, two operator

numbers stand here; one of them is always the next operator, and another number is somewhat else.

29

As agreed, the program proceeds to the first number at satisfied check, and to the second one

otherwise. If the operator does not fork like in this case, only one number of the next operator stands

here. The effective parameter values follow in this line just the same as in the SET operator. They

are equal to the initial ones since no modification was made along with the operator code.

First ADD operator in the above fragment copies some table fields of the current mouse gene to

output line being formed. Necessary fields are determined by their names listed in the section

[fields] of the configuration file (5.3). Second ADD operator in turn appends to the same line one

more field (gene id) of the deer mouse gene that first satisfies the check. If the check was

unsuccessful (no gene identified), the empty field is appended. Of course, the user himself chooses

the field(s) to output.

 6 IN cavia_porcellus 7 2 5000000 7 1 1 1.0e-005

 7 ADD mus_musculus 8 Fields: Gene ID

 8 ADD cavia_porcellus 9 Fields: Gene ID

 9 IN ictidomys_tridecemlineatus 10 2 5000000 7 1 1 1.0e-005

 10 ADD mus_musculus 11 Fields: Gene ID

 11 ADD ictidomys_tridecemlineatus 12 Fields: Gene ID

 12 IN oryctolagus_cuniculus 13 2 5000000 7 1 1 1.0e-005

 13 ADD mus_musculus 14 Fields: Gene ID

 14 ADD oryctolagus_cuniculus 15 Fields: Gene ID

 15 IN mesocricetus_auratus 16 2 5000000 7 1 1 1.0e-005

 16 ADD mus_musculus 17 Fields: Gene ID

 17 ADD mesocricetus_auratus 18 Fields: Gene ID

 18 IN rattus_norvegicus 19 2 5000000 7 1 1 1.0e-005

 19 ADD mus_musculus 20 Fields: Gene ID

 20 ADD rattus_norvegicus 21 Fields: Gene ID

 21 EOR 22 NO 3

The above fragment contains five more checks similar to the previous one but against different

genomes. Let us explain why each test is followed by the addition of mouse gene data, not only data

of other species gene. Indeed, the same mouse gene participates in all checks, but different witnesses

can be found in different checks. The program mode chosen here is to output synteny blocks which

consist of the current mouse gene X and two witnesses Y, Z (as well as their respective orthologs in

another species). Different witnesses could be used with different species, so the three mouse genes

are repeated for each species. For each sought-for X gene of the reference species, the program

outputs four lines: for X gene and its orthologs in other species, for Y witness gene and its orthologs

in other species, the same for Z gene, and empty separator line.

The last line in the above fragment contains the EOR operator (5.5.5) that ends this series of checks.

The operator contains two labels, 22 and NO (the latter is virtual one which is not converted into

number), and the parameter value n=3 which means that the predicate term is satisfied if at least 3 of

those checks were successful (i.e., not less than half). In such case the program proceeds to the next

predicate term. Otherwise the predicate is unsatisfied and the program verifies the next mouse gene.

 22 BOR 23

 23 IN microcebus_murinus 24 2 5000000 7 1 1 1.0e-005

 24 ADD mus_musculus 25 Fields: Gene ID

 25 ADD microcebus_murinus 26 Fields: Gene ID

 26 IN otolemur_garnettii 27 2 5000000 7 1 1 1.0e-005

 27 ADD mus_musculus 28 Fields: Gene ID

 28 ADD otolemur_garnettii 29 Fields: Gene ID

 29 IN rhinopithecus_roxellana 30 2 5000000 7 1 1 1.0e-005

 30 ADD mus_musculus 31 Fields: Gene ID

 31 ADD rhinopithecus_roxellana 32 Fields: Gene ID

30

 32 IN rhinopithecus_bieti 33 2 5000000 7 1 1 1.0e-005

 33 ADD mus_musculus 34 Fields: Gene ID

 34 ADD rhinopithecus_bieti 35 Fields: Gene ID

 35 EOR 36 NO 2

This predicate term is quite similar, but it checks the gene against other set of four species and uses

other parameter value of n=2. This is why these two series of checks were not merged. In fact, the

condition they realize can be verbally formulated as “mouse gene is present in at least half of short-

lived rodents and half of short-lived primates”.

