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New robust weighted averaging- and model-based methods 

for assessing trait-environment relationships. 

 
 

Cajo J. F. ter Braak 

 

Appendices 

 

A1. Tutorial 

 

Sections A1.1. and A1.2 show how to apply the multilevel model MLM3 and N2-

weighted CWM/SNC regressions, respectively, with graphs and the max test for both 

and a bootstrap test for MLM3 using R (R Core Team 2018). The R code to run the 

tutorial can be found at https://doi.org/10.6084/m9.figshare.8152655. The scripts for 

applying MLM3 (section A1.1) are TutorialMLM3_Revisit.r and 

TutorialMLM3_Aravo.r. The script for applying N2-weighted CWM/SNC regressions 

(section A1.2) is TutorialWA.r. Instead of including source files, you can install and 

use the R package TraitEnvMLMWA (install from the file TraitEnvMLMWA 

_0.0.0.9000.tar.gz). Install the latest version of TraitEnvMLMWA from github by using 

in an R session the statement: 

remotes::install_github("CajoterBraak/TraitEnvMLMWA") 

 

A1.1 Tutorial using multilevel method MLM3 

 

This tutorial shows how to apply the multilevel model MLM3 using R with the library 

glmmTMB for overdispersed data and the library lme4 if the overdispersion is very 

minor. Multilevel model MLM2 is not illustrated as it is inferior to MLM3. 

Before the release of glmmTMB, practitioners used lme4 for overdispersed data by 

including to the linear predictor an observation level random effect ‘(1|obs)’, where obs 

is a factor with n×m levels. For estimation, such a model requires the (approximate) 

integration over an n×m dimensional space, which is challenging; approximations to 

the integral are likely not very good. The library glmmTMB avoids these problems by 

allowing response distributions with overdispersion parameters.  

Section A1.1 shows analysis of the Revisit data using binomial data with overdispersion 

as in the main text. Section A1.2 show the analysis of the Aravo data (Appendix A7) 

using count data, first with overdispersion and then, using lme4, without, as these data 

show minor overdispersion. 

 

Logit analysis using Revisit data 
 

The data for this example is taken from Miller et al. (2018). This data file 

whittakerrevisitdata.csv is already nearly in the format needed for MLM3 

https://doi.org/10.6084/m9.figshare.8152655
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analysis. See the section A1.2 for getting the data in such a format from the format in 

Figure 1 in the main text (the three items, Y, t and e). Note also that the trait and 

environmental variable are already standardized to zero mean and unit variance. 

 

Main analyses 

 

Load the data in to R. 

dat <- read.csv("data/whittakerrevisitdata.csv") 

str(dat) 

## 'data.frame':    3900 obs. of  5 variables: 
##  $ site   : int  109 113 12 156 157 160 161 163 164 185 ... 
##  $ species: Factor w/ 75 levels "Abies concolor",..: 1 1 1 1 1 1 1 1 1 1 ... 
##  $ trait  : num  1.4 1.4 1.4 1.4 1.4 ... 
##  $ env    : num  -0.351 -0.774 1.667 1.016 1.342 ... 
##  $ value  : int  0 0 0 25 7 4 4 0 0 0 ... 

In the data, value is the response variable. For logit analysis in R, it must a matrix 

consisting of successes and failures.  

dat$y <- with(dat, cbind(value,100-value)) 

dat$site <- factor(dat$site) 
 

The main analysis is obtained by 

 
library(glmmTMB) 
formula.MLM3.linear <- y ~ env * trait + (1 + trait| site) + (1 + env|species) 
MLM3 <- glmmTMB(formula.MLM3.linear, family = betabinomial,  data=dat) 

resulting in many warnings. We neglect these warnings (see the subsection Warnings 

issued by glmmTMB). The summary of the analysis is 

summary(MLM3) 

##  Family: betabinomial  ( logit ) 
## Formula:           
## y ~ env * trait + (1 + env | species) + (1 + trait | site) 
## Data: dat 
##  
##      AIC      BIC   logLik deviance df.resid  
##   6193.9   6262.9  -3086.0   6171.9     3889  
##  
## Random effects: 
##  
## Conditional model: 
##  Groups  Name        Variance Std.Dev. Corr   
##  species (Intercept) 2.1786   1.4760          
##          env         0.1776   0.4214   0.41   
##  site    (Intercept) 0.2255   0.4749          
##          trait       0.1134   0.3367   -0.92  
## Number of obs: 3900, groups:  species, 75; site, 52 
##  
## Overdispersion parameter for betabinomial family (): 3.35  
##  
## Conditional model: 
##             Estimate Std. Error z value Pr(>|z|)     
## (Intercept) -5.42782    0.21827 -24.868  < 2e-16 *** 
## env         -0.68239    0.12503  -5.458 4.82e-08 *** 
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## trait        1.00306    0.19788   5.069 4.00e-07 *** 
## env:trait    0.25117    0.09583   2.621  0.00876 **  
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

The estimate of the parameter for trait-environment interaction 𝛽𝑡𝑒 is the entry env:trait    

0.25117  and the Wald test in the last column is highly significant (p=0.00876). 

Estimates for the square-root of the variance components are 𝜎̂𝑏 = 0.3367 and 𝜎̂𝑐 

=0.4214. There is considerable correlation between the (Intercept) and env in the 

stratum ‘species’ (0.41) and (Intercept) and trait in the stratum ‘site’ (-0.92). If one of 

these correlations is close to 1, it may be difficult to obtain stable estimates of the 

variance components.  

It is wise to check for non-linear main effects. Here a polynomial of order 2 is fitted 

and summarized. 

# extension with polynomial main effects 
 
formula.MLM3.quad <- y ~ poly(env,2)+poly(trait,2)+ env : trait + (1 + trait| site) 
+ (1 + env|species)  
 
MLM3.quad <- update(MLM3,formula.MLM3.quad) 

summary(MLM3.quad) 

##  Family: betabinomial  ( logit ) 
## Formula:           
## y ~ poly(env, 2) + poly(trait, 2) + (1 + env | species) + (1 +   
##     trait | site) + env:trait 
## Data: dat 
##  
##      AIC      BIC   logLik deviance df.resid  
##   6196.9   6278.4  -3085.4   6170.9     3887  
##  
## Random effects: 
##  
## Conditional model: 
##  Groups  Name        Variance Std.Dev. Corr   
##  species (Intercept) 2.1772   1.4755          
##          env         0.1806   0.4249   0.43   
##  site    (Intercept) 0.2260   0.4754          
##          trait       0.1109   0.3330   -0.92  
## Number of obs: 3900, groups:  species, 75; site, 52 
##  
## Overdispersion parameter for betabinomial family (): 3.35  
##  
## Conditional model: 
##                  Estimate Std. Error z value Pr(>|z|)     
## (Intercept)      -5.43000    0.21858 -24.842  < 2e-16 *** 
## poly(env, 2)1   -43.12954    7.88765  -5.468 4.55e-08 *** 
## poly(env, 2)2    -1.30393    3.46687  -0.376  0.70683     
## poly(trait, 2)1  61.99530   12.35436   5.018 5.22e-07 *** 
## poly(trait, 2)2  10.45304   10.95875   0.954  0.34016     
## env:trait         0.25310    0.09592   2.639  0.00832 **  
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Note that the model is an equi-width Gaussian logit response model (ter Braak & 

Looman 1986; Jamil & ter Braak 2013), because the coefficient for the squared term 

for env is negative (-1.30393). But it is non-significant. The corresponding coefficient 

for trait is positive and non-significant. Comparing these models by ANOVA 
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anova(MLM3,MLM3.quad) 

## Data: dat 
## Models: 
## MLM3: y ~ env * trait + (1 + env | species) + (1 + trait | site), zi=~0, disp=~1 
## MLM3.quad: y ~ poly(env, 2) + poly(trait, 2) + (1 + env | species) + (1 + , zi=~
0, disp=~1 
## MLM3.quad:     trait | site) + env:trait, zi=~0, disp=~1 
##           Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(>Chisq) 
## MLM3      11 6193.9 6262.9 -3086.0   6171.9                          
## MLM3.quad 13 6196.9 6278.4 -3085.4   6170.9 1.0501      2     0.5915 

shows no evidence for the need for the quadratic terms (p= 0.59). The remainder of the 

analyses of the Revisit data uses the linear MLM3 model. 

