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Introduction

Individual encounter/capture histories

individual  history t1 to t3 ... Tg_1 1Ug sex
1 hq 1 1 0 ... 1 1 male
2 ho 1 1 0 ... 1 1 male

9 h; o 1 0 ... 0 1 female




Introduction

Parameters :

Probabilities of survival over time interval |t;, ;1] for females/males :
F M
gbz’ 7¢i
Probabilities of detection/capture at time t; for females/males :

pl, pM



Introduction

Probability of an individual encounter history

hilg,p)=Pr(1 10 ... 11 M)=

1! x pat x ¢ x (1 —pdf) x ... x ¢35 x pdt



Introduction

Probability of an individual encounter history
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Introduction

Probability of an individual encounter history

hilg,p)=Pr(1 10 ... 11 M)=

o1 x pat x ¢ x (1 —pdf) x ... x ¢35 x pit



Introduction

Likelihood
h|p,p] o Hh|¢,

Cormack (1964), Jolly (1965) et Seber (1965)



Introduction

Classical relationship between survival and a covariate
Lebreton et al. (1992)

log <—) = Bo+0G1w

e Pros: ¢ € [0;1]
e Cons 1: ¢ is completely determined by the covariate
e Cons 2 : the relationship survival/covariate is linear on the logistic scale (or quadratic)

e Objective : By and 3 are parameters to be estimated



Introduction

(Less) Classical relationship between survival and a covariate

log(%) = Bo+Biazte

® Same Pros

e Cons 1 is relaxed thanks to random effects €
1. Cope with effects non captured by the covariate, overdispersion (Barry et al. 2002)

2. Allow to cope with temporal autocorrelation (Johnson et Hoeting 2003)
e Problem : complex likelihood, yet to be evaluated (approximations, MCMC methods, SIS...)

e Cons 2 : the relationship survival/covariate is linear on the logistic scale (or quadratic)



Introduction

Nonlinearities?

Snow petrels Sociable weavers

Environmental covariates Individual covariates

Effect of climatic conditions Effect of natural selection



Introduction

Aims of the talk
To propose a non-parametric relationship survival/covariate
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Penalized splines

liInearities...




Penalized splines

ordinary least squares

search for 7 that minimizes ||y — Xn||? withy = (y1,...,yn)?

n=(XT X)"' XTy



Penalized splines

linearities...

X; = (1,x;) base {1, x}
n = (50761)T



Penalized splines

guadraticities...
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y; = Bo + B1 X m; + B2 X 17 + £;?



Penalized splines

guadraticities...

10

-60

X; = (1,z;,2?) basis {1, x, 7%}

)

n = (Bo, 51, B2)"



Penalized splines

broken lines...
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Penalized splines

truncated power functions (u)%, = u”I ;>

m(x) = (@ — 1)4
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Penalized splines

broken lines...
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Penalized splines

broken lines...
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Penalized splines
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Penalized splines

non-linearities...
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Penalized splines

non-linearities...
non-parametric fitting using linear splines
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Penalized splines

non-linearities...
linear splines basis
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Penalized splines

non-linearities...
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Penalized splines

non-linearities...
non-parametric fitting using quadratic splines
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Penalized splines

non-linearities...
guadratic splines basis
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Penalized splines

Influence of the number and location of the knots?



Penalized splines

Non-parametric approach via Ordinary Least Squares

Raw Data 2 knots 3 knots 5 knots
oy, | T '
o2f
-0.4
—nal
0.8t
~00 oo 600 ~a00 600

10 knots 20 knots 50 knots 100 knhots

1 1 1 1 1 1 1 1 1
400 B00 400 Bo0 400 G600 400 ao0

After Ruppert et al. (2003)



Penalized splines

Suggestions (Ruppert et al. 2003)
e penalize the b;.s in order to constraint the influence of knots : penalized splines or P-splines
e search for 7} that minimizes ||y — X 1||? given the constraint bI'b < C
e it can be shown that it is equivalent to search for 7} that minimizes ||y — Xn||? + A\?bTb

e )\ is the smoothing parameter

0 0
o iy =XT X+ D)y XTywithD= | % ~2F

Oxxo Irxxk

. . (1
e the number of knots is A = min (Zn, 35)

e the knot K are the "equally-spaced sample quantiles" i.e. the sample quantiles of the x;’s
corresponding to probabilities k£ /(K + 1)



Penalized splines

Penalized non-parametric approach

Raw Data 2 knots 3 knots 5 knots

400 &00 400 &00

10 knots 20 knots 50 knots 100 khots

400 600 400 600 400 &00 400 &00

After Ruppert et al. (2003)
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Mixed models framework