The predicate is then verified using changed ORTH parameter:

36 SET 37 2 5000000 6 1 1 1.0e-005

It is the same change as in the operator 1 above, but here it apply to all subsequent operators until

new change or end of the predicate.

 37 BAND 38

 38 IN nannospalax_galili 39 2 5000000 6 1 1 1.0e-005

 39 ADD mus_musculus 40 Fields: Gene ID

 40 ADD nannospalax_galili 41 Fields: Gene ID

 41 IN fukomys_damarensis 42 2 5000000 6 1 1 1.0e-005

 42 ADD mus_musculus 43 Fields: Gene ID

 43 ADD fukomys_damarensis 44 Fields: Gene ID

 44 EAND 45 NO 1

This group of operators verifies that the current mouse gene is absent from at least one of putative

long-lived rodents. Here the BAND/EAND bracket operators suit better, but BOR/EOR could also

be applicable with other final condition.

Finally, the last predicate term is similar but it refers to four putative long-lived primates and uses

the threshold of 2 which is half of this set.

 45 BAND 46

 46 IN nomascus_leucogenys 47 2 5000000 6 1 1 1.0e-005

 47 ADD mus_musculus 48 Fields: Gene ID

 48 ADD nomascus_leucogenys 49 Fields: Gene ID

 49 IN pan_troglodytes 50 2 5000000 6 1 1 1.0e-005

 50 ADD mus_musculus 51 Fields: Gene ID

 51 ADD pan_troglodytes 52 Fields: Gene ID

 52 IN pongo_abelii 53 2 5000000 6 1 1 1.0e-005

 53 ADD mus_musculus 54 Fields: Gene ID

 54 ADD pongo_abelii 55 Fields: Gene ID

 55 IN gorilla_gorilla 56 2 5000000 6 1 1 1.0e-005

 56 ADD mus_musculus 57 Fields: Gene ID

 57 ADD gorilla_gorilla 58 Fields: Gene ID

 58 EAND YES NO 2

The last EAND operator determines whether at least two of the four checks were unsuccessful. If it

is the case, the program jumps to YES label, the entire predicate is satisfied, and the composed lines

are written to the output file. Otherwise, if less than two checks were unsuccessful, the predicate is

unsatisfied and the lines are discarded. In both cases the program proceeds to the next gene X of the

reference species starting with 0th operator.

Maximum 32 gene(s) per line: mus_musculus peromyscus_maniculatus_bairdii mus_musculus

cavia_porcellus mus_musculus ictidomys_tridecemlineatus mus_musculus

31

oryctolagus_cuniculus mus_musculus mesocricetus_auratus mus_musculus rattus_norvegicus

mus_musculus microcebus_murinus mus_musculus otolemur_garnettii mus_musculus

rhinopithecus_roxellana mus_musculus rhinopithecus_bieti mus_musculus nannospalax_galili

mus_musculus fukomys_damarensis mus_musculus nomascus_leucogenys mus_musculus

pan_troglodytes mus_musculus pongo_abelii mus_musculus gorilla_gorilla

In the above fragment the species are listed, whose genes will be shown in the output line, left to

right. If the predicate generates output lines in a variable format, the variant with the greatest

number of genes is displayed. This fragment is omitted if the command line includes -q or -qq

options.

Reading gene info file genes\mus_musculus.tsv ...

Lines read: 111762 genes: 22950 proteins: 66760 contigs: 104 c1: 10 c2: 12

These two lines provide the information on the table of genes that was read for the reference species.