 

A likelihood ratio test (LRT) is often (slightly) superior to the Wald test, but it requires 

the fit of two models and thus takes more time to compute. The LRT test for the 

interaction is obtained by the code: 

# LRT test ---------- 
# perhaps useful if there are less than 20 species or sites 
formulaNULL <- update(formula(MLM3),  ~ . - trait:env ) 
MLM0 <- glmmTMB(formulaNULL, data=dat, family= family(MLM3)) 

## Warning in f(par, order = order, ...): value out of range in 'lgamma' 
 
[...] 
 
## Warning in f(par, order = order, ...): value out of range in 'lgamma' 

anova(MLM0,MLM3) 

## Data: dat 
## Models: 
## MLM0: y ~ env + trait + (1 + trait | site) + (1 + env | species), zi=~0, disp=~1 
## MLM3: y ~ env * trait + (1 + trait | site) + (1 + env | species), zi=~0, disp=~1 
##      Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)    
## MLM0 10 6198.8 6261.5 -3089.4   6178.8                             
## MLM3 11 6193.9 6262.9 -3086.0   6171.9 6.8897      1    0.00867 ** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

The LRT gives p-value 0.00867, which is close the Wald p-value (p=0.00876). In the 

initial work for the paper, both tests were used, but as I did not find much difference, I 

switched to the use of the Wald test only.  

Graphs of fixed and random effects 

 

Graphs like Figure 3 of the main text can be made using the function plot.MLM3. 

 

library(ggplot2) 
library(dplyr) 
source("Rfunctions/plot.MLM3.r") 
plot.MLM3(MLM3) + 
  ggtitle('site and species effects (fixed + random) against TMG and C:N') +  
  xlab("TMG                              C:N ratio") + 
  ylab("estimated effects")  

## Warning: Removed 75 rows containing missing values (geom_point). 
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Bootstrap confidence interval for trait-environment parameter 

 

A bootstrap confidence interval can adjust for bias in parametric MLM3. In theory - 

when glmmTMB with MLM3 works well - the scope for such a bootstrap is limited as 

MLM3 showed little bias in the simulations, except in logit models with large residual 

correlation. To deal with such bias, a non- or semi-parametric bootstrap would be 

needed (such as developed for GLM by Warton et al. 2017), but this is left for future 

work. The parametric bootstrap simulates without residual correlation, in which case 

MLM3 did not show bias (Table A8d). By consequence, the parametric bootstrap 

cannot correct for bias that is due to large residual correlation. However, in practice, 

the bootstrap is a good check whether glmmTMB with MLM3 worked well. It is a 

check whether it is warranted to ignore the many warnings glmmTMB issues (see also 

the subsection Warnings issued by glmmTMB). The code for a parametric bootstrap of 

the MLM3 model is: 

 

getInteractionParameter <- function(MLM3){ 
  if (class(MLM3)[1] == "glmmTMB"){ 
         B <- summary(MLM3)$coefficients$'cond' 
     } else if (class(MLM3)[1] == "lme4") { 
         B <- summary(MLM3)$coefficients 
     } 
  coef_te <- B[nrow(B),-4] 
  return(coef_te) 
} 
stats_data <- getInteractionParameter(MLM3) 
# not implemented in glmmTMB 
# bootMer(MLM3, FUN = getInteractionParameter, nsim = 4) 
# 
 
dat_boot <- model.frame(MLM3) 
nsimul <- 1000 
bootstrap_mat<- matrix(0, nrow = nsimul, ncol = length(stats_data)) 
colnames(bootstrap_mat) <- names(stats_data) 
for (i in 1:nsimul){ 
  dat_boot$y <- as.matrix(simulate(MLM3)) 
  suppressWarnings(MLM3boot <- glmmTMB(formula(MLM3), family = betabinomial,  data=
dat_boot)) 
  bootstrap_mat[i, ] <- getInteractionParameter(MLM3boot) 
} 
summary(bootstrap_mat) 

##     Estimate          Std. Error         z value        
##  Min.   :-0.03181   Min.   :0.06529   Min.   :-0.2909   
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##  1st Qu.: 0.18604   1st Qu.:0.09012   1st Qu.: 1.9296   
##  Median : 0.24980   Median :0.09720   Median : 2.5423   
##  Mean   : 0.25215   Mean   :0.09762   Mean   : 2.5851   
##  3rd Qu.: 0.31582   3rd Qu.:0.10472   3rd Qu.: 3.2402   
##  Max.   : 0.59239   Max.   :0.13772   Max.   : 5.6388 

# 95% naive/quantile/percentile  bootstap confidence interval (do not use..) 
b_te_boot = bootstrap_mat[,1] 
plot(density(b_te_boot)) 

 

b_te_qu_ci = quantile(b_te_boot,probs = c(0.025,0.975)) # 95 % quantile / percentri
le bootstrap c.i. 
b_te_qu_ci 

##       2.5%      97.5%  
## 0.05663358 0.46233038 

mean(b_te_boot) 

## [1] 0.2521484 

sd(b_te_boot) 

## [1] 0.10179 

The mean and standard deviation of the bootstrap sample are about the same as the M

LM3 estimates (0.25117 and  0.09583, respectively). A bootstrap studentized confide

nce interval (Hall 1988, Davison & Hinkley 1997) is constructed as follows: 

# 95% studentized bootstap confidence interval (use this one) 
b_te_est <- stats_data[1] 
se_b_te_est <- stats_data[2] 
se_b_te_boot <- bootstrap_mat[,2] 
# t-value when the true interaction coefficient = b_te_est 
tval_te_boot = (b_te_boot - b_te_est)/se_b_te_boot 
plot(density(tval_te_boot)) 
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z_b_te_qu = quantile(tval_te_boot,probs = c(0.025,0.975), na.rm=TRUE) 
z_b_te_qu # ideally symmetic -2 to 2, if not, the interval corrects for bias 

##      2.5%     97.5%  
## -2.081137  2.078249 

b_te_Stu_boot_ci = b_te_est - rev(z_b_te_qu)*se_b_te_est 
names(b_te_Stu_boot_ci)=rev(names(b_te_Stu_boot_ci)) 
b_te_Stu_boot_ci 

##       2.5%      97.5%  
## 0.05202084 0.45060189 

The bootstrap intervals are almost equal and equal to the parametric one.  

The rationale of the rev(z_b_te_qu) in the code above comes from the logic of the 

bootstrap and the hope that the z-value is asymptotically pivotal (Hall 1988, ). The logic 

is that the sample relates to the population in the same way as the bootstrap sample 

relates to the sample. The reason behind this logic is that the sample forms the truth 

from which the bootstrap samples. For a small number of bootstrap samples it is better 

to replace the quantiles z_b_te_qu by interpolated ones as in the function boot.ci of 

library, as follows.  

library(boot) 
t0 <- c(b_te_est, se_b_te_est^2) 
t <- bootstrap_mat 
t[,2] <- t[,2]^2 
objboot <- list(t0 = t0, t = t, R = nrow(t)) 
boot.ci(objboot, type = "stud") 

## BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS 
## Based on 1000 bootstrap replicates 
##  
## CALL :  
## boot.ci(boot.out = objboot, type = "stud") 
##  
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## Intervals :  
## Level    Studentized      
## 95%   ( 0.0512,  0.4530 )   
## Calculations and Intervals on Original Scale 

Testing trait-environment interaction by bootstrap 

 

For small number of species or sites (<20, say) MLM3 shows type I error inflation 

(Appendix A8). A statistical test based on resampling can be useful in this case (by 

bootstrapping or permutation). This subsection presents the more customary bootstrap 

test, whereas the next presents the new model-based permutational max test. As there 

is no proven, reliable non- or semi-parametric bootstrap test, a parametric bootstrap is 

used. This bootstrap simulates from the model as fitted and is thus based on the same 

assumptions as MLM3. See Box A2 in Appendix A4. However, the parametric 

bootstrap test might be able to correct for type I error rate inflation inflation even in the 

case of structured residual correlation, as the simulations without structured residual 

correlation also show type I error rate inflation (Table A5)1.  