Penalized splines within a Mixed model framework
y; = m(x;) + &5, g; iid. ~ N(0,02)

with

K
m(x;) = Bo + Bras + Y be(wi — ki) +
k=1



Mixed models framework

Penalized splines within a Mixed model framework

8= (ﬁo,ﬁl)T et b= (bl, Ce ,bK)T by iid. ~ N(0,0'g)

Xi = (1,561) et Zz = ((sz — /'%'1)4_, Ceey (ZE‘Z — HJK)_|_)
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Mixed models framework

Comments
e With Ordinary Least Squares, ag — +00
e Having by random allows to attenuate the effect of (z; — kg )+
e The implementation is much easier in standard software

e Unifying framework useful for extensions
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Bayesian inference via MCMC methods

Bayesian approach :

We assume the components of 0 = (ﬁ, b, e, ag, 0?, p) are random variables.

We'd like to determine the aposteriori distribution given the data, using Bayes’s theorem:
0|h] o [h|#, p][¢]B, b, ][B][bloy][e|of] 0] [0Z] ]

Use of MCMC methods : generate observations from a Markov chain having the target

distribution as stationnary distribution [@|h)].

WIinBUGS implementation



Environmental covariates: Snow petrels

Example 1: Snow petrels

Environmental covariates




Environmental covariates: Snow petrels




Environmental covariates: Snow petrels

Nonparametric model
Southern Oscillation Index (SOI)

7
ogit(¢}) = Bo+ iSO + Y bk (SOl — Kg), + &
k=1



Environmental covariates: Snow petrels

Semiparametric model

7
|ogit(gb§) = By + YSEX + (31S0l; + Z b (sOl; — ki), + &
k=1

1 si [ =F ie. female
SEX =

0 otherwise



Environmental covariates: Snow petrels

Semiparametric model
mixed model representation: fixed effects

5:(50 v P )T

(1 1 son )

1 1 SOlgg
1 0 soni

\ 1 0 SOlgg )



Environmental covariates: Snow petrels

Semiparametric model
mixed model representation: random effects

b:(b1 b )T

{(SOIl — K1)y ... (SOl —/4;7)+\

K(SOIQg — /431)_|_. . .(SO|28 — Ii7)_|_)



Environmental covariates: Snow petrels

A priori
p| = U0, 1]
], [Bo] » [81] = N(0,10°)
[b] = N(0,03)

B
lop], [oZ] =T71(107°,107°)

N(0,0’?)



Environmental covariates: Snow petrels

Technically
e 2 chains run in parallel with overdispersed initial values
e 1100000 iterations with 100000 burn-in iterations 100000

A

e compute the Gelman-Rubin - R - to check for convergence (R =1)



Environmental covariates: Snow petrels

RESULTS
Snow petrel



Environmental covariates: Snow petrels

Difference in survival according to sex

Males survive better than females:
v = —0.26 (—0.45;—0.06)

-0.6 -0.4 -0.2 0.0

Posterior distribution of y



Environmental covariates: Snow petrels

Survival/SOI using a P-spline approach

o o
o 4 o
— —
[e0] [e0]
S S
o o
[(e] (o]
I S
o o
— ©
] 2
= < S <t
s 9 5 O 4
> o (7] o
0 [0}
Q ©
I A E AN
= 3 4 g o 4
o o
o o
(o) [o) I
o o
\
2 2 .
o o
(IR [T [0 | (TIRN [HCEL [l I
I [ [ [ [ [ [ I I [ [ [ [ [ [ I
-15 -0.5 0.5 1.5 -15 -0.5 0.5 15

Standardized SOl Standardized SOl



Environmental covariates: Snow petrels

Survival/SOI using a linear-logistic approach
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Individual covariates: Sociable weaver

Example 2: Sociable weavers

Individual covariates




Individual covariates: Sociable weaver




Individual covariates: Sociable weaver

Survival/body mass using a P-spline approach
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Individual covariates: Sociable weaver

Survival/body mass using a quadratic-logistic approach

survival
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Individual covariates: Sociable weaver

Survival/body mass using a cubic-logistic approach

survival
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Discussion

Summary

e Nonparametric/semiparametric approach for estimating survival in capture-recapture

models
e Bayesian inference through MCMC methods (WinBUGS)

e Splines functions useful by themselves, or can suggest a parametric alternative if desired



Discussion

Perspectives
e Coping with interactions
e Dealing with multiple covariates
e Modelling senescence

e Performing model selection (DIC, RIMCMC, MSPE, Bayes factor...)



By order of apparition:

Snow petrels




Sociable weavers
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