The first line shows the input file name and path, and the second one displays its characteristics:

total number of lines, number of unique genes, number of proteins (recall that lossgainRSL

considers only protein-encoding genes), and the number of top level sequences (contigs for short) in

the genome (104). Firther c1 is the number of contigs that include only one gene (10), and с2 – that

include exactly two genes (12). As other tables of genes are read, similar data of other species are

shown:

Reading gene info file genes\heterocephalus_glaber_female.tsv ...

Lines read: 40018 genes: 20774 proteins: 28984 contigs: 366 c1: 92 c2: 17

Reading gene info file genes\homo_sapiens.tsv ...

Lines read: 166360 genes: 24154 proteins: 110059 contigs: 1138 c1: 871 c2: 63

Reading gene info file genes\cebus_capucinus.tsv ...

Lines read: 48350 genes: 20317 proteins: 40677 contigs: 1037 c1: 199 c2: 86

Reading gene info file genes\nannospalax_galili.tsv ...

Lines read: 32863 genes: 18647 proteins: 26872 contigs: 1433 c1: 354 c2: 135

Reading gene info file genes\fukomys_damarensis.tsv ...

Lines read: 39247 genes: 17730 proteins: 23413 contigs: 930 c1: 202 c2: 79

Reading gene info file genes\nomascus_leucogenys.tsv ...

Lines read: 47561 genes: 20794 proteins: 40527 contigs: 336 c1: 225 c2: 49

Reading gene info file genes\pan_troglodytes.tsv ...

Lines read: 60146 genes: 23534 proteins: 49949 contigs: 625 c1: 364 c2: 97

Reading gene info file genes\pongo_abelii.tsv ...

Lines read: 29435 genes: 20424 proteins: 21414 contigs: 53 c1: 0 c2: 2

Reading gene info file genes\gorilla_gorilla.tsv ...

Lines read: 53486 genes: 21794 proteins: 45194 contigs: 327 c1: 271 c2: 25

Reading gene info file genes\peromyscus_maniculatus_bairdii.tsv ...

Lines read: 33295 genes: 19854 proteins: 28866 contigs: 1424 c1: 399 c2: 137

Reading gene info file genes\cavia_porcellus.tsv ...

Lines read: 34344 genes: 18095 proteins: 25582 contigs: 319 c1: 61 c2: 20

Reading gene info file genes\ictidomys_tridecemlineatus.tsv ...

Lines read: 32687 genes: 18474 proteins: 25958 contigs: 698 c1: 212 c2: 41

Reading gene info file genes\oryctolagus_cuniculus.tsv ...

Lines read: 24966 genes: 19293 proteins: 20588 contigs: 1053 c1: 472 c2: 174

Reading gene info file genes\mesocricetus_auratus.tsv ...

Lines read: 29938 genes: 18257 proteins: 25910 contigs: 777 c1: 465 c2: 32

Reading gene info file genes\rattus_norvegicus.tsv ...

Lines read: 40234 genes: 22250 proteins: 29107 contigs: 133 c1: 78 c2: 14

Reading gene info file genes\microcebus_murinus.tsv ...

Lines read: 45983 genes: 18895 proteins: 38078 contigs: 76 c1: 32 c2: 2

Reading gene info file genes\rhinopithecus_roxellana.tsv ...

Lines read: 53493 genes: 21289 proteins: 45897 contigs: 2777 c1: 1001 c2: 343

Reading gene info file genes\otolemur_garnettii.tsv ...

Lines read: 28567 genes: 19506 proteins: 19986 contigs: 525 c1: 151 c2: 38

Reading gene info file genes\rhinopithecus_bieti.tsv ...