 

# Parametric bootstrap test---------------------------------------------------------- 
source("Rfunctions/utility_functions.r") 
source("Rfunctions/Bootstrap_test.r") 
set.seed(123) 
nrepet <- 19 
res_boot <- Bootstrap_test_prmtrc(MLM3, test_stat = "Wald", nrepet = nrepet, Binomial_total = 100) 

The output is  

names(res_boot) 

## [1] "p_values"  "nrepet"    "sim.boot"  "MLM0"      "obs"       "test_stat" 

round(res_boot$p_values,3) 

## p_prmtrc.Wald        p_boot  
##         0.009         0.050  
## attr(,"nrepet") 
## [1] 19 

The observed test statistic is larger than any of the19 simulations, so that the Monte 

Carlo p-value is 1/(19+1) = 1/20 = 0.05. With 499 permutations, I obtained p =0.014.  

Testing trait-environment interaction by permutation 

 

The model-based permutation max test can be obtained as follows: 

 

# model-based permutation max test ---------------------------------------- 
source("Rfunctions/setoptions.r") 
source("Rfunctions/MLM3_p_max.r") 
 
set.seed(323) 
res_perm <- MLM3_p_max(MLM3, test_stat = "Wald", nrepet = nrepet, Binomial_total = 
100) 

with output 

                                                 
1 If simulations without structured residual correlation would not show type I error rate inflation, the 

parametric bootstap test is unlikely to correct for type I error inflation, as it samples from such data. 
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names(res_perm) 

## [1] "p_values" "nrepet"   "obs"      "sim.row"  "sim.col" 

round(res_perm$p_values,3) 

##      obs.sites obs.species p.site.permut p.species.permut pmax.permut 
## [1,]     0.009       0.009          0.05             0.05        0.05 
## attr(,"nrepet") 
## [1] 19 

 

The observed test statistic is larger than any of the19 simulations in both the site-level 

and the species-level test, so that both Monte Carlo p-values are 0.05. The max test 

gives thus also p = 0.05. With 499 permutations, I obtained p =0.012.  

 

Log-linear analysis using Aravo data  

Analysis 

 

This analysis starts from the data format in Figure 1: Y, trait, env. We scale the trait 

and environmental variable to zero mean and variance one, so as to make the parameter 

for trait-environment interaction and the variance components comparable among 

analyses.  

# read and process data --------------------------------------------------- 
library(ade4) 
data(aravo) 
Y <-aravo$spe 
trait <- scale(aravo$traits$SLA) 
env <- scale(aravo$env$Snow) 
 

The function make_obj_for_traitenv checks for empty sites and species without 

occurrences and creates an object of class TE_obj. This object can then be used to create 

the expanded data frame for multilevel analysis using expand4glmm.  

source("Rfunctions/utility_functions.r") 
obj <- make_obj_for_traitenv(env, Y, trait, cut_off=0) 
str(obj) 

## List of 3 
##  $ L: int [1:75, 1:82] 0 0 3 0 0 0 2 0 0 3 ... 
##   ..- attr(*, "dimnames")=List of 2 
##   .. ..$ : chr [1:75] "AR07" "AR71" "AR26" "AR54" ... 
##   .. ..$ : chr [1:82] "Agro.rupe" "Alop.alpi" "Anth.nipp" "Heli.sede" ... 
##  $ E: num [1:75, 1] -1.35 -1.35 -1.35 -1.35 -1.35 ... 
##   ..- attr(*, "dimnames")=List of 2 
##   .. ..$ : chr [1:75] "AR07" "AR71" "AR26" "AR54" ... 
##   .. ..$ : chr "env" 
##  $ T: num [1:82, 1] -1.083 0.13 0.633 -0.65 -0.32 ... 
##   ..- attr(*, "dimnames")=List of 2 
##   .. ..$ : chr [1:82] "Agro.rupe" "Alop.alpi" "Anth.nipp" "Heli.sede" ... 
##   .. ..$ : chr "trait" 
##  - attr(*, "class")= chr [1:2] "TE_obj" "list" 
 

dat <- expand4glmm(obj) 
# note that the formula s below should only contain names available in dat, thus: 
names(dat) 



10 

 

## [1] "y"         "site"      "species"   "obs"       "trait"     "env"       
## [7] "trait.env" 

We start by treating the abundance as negative binomial counts and the quadratic 

model:  

library(glmmTMB) 
 
formula.MLM3 <- y ~ poly(env,2) + poly(trait,2) +  env : trait  + (1 + env|species) 
+ (1 + trait| site) 
MLM3 <- glmmTMB(formula.MLM3, family = "nbinom2",  data=dat) 

## Warning in fitTMB(TMBStruc): Model convergence problem; non-positive- 
## definite Hessian matrix. See vignette('troubleshooting') 

## Warning in fitTMB(TMBStruc): Model convergence problem; false convergence 
## (8). See vignette('troubleshooting') 

summary(MLM3) 

## Warning in sqrt(diag(vcov)): NaNs produced 

[...] 

## Overdispersion parameter for nbinom2 family (): 1.4e+14 

 

The summary shows serious warnings; the estimate of the overdispersion parameter is 

hugh. In the nbinom2 family, the variance model is 𝜇𝑖𝑗 + 𝜇𝑖𝑗
2 /𝜙, where 𝜙 is called the 

overdispersion parameter. However, the true overdispersion is 1/𝜙, so that a large 

value for 𝜙 means lack of overdispersion. Therefore, further analyses use the Poisson 

distribution. For this, we switch to library lme4 as it is quicker with the below-set 

options.  

 

# switching to lme4 ------------------------------------------------------- 
library(lme4) 
MLM3 <- glmer(formula.MLM3, family = poisson,  data=dat, nAGQ=0, control = glmerCon
trol(calc.derivs=F)) 
summary(MLM3) 

## Generalized linear mixed model fit by maximum likelihood (Adaptive 
##   Gauss-Hermite Quadrature, nAGQ = 0) [glmerMod] 
##  Family: poisson  ( log ) 
## Formula:  
## y ~ poly(env, 2) + poly(trait, 2) + env:trait + (1 + env | species) +   
##     (1 + trait | site) 
##    Data: dat 
## Control: glmerControl(calc.derivs = F) 
##  
##      AIC      BIC   logLik deviance df.resid  
##   6885.5   6966.2  -3430.8   6861.5     6138  
##  
## Scaled residuals:  
##     Min      1Q  Median      3Q     Max  
## -1.6329 -0.4272 -0.2099 -0.0212 10.1805  
##  
## Random effects: 
##  Groups  Name        Variance Std.Dev. Corr  
##  species (Intercept) 3.10803  1.7630         
##          env         2.15746  1.4688   0.80  
##  site    (Intercept) 0.06753  0.2599         
##          trait       0.06291  0.2508   -0.78 
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## Number of obs: 6150, groups:  species, 82; site, 75 
##  
## Fixed effects: 
##                  Estimate Std. Error z value Pr(>|z|)     
## (Intercept)       -2.7424     0.2127 -12.895  < 2e-16 *** 
## poly(env, 2)1   -105.2570    14.2424  -7.390 1.46e-13 *** 
## poly(env, 2)2    -51.5606     3.8193 -13.500  < 2e-16 *** 
## poly(trait, 2)1   24.6091    16.3983   1.501  0.13343     
## poly(trait, 2)2  -33.3940    11.2335  -2.973  0.00295 **  
## env:trait          1.1782     0.1780   6.618 3.63e-11 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Correlation of Fixed Effects: 
##             (Intr) ply(n,2)1 ply(n,2)2 ply(t,2)1 ply(t,2)2 
## poly(nv,2)1  0.779                                         
## poly(nv,2)2  0.122  0.129                                  
## ply(trt,2)1 -0.062 -0.074     0.034                        
## ply(trt,2)2  0.040 -0.010     0.090     0.077              
## env:trait   -0.090 -0.100    -0.122     0.720    -0.087 

 

The output shows large negative significant coefficients for the quadratic main effects.  

The fitted model is an equi-width Gaussian logit response model (ter Braak & Looman 

1986; Jamil & ter Braak 2013). The parameter for trait-environment interaction is 

1.1782 and is highly significant (p = 3.63e-11). 

A formal test of the quadratic versus the linear model is obtained via 

# could main effects be linear? 
formula.MLM3.linear <- y ~ env * trait  + (1 + env|species) + (1 + trait| site) 
MLM3.linear <- update(MLM3,formula.MLM3.linear) 
anova(MLM3, MLM3.linear) 

## Data: dat 
## Models: 
## MLM3.linear: y ~ env + trait + (1 + env | species) + (1 + trait | site) +  
## MLM3.linear:     env:trait 
## MLM3: y ~ poly(env, 2) + poly(trait, 2) + env:trait + (1 + env | species) +  
## MLM3:     (1 + trait | site) 
##             Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)     
## MLM3.linear 10 7008.6 7075.8 -3494.3   6988.6                              
## MLM3        12 6885.5 6966.2 -3430.8   6861.5 127.05      2  < 2.2e-16 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

The linear model is strongly rejected. It is of interest to note that the interaction 

parameter and its standard error in the linear model is almost the same as those in the 

quadratic. 

 

Bootstrap confidence interval for trait-environment parameter 

 

From an lme4 object, a bootstrap can be constructed with the function bootMer, as 

follows. The function getInteractionParameter is constructed for use of the function 

boot.ci in library boot for the construction of a studentized confidence interval. 

# Bootstrap confidence interval ------------------------------------------- 
 
getInteractionParameter <- function(MLM3){ 
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  if (class(MLM3)[1] == "glmmTMB"){ 
    B <- summary(MLM3)$coefficients$'cond' 
  } else if (class(MLM3)[1] == "glmerMod") { 
    B <- summary(MLM3)$coefficients 
  } 
  # estimate with variance for boot.ci 
  coef_te <- c(B[nrow(B),1],B[nrow(B),2]^2) 
  return(coef_te) 
} 
 
aa <- bootMer(MLM3, FUN = getInteractionParameter, nsim = 1000) 
 

b_te_boot <- aa$t[,1] 
mean(b_te_boot) 

## [1] 1.152826 

sd(b_te_boot) 

## [1] 0.172938 

The bootstrap mean and standard deviation are close to the parametric estimates for 

the interaction coefficient (1.1782) and its standard error (0.1780).  

 
library(boot) 
boot.ci(aa, index = c(1,2), type = "stud" ) 

## BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS 
## Based on 1000 bootstrap replicates 
##  
## CALL :  
## boot.ci(boot.out = aa, type = "stud", index = c(1, 2)) 
##  
## Intervals :  
## Level    Studentized      
## 95%   ( 0.847,  1.556 )   
## Calculations and Intervals on Original Scale 

The 95% studentized bootstrap interval for the interaction coefficient is (0.847, 1.556), 

whereas the parametric interval is 1.1782 ± 2 × 0.1780 = (0.82,1.53).  

 

Warnings issued by glmmTMB 
 

In fitting the MLM3 model, the library glmmTMB gives numerous warnings. These 

come in two types:  

## Warning in f(par, order = order, ...): value out of range in 'lgamma' 

## Warning in fitTMB(TMBStruc): Model convergence problem; false convergence 
## (8). See vignette('troubleshooting') 

All results in the paper have been obtained ignoring these warnings. This was warranted 

for the following reasons. First of all, the parametric bootstrap resulted in estimates 

corresponding to the estimates of the real data, so that the parametric and bootstrap 

confidence intervals nearly coincided. Moreover, as an extra assurance, note that the 

results of the permutation test are not necessarily jeopardized by an unstable fitting 

process. An unstable fitting process might give a lower power but not an invalid 

estimate of the significance level (Appendix A4). 
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A1.2 Tutorial using weighted averaging methods 

 

This tutorial shows how to apply the weighted averaging (WA)-based methods using R 

with special purpose functions developed for this paper. 

The first subsection shows the analysis of the Revisit data, with checks on the R-code. 

The second subsection show the analysis of the Aravo data as in Appendix A7. This 

subsection concludes with a multi-trait multi-environment test of significance, which is 

a weighted version of the score test developed in ter Braak (2017). The code shows how 

to treat categorical traits and environmental variables (factors in R). 

N2-weighted lm: Revisit data 
The data for this example is taken from Miller et al. (2018). This data file 

whittakerrevisitdata.csv is not in the format needed for WA-based analyses. We 

first extract the trait, environmental variable and the abundance matrix (t, e and Y in 

the main text, ‘trait’, ‘env’ and ‘Y’ in the R code) from this data, as follows. 

 

Main analyses 

 

Load the data in to R. 

dat=read.csv("data/whittakerrevisitdata.csv") 

 
## adapt dataframe dat for WA-based analyses 
n_sites <- with(dat, nlevels(factor(site))) 
n_species <- with(dat, nlevels(factor(species))) 
species <- dat$species[seq(from  = 1, by = n_sites, length.out = n_species)] 
sites <- dat$site[1:n_sites] 
trait <- dat$trait[seq(from  = 1, by = n_sites, length.out = n_species)] 
env <- dat$env[1:n_sites] 
Y <- matrix(dat$value, nrow = n_sites,ncol = n_species, dimnames = list(sites= 
sites,species=species)) 

 

The main analysis is obtained with function CWMSNC_regressions. The function includes 

the permutation test and all results needed for plotting; it needs the utility functions so 

these are sourced first. 

#  CWM/SNC regressions ------------------------------------------ 
source("Rfunctions/utility_functions.r") 
source("Rfunctions/WAregressions.r") 
set.seed(1231) 
result <- CWMSNC_regressions(env, Y, trait, weighing = "N2", nrepet = 499) 
summary.CWMSNCr(result) 

##                    sites species min/max 
## correlations (N2w) 0.170   0.239   0.170 
## p-values (N2w)     0.004   0.008   0.008 
## attr(,"nrepet") 
## [1] 499 

The summary shows the N2-weighted  fourth-corner correlation (0.170), which is 

minimum of the site-level and species-level correlations (0.170 and 0.239, 

respectively), and also the permutation-based p-value, which is the maximum of the 

site-level and species-level p-values (0.004 and 0.008, respectively). There is thus 
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statistical evidence of trait-environment association between TMG and C:N ratio; the 

association is positive. 

Plots are created with plot.CWMSNCr . The function gives two plots. The first one is about 

the main effects; it plots the logarithm of the row and column abundance totals against 

the environmental variable and trait, respectively. The second plot is about the 

association between the trait and the environmental variable; it plots the CWM and 

SNC against the environmental variable and the trait, respectively, as in Figure 4 in the 

main text. 

 

 

plot.CWMSNCr(result) 

 

 

The plots of the totals show that abundance decrease with the environmental variable 

(TMG) and that abundance increases with the trait (C:N ratio). The plots of CWM and 

SNC show that there is positive association between TMG and C:N ratio. 

Analyses for showing that the short cuts in the R-code work 

 

This subsection shows a check that the fast version of the permutation test, which has 

many short-cuts, gives the same result as the non-fast version, which recalculates the 

test statistic without any short-cut. The fast version of WA_p_max is used in the main 

function CWMSNC_regressions. 

 

# Comparison of two versions of the max test---------------------------------------
----------------------------- 
obj <- make_obj_for_traitenv(env,Y, trait, cut_off=0) 
set.seed(1231) 
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# slow 
system.time(aa<- WA_p_max(obj, nrepet =499, fast = FALSE)) 

##    user  system elapsed  
##    2.33    0.00    2.33 

round(aa$p_values,4) 

##    p.site.permut p.species.permut      pmax.permut  
##            0.004            0.008            0.008  
## attr(,"nrepet") 
## [1] 499 

set.seed(1231) 
# default  
system.time(bb<- WA_p_max(obj, nrepet =499, fast = TRUE))  

##    user  system elapsed  
##    0.11    0.00    0.11 

round(bb$p_values,4) 

##    p.site.prmtrc p.species.prmtrc    p.site.permut p.species.permut  
##            1e-04            1e-04            4e-03            8e-03  
##      pmax.permut  
##            8e-03  
## attr(,"nrepet") 
## [1] 499 

# illustrating their equality 
or1<- order(aa$sim.row) 
or2<- order(bb$sim.row) 
all.equal(or1,or2) 

## [1] TRUE 

or1<- order(aa$sim.col) 
or2<- order(bb$sim.col) 
all.equal(or1,or2) 

## [1] TRUE 

The order of the test statistics in the two versions are identical as the test statistic in the 

fast version is monotonic with the inverse of the parametric p-values that is used as test 

statistic in the non-fast version. The fast version is a factor 10 faster. 