Lines read: 52671 genes: 20966 proteins: 43730 contigs: 2510 c1: 1007 c2: 248

32

This information is omitted if the command line includes -qq option (but is still preserved with -q

option). The same apply to subsequent lines which inform of reading the table of orthologs for the

reference species and the tables of paralogs if needed. In this example, the tables of paralogs are

needed for all long-lived species as the value ORTH=6 was specified for them, what means that

orthologs of the current X gene are looking for with paralogs taken into account. In the end of each

line, the total number of ordered pairs of orthologous (or paralogous) genes is shown:

Reading orthologs from orthologs\mus_musculus.tsv ... 424717

Reading paralogs from paralogs\heterocephalus_glaber_female.tsv ... 203921

Reading paralogs from paralogs\homo_sapiens.tsv ... 146080

Reading paralogs from paralogs\cebus_capucinus.tsv ... 111465

Reading paralogs from paralogs\nannospalax_galili.tsv ... 100929

Reading paralogs from paralogs\fukomys_damarensis.tsv ... 187810

Reading paralogs from paralogs\nomascus_leucogenys.tsv ... 115430

Reading paralogs from paralogs\pan_troglodytes.tsv ... 159621

Reading paralogs from paralogs\pongo_abelii.tsv ... 116494

Reading paralogs from paralogs\gorilla_gorilla.tsv ... 130833

The above display is for the selected mode H (input data from Ensembl). When using the table or

orthogroups (4.5) as input data, the following fragment will be displayed instead of the two last

ones:

Reading orthogroups from ODB\odb10.txt ...

Orthogroups processed: 24616 Orthologous pairs written: 5742639

Contigs, genes and pairs collected per species:

c: 142/170 g: 21089/21117 p:638301/639471 mus_musculus

c: 275/383 g: 18948/19056 p: 32169/32528 heterocephalus_glaber

c: 197/287 g: 19721/19811 p: 28692/28789 homo_sapiens

c: 823/1049 g: 19367/19593 p: 26885/27346 cebus_capucinus_imitator

c:1182/1836 g: 19238/19892 p: 37390/39369 nannospalax_galili

c: 738/1044 g: 18618/18924 p: 33179/34119 fukomys_damarensis

c: 116/404 g: 19217/19505 p: 26696/27013 nomascus_leucogenys

c: 99/266 g: 20327/20494 p: 28824/29162 pan_troglodytes

c: 77/188 g: 19844/19955 p: 29288/29453 pongo_abelii

c: 48/451 g: 19975/20378 p: 28746/29124 gorilla_gorilla_gorilla

c:1121/1819 g: 19995/20693 p: 46419/51173 peromyscus_maniculatus_bairdii

c: 271/357 g: 19107/19193 p: 37927/38694 cavia_porcellus

c: 507/788 g: 19130/19411 p: 34133/35454 ictidomys_tridecemlineatus

c: 554/1017 g: 18663/19126 p: 35464/37858 oryctolagus_cuniculus

c: 357/1292 g: 18560/19495 p: 34776/36294 mesocricetus_auratus

c: 50/137 g: 20980/21067 p: 47959/48258 rattus_norvegicus

c: 48/108 g: 19411/19471 p: 29493/29614 microcebus_murinus

c:1715/3015 g: 19117/20417 p: 26630/28537 rhinopithecus_roxellana

c: 351/509 g: 18937/19095 p: 28662/29037 otolemur_garnettii

c:1486/2889 g: 19023/20426 p: 25952/27649 rhinopithecus_bieti

Here, first line reports full name and path to the orthogroup file (unsplit in this case), and the second

line displays its characteristics: the number of orthogroups and orthologous gene pairs. Below, for

each species listed in [species] section of the configuration file (5.4), the genomic data are provided,

the number of contigs (c:) and genes (g:) as well as the number of orthologous gene pairs that

include a gene of this species (p:). Each number is given as a fraction with total (of e.g. contigs) as

the denominator and the relevant number (of contigs having 3 genes or greater) as the numerator. Of

course, the data from Ensembl and OrthoDB differ.

Then the two following lines are displayed. The first one reminds the reference species and the

number of top level sequences (“contigs” for short) in its genome (104) as well as the number of

33

genes (22950). The second line shows how many contigs and genes will be actually tried in this

task. Since two witness are required, contigs with only one or two genes are skipped.

mus_musculus in total: 104 contigs, 22950 genes.

With several genes: 94 contigs, 22940 genes.