The permutation max test of 499 permutations using N2-weighted CWM/SNC 

regressions takes about 0.11 CPU units in the ‘fast’ version. A single fit of the MLM3 

model took ~65 units (>500 times longer).  

 

N2-weighted lm: Aravo data 
This section starts with the analysis of the variables Snow and SLA in the aravo data 

set. It continues with an analysis of Snow and Spread and with a multi-trait multi-

environmental test of association. 

Main analyses 

 

# Aravo data set ---------------------------------------------------------- 
library(ade4) 
 
data("aravo") 
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Y <- aravo$spe 
SLA <- aravo$traits$SLA 
Snow <- aravo$env$Snow 
 
result <- CWMSNC_regressions(Snow, Y, SLA, weighing = "N2", nrepet = 999) 

summary.CWMSNCr(result) 

##                    sites species min/max 
## correlations (N2w) 0.438   0.406   0.406 
## p-values (N2w)     0.001   0.001   0.001 
## attr(,"nrepet") 
## [1] 999 

The association between Snow and SLA is positive and highly significant. Plots 

showing main effects and the association 

plot.CWMSNCr(result) 

 

 

The next analysis investigates the association between Spread and Snow. As the trait 

Spread is positive and very skew, it is log-transformed before analysis. 

Spread <- log(aravo$traits$Spread) 
result_SLASpread <- CWMSNC_regressions(Snow, Y, Spread, weighing = "N2", nrepet = 9
99) 
summary.CWMSNCr(result_SLASpread) 

##                    sites species min/max 
## correlations (N2w) 0.080   0.072   0.072 
## p-values (N2w)     0.002   0.425   0.425 
## attr(,"nrepet") 
## [1] 999 

Despite that fact that the site-level permutation test is highly significant, there is no 

statistical evidence for assocation between Spread and Snow. In this analysis, the trait 

SLA takes the role of ‘unobserved’ trait that generates a significant CWM regression. 
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Multi-trait multi-environment test of association 

 

For illustration, we conclude the tutorial on WA-based methods with a multi-trait multi-

environment test. The test statistics is a weighted version of the score test (ter Braak 

2017). After looking at histograms of each variable, I decided to log-transform variables 

that are nonnegative and skew so as to gain some robustness of the outcome. There is 

one factor in the data, which is transformed into a set of dummy variables. A variable 

with missing data (ZoogD) has been left out.  

# Aravo data set: multi-trait multi-env test --------------------------------------
-------------------- 
summary(aravo$env) 

##      Aspect          Slope       Form       PhysD        ZoogD    
##  Min.   :1.000   Min.   : 0.00   1:19   Min.   : 0.00   no  :35   
##  1st Qu.:5.000   1st Qu.: 0.00   2: 7   1st Qu.:20.00   some:28   
##  Median :5.000   Median : 5.00   3:22   Median :30.00   high:12   
##  Mean   :6.133   Mean   : 8.76   4:11   Mean   :32.07             
##  3rd Qu.:8.000   3rd Qu.:15.00   5:16   3rd Qu.:42.50             
##  Max.   :9.000   Max.   :35.00          Max.   :80.00             
##       Snow       
##  Min.   :140.0   
##  1st Qu.:150.0   
##  Median :160.0   
##  Mean   :165.5   
##  3rd Qu.:180.0   
##  Max.   :210.0 

E <- aravo$env[,-c(5,6)] # without Snow, without ZoogD (ZoogD has NAs) 
# Slope is positive and very skew; therefore we logtransform, but there are zeroes 
# add minimum non-zero value before taking logs 
a <- min(E[E[,"Slope"]>0, "Slope"])  
E[,"Slope"] <- log(E[,"Slope"]+ a) 
# convert any factor into dummy variables 
E <-  model.matrix(as.formula(paste("~ 0", paste(names(E),  collapse= "+"), sep= "+
")), data = E) 
summary(E) 

##      Aspect          Slope            Form1            Form2         
##  Min.   :1.000   Min.   :0.6931   Min.   :0.0000   Min.   :0.00000   
##  1st Qu.:5.000   1st Qu.:0.6931   1st Qu.:0.0000   1st Qu.:0.00000   
##  Median :5.000   Median :1.9459   Median :0.0000   Median :0.00000   
##  Mean   :6.133   Mean   :1.9515   Mean   :0.2533   Mean   :0.09333   
##  3rd Qu.:8.000   3rd Qu.:2.8332   3rd Qu.:0.5000   3rd Qu.:0.00000   
##  Max.   :9.000   Max.   :3.6109   Max.   :1.0000   Max.   :1.00000   
##      Form3            Form4            Form5            PhysD       
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   : 0.00   
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:20.00   
##  Median :0.0000   Median :0.0000   Median :0.0000   Median :30.00   
##  Mean   :0.2933   Mean   :0.1467   Mean   :0.2133   Mean   :32.07   
##  3rd Qu.:1.0000   3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:42.50   
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :80.00 

T <- aravo$traits[, -6 ] # without SLA 
# all traits are skew; therefore we logtransform 
T[,c(1,3)] <- log(T[,c(1,3)]+ 1) # traits with zeroes 
T[,-c(1,3)] <- log(T[,-c(1,3)]) # traits without zeroes 
summary(T) 

##      Height           Spread           Angle            Area        
##  Min.   :0.0000   Min.   :0.6931   Min.   :0.000   Min.   :0.9163   
##  1st Qu.:0.6931   1st Qu.:2.3026   1st Qu.:3.045   1st Qu.:3.8986   
##  Median :1.3863   Median :2.9957   Median :3.829   Median :4.9647   
##  Mean   :1.5121   Mean   :2.7350   Mean   :3.509   Mean   :4.7353   
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##  3rd Qu.:2.1972   3rd Qu.:3.3556   3rd Qu.:4.263   3rd Qu.:5.7177   
##  Max.   :3.4340   Max.   :4.6052   Max.   :4.511   Max.   :7.4384   
##      Thick             N_mass           Seed         
##  Min.   :-2.5257   Min.   :4.528   Min.   :-4.6052   
##  1st Qu.:-1.8326   1st Qu.:5.208   1st Qu.:-2.1855   
##  Median :-1.6094   Median :5.447   Median :-1.1394   
##  Mean   :-1.5147   Mean   :5.472   Mean   :-1.1732   
##  3rd Qu.:-1.2040   3rd Qu.:5.752   3rd Qu.:-0.1173   
##  Max.   : 0.3365   Max.   :6.139   Max.   : 1.5623 

# convert any factor into dummy variables 
T <-  model.matrix(as.formula(paste("~ 0", paste(names(T),  collapse= "+"), sep= "+
")), data = T) 
 
obj <- make_obj_for_traitenv(E,Y, T, cut_off=0) 
set.seed(1231) 
aa<- WA_p_max(obj, nrepet =999, weighing = "N2", score_test = TRUE) 
aa$p_values 

##    p.site.prmtrc p.species.prmtrc    p.site.permut p.species.permut  
##               NA               NA            0.001            0.001  
##      pmax.permut  
##            0.001  
## attr(,"nrepet") 
## [1] 999 

 

There is evidence in the data for other associations than between SLA and Snow. If 

score_test = TRUE the function uses a score test which takes correlations between traits 

and between environmental variables (intra-set correlations) into account. If weighing = 

"FC" as well, it gives the test used in double constrained correspondence analysis (ter 

Braak, Šmilauer & Dray 2018). If score_test = FALSE the test ignores such correlations. 

If weighing = "FC" as well, it give the test used in RLQ (Dray et al. 2014). Plots of the 

multi-trait-multi-environment association can be made using RLQ and double 

constrained correspondence analysis (dc-CA); see Dray et al. 2014 and ter Braak et al. 