After that, the search of genes is initiated, during which the lossgainRSL program outputs to console

the messages like this:
c5 x130

where first number (5) is the serial number of contig under test in the reference species, and second

number (130) is the serial number of X gene in this contig. These numbers start from 0 and depend

on the table of genes. The gene numbers are displayed with a step specified in the command line by

–G option. This information can be helpful for debugging (ref. to 5.5.7). After completion, the

number of identified genes and timing are provided:

mus_musculus candidate genes selected: 57

7m: Completed OK.

6.2 Output file

The results of the lossgainRSL operation are written to the output file with a name and path

specified in the command line (see chapter 3) or set by default – result.txt in the working directory.

The existing file will be overwritten.

The file is written in the tab-separated value (TSV) format; the first line contains the field (column)

names. It is assumed that the number and meaning of the fields are the same for all output lines,

although the user can specify a predicate that writes the lines in a variable format. The priority

names are those specified by the HEAD (or HEADING) keyword in the predicate (5.5.1), in which

case the user is responsible for proper correspondence of the names and columns. If the names are

not specified in the predicate, the aliases (if any) or field names from the [fields] section (5.3) of the

configuration file are used. The output file allows for import to the Excel spreadsheet for convenient

post-processing and analysis.

If the program mode X (5.1) was specified, each identified gene of the base species is presented by

one output line consisting of the fields added by a series of ADD operators during the verification of

that gene. If the X mode was not specified, the program additionally writes one line per witness that

contains similar data for witnesses and their homologs in other species. Moreover, an empty line is

written after each synteny block if I is present in the program mode. In this case two more fields are

added in the end of each line to facilitate sorting of the synteny blocks as a whole (see 5.1 for

detail).

In addition, if the lossgainRSL operates in MPI environment, each output line is automatically

appended with a field named ‘rank’ where parallel branch number is provided for debug purpose.

The output file samples are provided in the test, http://lab6.iitp.ru/en/lossgainrsl/example.zip.

http://lab6.iitp.ru/en/lossgainrsl/example.zip

34

7 Using other input data sources

7.1 Addition of genomes not included in the Ensembl

The Ensembl database already includes the complete genomes of more than 150 species, and further

increases. Nevertheless a task can appear, where few (implying one-two) species have to be added

that are not included in the Ensembl yet. In principle, it is possible, but involves a laborious work to

draw up new tables and augment existing ones, manually or by ad hoc scripts or programs.

Below we outline a work for addition of a new genome to existing input data (see chapter 4). In

order to add several new genomes, this should be done by turns for each of them. Let us accentuate

that a new reference species cannot be added in this way and should be taken from the Ensembl, at

least in the current program version. If the Ensembl database lacks the reference species, all

information on gene orthology should be obtained from other sources (7.2).

GenBank is virtually the most important source of new complete genomes. In general, it contains all

necessary data, but sometimes in insufficiently unified and disembodied form, which makes the

drawing up tables 4.1–4.3 a challenge. The genome in GBFF format seems to be most convenient

for manual work described below; the lossgainRSL user also can develop itself a program or script

to use some other source.

7.1.1 Manual preparation of a new table of genes

First of all, the user should prepare the table of genes for the new species. Such table must have the

format described in 4.1 including the field headings. It is required that all tables of genes use

consistent field names. Manual preparation of the table could be easier to make in Excel using the

existing table of genes as a template. Let us point out the data sources for the fields listed in Table 1.

Chromosome/scaffold name

In the LOCUS line, which initiates each section of the genome in GBFF format, the accession code

of the sequence is provided. This code does not include a version number, and can be safely used as

a name of the top level sequence. However, for the results to be more informative we recommend to

examine also the next line (DEFINITION). For example, if it reads “Drosophila melanogaster

chromosome 2R”, more suitable name would be 2R. The name assigned to the sequence should be

used in the table rows for all proteins and genes annotated in this section of the GBFF-formatted

file. The section lines from FEATURES to ORIGIN are subject to further analysis.