2018. A procedure for selecting functional traits and environmental variables from a 

greater set of variables is available in Canoco 5.10 (ter Braak & Šmilauer 2018). 
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A2. Alternative derivation of the MLM3 model 

 

In this appendix the MLM3 model is derived from a system in which species abundance 

is governed by four variables, consisting of two independent trait variables t and z and 

two independent environmental variables e and x. The variables t and e are observed 

and the variables x and z are unobserved (also called latent). In the model, the 

(expected) species abundance is determined by the following model: 

𝑙𝑖𝑛𝑘(𝜇𝑖𝑗) =  𝛼0 + 𝛽0𝑡𝑗 + 𝛾0𝑒𝑖 + 𝛽𝑡𝑒𝑡𝑗𝑒𝑖 + 𝛽𝑡𝑥𝑡𝑗𝑥𝑖 + 𝛽𝑧𝑒𝑧𝑗𝑒𝑖 + 𝑑𝑖 + 𝑎𝑗  (A1) 

where  

• link is the link function, typically the log for count data and the logit for 

binomial data, 

• 𝜇𝑖𝑗 is the expected abundance of species j in site i, 

• 𝛼0 is the intercept parameter, accounting for the overall mean abundance, 

• 𝛽0 is the slope parameter with respect to the trait t, accounting for the (here 

linear) main effect of t, 

• 𝛾0 is the slope parameter with respect to the environmental variable e, 

accounting for the (here linear) main effect of e, 

• 𝛽𝑡𝑒, 𝛽𝑡𝑥 and 𝛽𝑧𝑒 are trait-environment interaction parameters between the 

respective trait and environmental variables, 

• 𝑑𝑖 is a random site main effect, accounting for a site main effect that cannot be 

represented by the main effect of e, 

• 𝑎𝑗 is a random species main effect, accounting for a species main effect that 

cannot be represented by the main effect of t. 

Remark: The effects {𝑎𝑗} and {𝑑𝑖} can represent more complicated main effects of t 

and e or by main effects of the unobserved variables z and x, or by other unobserved 

variables.  

Equation (A1) can be rearranged to 

𝑙𝑖𝑛𝑘(𝜇𝑖𝑗) =  𝛼0 + 𝑑𝑖 + 𝑎𝑗 + (𝛽0 + 𝛽𝑡𝑥𝑥𝑖)𝑡𝑗 + (𝛾0 + 𝛽𝑧𝑒𝑧𝑗)𝑒𝑖 + 𝛽𝑡𝑒𝑡𝑗𝑒𝑖 (A2) 

and further to the MLM3 model 

 𝑙𝑖𝑛𝑘(𝜇𝑖𝑗) =  𝛼0 + 𝑑𝑖 + 𝑎𝑗 + (𝛽0 + 𝑏𝑖)𝑡𝑗 + (𝛾0 + 𝑐𝑗)𝑒𝑖 + 𝛽𝑡𝑒𝑡𝑗𝑒𝑖 (A3) 

with 𝑏𝑖 = 𝛽𝑡𝑥𝑥𝑖 and 𝑐𝑗 =  𝛽𝑧𝑒𝑧𝑗. If x and z are standard normal variables, then 

𝑏𝑖~𝑁(0, 𝜎𝑏
2) with 𝜎𝑏 = 𝛽𝑡𝑥 and 𝑐𝑗~𝑁(0, 𝜎𝑐

2) with 𝜎𝑐 = 𝛽𝑧𝑒. The complete MLM3 

model also carries the assumptions that the pairs (𝑑𝑖, 𝑏𝑖) and (𝑎𝑗, 𝑐𝑗) are each bivariate 

normal.  

Remarks:  

1. The linear main effect model in Equations (A.1)-(A.2) can be replaced by 

nonlinear models without changing the meaning of the linear-by-linear trait-

environment interaction 𝛽𝑡𝑒𝑡𝑗𝑒𝑖. With second-order polynomials (with negative 

coefficients for the squared terms) the model is an equi-width Gaussian model. 
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Differential niche widths require species-dependent coefficients for the squared 

terms. In such models, the ecological meaning of the linear-by-linear trait-

environment interaction is not at all clear so that GLMM modelling is less 

appealing. For an alternative, see Jamil et al. (2014). 

2. A slight extension of the model was first used in simulations evaluating 

MLM(glm) in ter Braak et al. (2017). 

3.  MLM(glm) lacks the random terms involving (𝑑𝑖, 𝑏𝑖) and (𝑎𝑗, 𝑐𝑗) in Equation 

(A3) or, equivalently the random terms {𝑎𝑗},{𝑑𝑖} and the effects of the 

unobserved variables x and z. Brown et al. (2014) and Warton et al.(2015a) 

attempt to account for residual correlation among the species by a site-based 

bootstrap procedure. ter Braak et al. (2017) showed that this procedure does not 

lead to valid statistical inference if 𝜎𝑐 ≫ 0 or equivalently |𝛽𝑧𝑒| ≫ 0, that is, if 

there is an important unobserved trait that interacts with the observed 

environmental variable, even if this unobserved trait is independent of the 

observed trait(s). 

4. MLM1 and MLM2 lack the random terms (𝑑𝑖, 𝑏𝑖) and 𝑏𝑖, respectively in 

Equation (A3). Both models miss thus the effects of the unobserved 

environmental variable x. This paper shows that MLM2 does not lead to valid 

statistical inference if 𝜎𝑏 ≫ 0 or equivalently |𝛽𝑡𝑥| ≫ 0, that is, if there is an 

important unobserved environmental variable that interacts with the observed 

one(s), even if this unobserved environmental variable is independent of the 

observed environmental variable(s). 

5. MLM3 lacks terms for residual correlation due to competition among species 

or due to other unobserved traits and environmental variables that interact. 

Models for such residual correlation are presented by Warton et al. (2015b) and 

Ovaskainen et al. (2017). In this paper I investigate by simulation whether 

MLM3 is robust against an extra interaction between unobserved trait en 

environmental variables. The simulations suggest that it is robust to such extra 

interaction, except for low numbers of species and sites (n, or m <10.  

6. Note that the remarks 3 and 4 are about robustness to unobserved trait and 

environmental variables, respectively. MLM3 is robust in both cases. MLM3 

appears fairly robust against latent interactions. The MLM3-based max text may 

make it even more robust against such interactions. The rationale for the site-

level test is identical to that of Brown et al. (2014) and Warton et al. (2015a) 

and the species-level test by considering the trait values as exchangeable units.  

As in any GLM(M), the data 𝑦𝑖𝑗 are assumed to derive from a user-defined response 

distribution with mean parameter 𝜇𝑖𝑗. Typical response distributions are the binomial 

distribution for ‘k out of N’ data (which are presence/absence data for N =1) and the 

Poisson distribution for count data. The response distribution may have additional 

parameters. The betabinomial and negative binomial distributions have each one 

additional parameter which measures overdispersion compared to the binomial and the 

Poisson distributions, respectively. 

The ‘canonical’ link functions for the binomial and Poisson distribution are the logistic 

(logit) and logarithmic (log) function, respectively. Other link functions appropriate for 

binomial data are the complementary log-log function and the probit function. Note that 

in the model-based approach the definition of trait-environment interaction depends on 
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the chosen link function: with a change in link function the meaning and value of 𝛽𝑡𝑒 

change. 

 

References 
 

Brown, A.M., Warton, D.I., Andrew, N.R., Binns, M., Cassis, G. & Gibb, H. (2014) 

The fourth-corner solution – using predictive models to understand how species 

traits interact with the environment. Methods in Ecology and Evolution, 5, 344-

352. https://doi.org/10.1111/2041-210X.12163 

Jamil, T., Kruk, C. & ter Braak, C.J.F. (2014) A Unimodal Species Response Model 

Relating Traits to Environment with Application to Phytoplankton 

Communities. Plos one, 9, e97583. 

https://doi.org/10.1371%2Fjournal.pone.0097583 

Ovaskainen, O., Tikhonov, G., Norberg, A., Guillaume Blanchet, F., Duan, L., Dunson, 

D., Roslin, T. & Abrego, N. (2017) How to make more out of community data? 

A conceptual framework and its implementation as models and software. 