Gene stable ID, Gene name

Only protein-encoding genes should be inserted in the table. Such genes are represented by entries

gene, mRNA, and CDS in the file. The gene id appears with the /gene tag in each of these entries;

we recommend to use it for the gene name, and assign the unique gene identifier by any formal

method like Gene IDs in Ensembl.

When entering a gene in the table, its size and structure should be considered. If the gene consists of

several exons separated by long introns or spacers, sometimes it may be better split into several

separate “genes” with individual names. If the gene is accompanied with multiple amino acid

sequences in several CDS entries according to the splicing variants, they should be entered to the

table as separate rows with same Gene ID but different Protein IDs.

35

Gene start (bp), Gene end (bp), Strand

The gene start and end positions in the nucleotide sequence are provided in gene, mRNA, and CDS

entries. If the coordinates follow the keyword “complement”, the Strand field should contain -1,

otherwise 1.

Gene description

For this column, one can use data fields in the gene, mRNA, and CDS entries under the /note and

/product tags. The formal procedure unlikely can be proposed, which usually presents no difficulty

at manual compiling this column.

Protein stable ID

The protein identifier should be assigned to each amino acid sequence that is represented in the CDS

entry under the /translation tag; a formal procedure should be established for this purpose. As

mentioned above, the table of genes for the new species can include multiple lines with the same

Gene ID, but different Protein IDs corresponding to the alternative splicing variants.

When drawing up the table of genes, it is very important to collect the file of proteins for the new

species. The file should be prepared in the FASTA format, where the sequence is taken from the

/translation tag, and the name is a previously assigned protein id. The user also can download the

existing FASTA-formatted file with all protein sequences of the new species, and then substitute the

assigned protein names for the sequence headings.

The recommendations of this section are preliminary ones to be refined from the future experience

of new species addition.

7.1.2 Importing the table of genes from RefSeq

The procedure described in this section is applicable to the cases where the complete genome of the

new species is present among the NCBI reference sequence (RefSeq), which takes place for many

GenBank species, see ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/. A reference assembly usually

includes the file “feature_table”, from which the required table of genes can be easily obtained. For

example, the file for sperm whale is available at URL

ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/002/837/175/GCF_002837175.1_ASM283717v1/GCF_

002837175.1_ASM283717v1_feature_table.txt.gz, and the table of genes in accordance with 4.1 can

be obtained by the following python script authored by Oleg Zverkov:

#!python3

import csv

import gzip

infile_name = 'GCF_002837175.1_ASM283717v1_feature_table.txt.gz'

outfile_name = 'physeter_catodon.tsv'

ens_fields = ('Protein ID', 'Transcript ID', 'Gene ID', 'Region Type',

 'Region', 'Start', 'End', 'Strand', 'Label', 'Description')

def main():

 with gzip.open(infile_name, 'rt', newline='') as infile, \

 open(outfile_name, 'w', newline='') as outfile:

 assert infile.read(2) == '# '

 reader = csv.DictReader(infile, delimiter='\t')

 writer = csv.DictWriter(outfile, delimiter='\t', fieldnames=ens_fields)

 outfile.write('\t'.join(ens_fields) + '\n')

ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/
ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/002/837/175/GCF_002837175.1_ASM283717v1/GCF_002837175.1_ASM283717v1_feature_table.txt.gz
ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/002/837/175/GCF_002837175.1_ASM283717v1/GCF_002837175.1_ASM283717v1_feature_table.txt.gz

36

 for feature in reader:

 if feature['feature'] == 'CDS':

 writer.writerow(gbk2ens(feature))

def gbk2ens(feature):

 region = (feature['chromosome'] if feature['seq_type'] == 'chromosome'

 else feature['genomic_accession'])

 return {

 'Protein ID': feature['product_accession'].split('.')[0],

 'Transcript ID': feature['related_accession'].split('.')[0],

 'Gene ID': 'GID' + feature['GeneID'],

 'Region Type': feature['seq_type'],

 'Region': region,

 'Start': feature['start'],

 'End': feature['end'],

 'Strand': {'+': '1', '-': '-1'}[feature['strand']],

 'Label': feature['symbol'],

 'Description': feature['name'],

 }

if __name__ == '__main__':

 main()