Ecology Letters, 20, 561-576. https://doi.org/10.1111/ele.12757 

ter Braak, C.J.F., Peres-Neto, P. & Dray, S. (2017) A critical issue in model-based 

inference for studying trait-based community assembly and a solution. PeerJ, 

5, e2885. https://doi.org/10.7717/peerj.2885 

Warton, D.I., Shipley, B. & Hastie, T. (2015a) CATS regression – a model-based 

approach to studying trait-based community assembly. Methods in Ecology and 

Evolution, 6, 389-398. https://doi.org/10.1111/2041-210X.12280 

Warton, D.I., Blanchet, F.G., O’Hara, R.B., Ovaskainen, O., Taskinen, S., Walker, S.C. 

& Hui, F.K.C. (2015b) So Many Variables: Joint Modeling in Community 

Ecology. Trends in Ecology & Evolution, 30, 766-779. 

https://doi.org/10.1016/j.tree.2015.09.007 

 

 

  

https://doi.org/10.1111/2041-210X.12163
https://doi.org/10.1371%2Fjournal.pone.0097583
https://doi.org/10.1111/ele.12757
https://doi.org/10.7717/peerj.2885
https://doi.org/10.1111/2041-210X.12280
https://doi.org/10.1016/j.tree.2015.09.007


24 

 

A3. Weighted Averaging (WA) based methods 

 

A3.1 Introduction 

Weighted averaging methods date back to the work of early 20th century great 

ecologists such as Georgy Gause, Heinz Ellenberg and Robert Whittaker; see ter Braak 

and Verdonschot (1995) and are commonly used for the reconstruction of palaeo-

environments (Birks et al. 1990; Walker, Mott & Smol 1991; Juggins & Birks 2012) 

and best understood in the context of ecological niche models, also called unimodal 

models (ter Braak & Barendregt 1986; ter Braak & Looman 1986). CWM and SNC are 

approximate solutions of the maximum likelihood equations of the parameters of such 

models (ter Braak 1985; ter Braak 1986; ter Braak 1988). But, they are also closely 

related to the fourth corner (Peres-Neto, Dray & ter Braak 2017) and used in the maxent 

approach of Shipley (2010), because weighed averages and the fourth corner are 

sufficient statistics in particular Poisson log-linear models (Warton, Shipley & Hastie 

2015; ter Braak 2017) without the need for unimodality.  

Section A3.2 gives the definitions of CWM and SNC and the associated regressions. 

Section A3.3 summarizes the existing evidence that these regressions target interaction 

(and not main effects), which is then further worked out in detail in section A3.4 by 

starting from simple Poisson log-linear models with either the trait or the environmental 

variable as predictor. Finally, section A3.5 proposes two variants of the  fourth-corner 

correlation that measure the trait-environment association in the weighted CWM/SNC 

regressions. 

A3.2 Definitions and CWM/SNC regressions 

Recall the notation in the main text: {𝑦𝑖𝑗} denotes abundances of m species in n sites (i 

= 1,...,n ; j = 1,...,m) and the trait and environmental variable are denoted by t and e, 

and by 𝑡𝑗 and 𝑒𝑖 for values of individual species and sites, respectively. 

The Community Weighted Mean (CWM) for site i constitutes a trait mean, weighted 

by abundance, defined as  

𝑐𝑖 = ∑ 𝑦𝑖𝑗𝑡𝑗/𝑦𝑖+
𝑚
𝑗=1  with 𝑦𝑖+ = ∑ 𝑦𝑖𝑗

𝑚
𝑗=1 . (A4) 

I use a “+” replacing an index (subscript) for the sum over the index, e.g. 𝑦𝑖+ = ∑ 𝑦𝑖𝑗𝑗 . 

[Note that in Appendix A2, the symbol 𝑐𝑗 was used for species-specific random effects; 

it should be clear from the index letter and the context whether CWMs or species-

specific random effects are referred to.] The CWM can, of course, also simply be 

expressed as linear combination of the species proportions, 𝑝𝑖𝑗 = 𝑦𝑖𝑗/𝑦𝑖+, 

𝑐𝑖 = ∑ 𝑡𝑗
𝑚
𝑗=1 𝑝𝑖𝑗. (A5) 

The use of proportions links CWM to strictly compositional data, i.e. data in which the 

totals R = {𝑦𝑖+} are uninformative. Community Weighted Means regression (CWMr) 

is a linear regression of the CWM {𝑐𝑖} on to the environmental variable e, in R code by 

lm_CWMe <- lm(CWM~e, weights = wsites) 
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where the regression is unweighted if the weights wsites are all equal or weighted when 

the weights are unequal. Two sets of weights are considered: weights equal to the site 

totals {𝑦𝑖+} or equal to the effective richness of the site, defined as the Hill N2-number,  

𝑁2𝑖 =  1/ ∑ (𝑦𝑖𝑗/𝑦𝑖+)2
𝑗  (A6) 

which is the inverse of the Simpson index. If all non-zero abundance values are equal, 

this effective number is equal to their number (i.e. the richness), but for unequal 

abundances the effective number is lower, and how much lower depends on the 

unevenness of the sample. The N2 number can be motivated by the fact that the variance 

of a mean is the population variance divided by the number of values averaged 

(𝑣𝑎𝑟(𝑥̅) = 𝜎2/𝑁). With a weighted mean, some values have more influence than the 

others, resulting in a different effective number, here taken as N2. This works best if the 

true within-site trait variance is constant; if it is not, then it is hopefully a step in the 

right direction.  

Comparable to the CWM by interchanging species and sites (and t and e), the Species 

Niche Centroid (SNC) constitutes an environmental mean, weighted by abundance, and 

defined as  

𝑢𝑗 = ∑ 𝑦𝑖𝑗𝑒𝑖/𝑦+𝑗
𝑛
𝑖=1  with 𝑦+𝑗 = ∑ 𝑦𝑖𝑗

𝑛
𝑖=1 . (A7) 

The SNC can, of course, also simply be expressed as linear combination of the site 

proportions 𝑝𝑖𝑗
∗ = 𝑦𝑖𝑗/𝑦+𝑗 

𝑢𝑗 = ∑ 𝑒𝑖
𝑛
𝑖=1 𝑝𝑖𝑗

∗  (A8) 

Species Niche Centroid regression (SNCr) is a linear regression of the SNC {𝑢𝑗} on to 

the trait t, in R code by 

lm_SNCt <- lm(SNC~t, weights = wspecies) 

where the weights wspecies are either all equal (unweighted regression), equal to the 

species totals K = {𝑦+𝑗} or, as proposed in this paper, equal to the effective number of 

occurrences of the species, defined as the Hill N2-number,  

𝑁2𝑗 =  1/ ∑ (𝑦𝑖𝑗/𝑦+𝑗)2
𝑖 . (A9) 

If all non-zero abundance values are equal this effective number is equal to their number 

(i.e. the number of occurrences), but for unequal abundances the effective number is 

lower, and how much lower depends on the unevenness of the numbers. This N2 number 

can be motivated similarly as for sites. This works best if the true within-species 

environmental variance is constant; if it is not, then it is hopefully a step in the right 

direction. In paleo-environmental reconstruction, several attempts have been made to 

take the within-species environmental variance into account, but without any improved 

prediction performance (Juggins & Birks 2012). For this reason, this more extended 

kind of weighting is not considered in this paper. 

In the theory of weighted regression, weights should be chosen to be inversely 

proportional to the variance of the response variable, here either CWM or SNC. 

Otherwise, the usual statistical inference is not valid, as shown by simulation in 

Appendix S6 of ter Braak et al. (2018a). But it cannot be guaranteed that either equal 

weights, the totals or the N2 weights have this property.  

In the main text, the F-value of these regressions (weighted and unweighted) are used 

as test statistic in a Monte Carlo permutation test (or equivalently, the inverse of the p-

value of the slope parameter). In the case of CWMr the environmental values are 
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randomly permuted and in the case of SNCr the trait values are randomly permuted. 

The underlying assumptions here are that the environmental values are exchangeable 

(or even independent) and that the trait values are exchangeable (or even independent). 

These assumptions do not hold true when there is spatial autocorrelation, a complex 

study design or phylogenetic correlation. The details of such permutation tests are 

described in Appendix A4. Appendix A5 describes the max test, which is the test that 

combines a site-level test such as CWMr with a species-level test such as SNCr, and its 

properties. 