7.1.3 Augmenting the ortholog and paralog tables by addspecies utility

If the predicate (5.5) does not include 3-species conditions, the table of orthologs (4.2) is required

only for the reference species, otherwise also for each putative substitute species. If a new non-

Ensemble species is added, this table must be augmented by the records for all pairs of orthologous

genes from the reference and new species. In addition, if the predicate accounts for paralogous

genes, the table of paralogs (4.3) may be required for the new species. To this end, the ancillary

utility addspecies is available at the lossgainRSL main page (http://lab6.iitp.ru/ru/lossgainrsl/).

As a prerequisite to the utility, the user should apply BLASTP to obtain the scores for the local

alignment of all pairs of proteins from the reference and new species as well as from the reference

and new species apart. The ordered pairs (i.e. with transpositions) should be considered, because in

general case the score can depend on which of the two species acts as a target. Prior to using

BLASTP, all protein sequences for both species in FASTA format must be obtained. For Ensembl

genomes, these files are available at their ftp server in the pep subdirectory for each species, for

example, at ftp://ftp.ensembl.org/pub/release-95/fasta/mus_musculus/pep/ for mouse. For RefSeq

and GenBank genomes, similar files are available in the assembly-related directory e.g.

GCF_002837175.1_ASM283717v1_protein.faa.gz (complete path to the directory see in 7.1.2).

Using of BLASTP is not discussed here; the expected results are the four protein similarity matrices

similar to those described in section 4.4. These matrices should be named spec1-spec2.*, spec2-

spec1.*, spec1-spec1.*, and spec2-spec2.*, where spec1,2 are the names of the reference and new

species listed in the [species] section of the configuration file (5.4). Let us stress that protein

identifiers in these protein similarity matrices must be exactly the same as those used in the table of

genes for the reference and new species. It is essential as existing FASTA files can contain the

protein names including a version number, while IDs in the table of genes normally lack version

numbers.

The program “addspecies” was written in C++ and is a command line utility for Windows/Linux

(32/64 bit). The utility uses the following syntax:

addspecies [options] source target [config]

http://lab6.iitp.ru/ru/lossgainrsl/
ftp://ftp.ensembl.org/pub/release-95/fasta/mus_musculus/pep/

37

The utility name in Windows 64-bit environment is addspecies64. The required arguments are as

follows: source is the name of a new species to be added, target is the name of an existing species

(the reference or substitute one). All species names must be listed in the [species] section of the

configuration file that can be one used for the lossgainRSL program (chapter 5) with the addition of

[add] section before or after any other section. The [add] section should be as follows (examples of

the numerical values are shown):

[add]

EVALUE 1e-10

ORTHOLOG 0.35

PARALOG 0.35

The name of the configuration file including optional path can be specified by the config argument

in the command line; default is config.ini in working directory. Note that lossgainRSL ignores

the [add] section, and “addspecies” ignores unnecessary sections from those described in chapter 5.

Thus, in practice both programs can share the same configuration file.

The parameters in the [add] section have the following meaning:

EVALUE – the E-value cut-off for the alignment of two proteins; the pairs with greater E-value are

skipped.

ORTHOLOG – the minimum acceptable weight for the similarity of two proteins from source and

target species, calculated by the formula 2 / ()st ss ttw S S S , where Sst is the raw score for the

alignment of the two proteins (one from source, another from target), and Sss, Stt are the raw scores

for the alignment of each protein with itself. If the weight exceeds the threshold specified, respective

genes are considered as orthologs.

PARALOG – the minimum acceptable weight for the similarity of two proteins from the new

(source) species to consider them as paralogs. The weight is calculated by the above formula, but for

the two proteins from the same species.

The addspecies utility supports the following case-insensitive options:

-En Sets the value of n as E-value cut-off. If this option is specified, the parameter EVALUE

in the [add] section of the configuration file is ignored. Default cut-off value equals

1e-10 (i.e. 10
-10

).

-Gn The step for displaying gene numbers in each contig. Default is 10, zero value cancels

displaying of gene numbers.

-M If this option is specified, the program computes and stores the four matrices of E-values

and raw scores between the genes of source and target species. These matrices are

similar to above protein similarity matrices, except for using gene IDs instead of protein

IDs. Each entry contains the minimum E-value and maximum raw score over all pairs of

proteins encoded by given genes. Each matrix is sorted in the ascending order of first

gene id and in the descending order of raw score. The directory to write the matrices

should be specified in the [data] section of the configuration file (5.2) with a special data

type M (in addition to those listed in Table 4) e.g. as the line:
M matrix*-*.tsv

38

In such case, the matrix files will be named as species1-species2.tsv, where source and

target will be substituted in all four combinations for species1 and species2.

-U The same as -M option, but the matrices are not ordered.

-Qn This option is intended for the program termination at intermediate points. If the value of

0 is specified, the addspecies utility writes the gene similarity matrices (if specified –M

or –U) and finishes. If the value of 1 is specified, in addition the program augments the

table of orthologs for the target species. If the value of 2 or greater is specified, in

addition the program creates the table of paralogs for the source species (default mode).

-On Sets a new threshold for the weight of orthologs. If this option is specified, the parameter

ORTHOLOG in the [add] section of the configuration file is ignored. By default, the

threshold of 0.5 is used.

-Pn Sets a new threshold for the weight of paralogs. If this option is specified, the parameter

PARALOG in the [add] section of the configuration file is ignored. By default, the

threshold of 0.5 is used.

-Wfile If this option is specified, the program writes identified pairs of orthologous genes from

the source and target species to the separate file with the name specified. By default, the

new orthologous pairs are appended to the existing table of orthologs for the target

species. In both cases it uses the directory specified for O data type in the [data] section

of the configuration file (5.2).

As for the table of paralogs for the new (source) species, the program uses the directory specified

for P data type in the [data] section of the configuration file (5.2), and the file is named as other

tables of paralogs.

In order to use the addspecies utility, first the user should make necessary modification of the

configuration file (in particular, specify the new species name). Then, the four protein similarity

matrices (4.4) should be obtained using BLASTP. These matrices should be properly named and

placed in the directory specified for A data type in the [data] section of the configuration file (5.2).

The optimum cut-off values for the weights and E-value are selected empirically. The algorithm that

has been implemented in the program is rather experimental and preliminary one.

39

7.2 Using alternative information on gene homology

The best method for the ortholog inference is unknown; different methods yield different results.

The information on orthologs and paralogs provided in the Ensembl database also gives rise to

complaints in some cases. The lossgainRSL program allows the user to take advantage of other

orthology inference methods, but this should be always done as a whole, i.e. for all species and

genes under study. For example, one may use the protein similarity matrices (4.4) or the table of

clusters (4.5) instead of the ortholog/paralog tables from the Ensembl, still using the tables of genes

(4.1) from the Ensembl.

The user can decide against using Ensembl entirely and input from the table of orthologous groups

(4.5) composed from the OrthoDB data (what is not described in detail).

Generally, when running the program with different sources of orthology, different lists of genes

will be obtained which provides the users with new opportunities. Let us discuss two of them. If the

minimum overprediction is a priority, and the user aims at as short as possible lists of more reliable

genes having the desired properties e.g. for wet experiment, it can be achieved by intersecting of the

lists obtained for different orthology inference methods. And vice versa, one can decrease the

underprediction by joining independent lists of genes.

Besides such rigid set-theoretic operations as the intersection and union, one can apply more slack

procedures such as voting if three or more sources of orthology are used. New study is ahead to

integrate existing and future conceptions of gene orthology, especially in distant species.