A3.3 Do fourth corner and CWM/SNC regressions target interactions? 

WA- and model-based methods are used both to answer questions about trait-

environment association. In model-based methods, the trait-environment association is 

captured in the single regression coefficient 𝛽𝑡𝑒 associated with the interaction term, 

the product 𝑡𝑗𝑒𝑖, conditional on having main effects in the model (at least linearly, i.e. 

𝛽0𝑡𝑗 and 𝛾0𝑒𝑖 in Equation (A1)). However, it is not clear at all from the description of 

the fourth-corner and WA-testing approaches (Dray & Legendre 2008; ter Braak, 

Cormont & Dray 2012), that WA-based methods target interaction. Moreover, the 

associated permutation tests are described as if they were main effects! As described in 

these papers, the site-based permutation test tests whether “species abundance is related 

to the environmental variable” (the link 𝐘 ↔ 𝐞) and the species-based permutation test 

tests whether “species abundance is related to the trait” (the link 𝐘 ↔ 𝐭). This section 

summarizes the existing evidence that WA-based methods target interaction, at least in 

Poisson log-linear models and approximately so in logit models and models with 

overdispersion. Fourth corner is considered first and other WA-methods follow. In the 

next section (section A3.4), I show the close relation between CWM and SNC with 

parameters in Poisson log-linear models from first principles. 

First, Peres-Neto et al. (2017) simulated zero-inflated negative binomial data based on 

a simple log-linear model with main effects in t and e only, in particular the model of 

Equation (A1) with link = log, but without any interaction terms. They found no type I 

error inflation for the fourth-corner-based max test. Apparently, the fourth-corner 

correlation is not sensitive to the main effects in such a model.  

Second, ter Braak (2017) showed that the squared fourth-corner correlation (times the 

abundance total) is the Rao score test statistic for H0: 𝛽𝑡𝑒 = 0 in the simple log-linear 

model with t-e interaction 

log(𝜇𝑖𝑗) =  𝛿𝑖 + 𝛼𝑗 + 𝛽𝑡𝑒 𝑡𝑗𝑒𝑖,   (A10) 

where {𝛿𝑖} and {𝛼𝑗} are unknown fixed effects that encompass all possible main effects 

of species and sites or traits and environmental variables (these are called saturated 

main effects) and the data are Poisson distributed. In this simple model, it is thus 

asymptotically as powerful as the Wald test or likelihood ratio test (LRT). Moreover, 

the Rao test score in the multi-trait, multi environmental variable case was shown to be 

related to the total inertia of a double constrained correspondence analysis (ter Braak 

2017; ter Braak, Šmilauer & Dray 2018). See also the next section. 

Third, Peres-Neto et al. (2017) noted the close relation between the fourth-corner 

correlation and correspondence analysis, a method which is known to analyse 

deviations from row-column independence (i.e. deviations from the log-linear main 
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effects model) along several axes. These deviations constitute the row-column 

interactions. As formulae, these interactions are 𝑦𝑖𝑗 − 𝑒𝑖𝑗 with 𝑒𝑖𝑗 the expected values 

under independence having the well-known formula 𝑒𝑖𝑗 =  𝑦𝑖+𝑦+𝑗/𝑦++. These are the 

fitted values under the main effects log-linear model (Equation (A10) with 𝛽𝑡𝑒 = 0) 

and a Poisson response distribution. In this specific model, the main effects {𝛿𝑖} and 

{𝛼̂𝑗} are proportional to the site and species totals. However, for a count distribution 

with overdispersion, the expected values under the null model are still  

𝑒𝑖𝑗 = exp(𝛿𝑖𝛼̂𝑗) = exp(𝛿̂𝑖) exp(𝛼̂𝑗), (A11) 

but the main effects {𝛿𝑖} and {𝛼̂𝑗} are no longer precisely proportional to the site and 

species totals. Further, with a logit link, the expected values are exp(𝛿𝑖𝛼̂𝑗) /(1 +

exp(𝛿𝑖𝛼̂𝑗)) and are thus not strictly proportional either to the site totals or species totals.  

Within the Poisson (or maxent) context, the fourth-corner correlations can thus be 

expected to target the same interactions as the log-linear model. Outside this context, 

the precise target is less clear.  

So far, the focus of this section was on the fourth-corner correlation. We now consider 

other WA-based methods. CWM/SNC regressions are related to fourth-corner (Peres-

Neto, Dray & ter Braak 2017; ter Braak, Peres-Neto & Dray 2018) and are thus 

expected to target the same interactions as the fourth-corner correlation. There is also a 

simple independent argument why WA-based methods target interaction in the Poisson 

log-linear model, as follows.  

In the formula for CWM, Equation (A4), the division by 𝑦𝑖+ removes the row (site) 

main effect (under the Poisson log-linear model), but not necessarily the column main 

effect. However, in the site-based CWMr permutation test, each test statistic calculated 

from data with permuted environmental values, carries the same column main effects 

as the test statistic calculated from the data with unpermuted environmental values. The 

CWMr test is thus not likely to be sensitive to either main effect. Similarly, the SNCr 

test is not likely to be sensitive to either main effect under the Poisson log-linear model. 

I expect more differences between the WA- and model-based methods for logit models 

and models with overdispersion. 

 

A3.4 CWM and SNC and Poisson log-linear models 

The first theory that was developed for weighted averaging methods was developed in 

the context of predicting environmental variables from species indicator values (ter 

Braak & Barendregt 1986). Such indicator values can be considered as habitat 

descriptors, i.e. as a special type of trait (Shipley 2010). It could be shown that the 

CWM can be consistent and even fully efficient with respect to maximum likelihood in 

a niche model in which the indicator values are (for consistency) centroids of the 

response curves of the species with respect to the environmental variable and (for 

efficiency) the optima of equi-width Gaussian response curves. The use of SNC for the 

estimation of such optima was discussed by ter Braak and Looman (1986). In this 

section I show a close relation between CWM and SNC and Poisson log-linear models 

without requiring a Gaussian response. Instead, closeness to the independence model is 

required (the independence model is here a multiplicative row-column model as in the 
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usual chi-square test of independence in a contingency table). Related work is by 

Goodman (1986) and Ihm and van Groenewoud (1984) in the context of 

correspondence analysis in comparison with the RC association model and the 

Gaussian ordination model, respectively. 

In the model related to CWM, the abundance data are regressed on to the trait using a 

Poisson log-linear model with species and site main effects and site-specific responses 

to the trait, as in CATS (Shipley 2010; Warton, Shipley & Hastie 2015). As shown 

mathematically in the next subsection, the maximum likelihood estimators of the site-

specific response parameters in this model are (almost) proportional to the CWMs when 

the trait has a weighted mean of zero, where the weights are the species total abundances 

{𝑦+𝑗} (this centering of the trait carries no loss of generality). This result is related to 

the observations on CWM in Warton et al. (2015). In a similar model related to SNC, 

with species and site main effects and species-specific responses to the environment, 

the maximum likelihood estimators for the species-specific responses to the 

environmental variable are (almost) proportional to the SNCs when the environmental 

variable has a weighted mean of zero, where the weights are the site total abundances 

{𝑦𝑖+}. For both low-structured and highly Gaussian structured ecological data, CWM 

and SNC thus appear as natural statistics for measuring interaction with the trait and 

the environmental variable, respectively, in a model that accounts for both species and 

site main effects.  

Derivation of CWM and SNC as approximate parameters of log-linear models 
 

I show and develop the model that is relevant for CWM first. The model for SNC is 

formulated next in a similar way. For CWM, I start from a log-linear model with site-

specific response to the trait; it regresses the abundance data 𝑦𝑖𝑗 on to the trait with 

mean model 

𝜇𝑖𝑗 =  𝑅𝑖𝐶𝑗exp (𝛽𝑖𝑡𝑗),   (A12) 

where 𝑅𝑖 and 𝐶𝑗 are site and species (fixed) main effects and 𝛽𝑖 is the site-specific 

response with respect to the trait. This is the core model of CATS regression, except 

that the 𝐶𝑗 are user-defined in CATS as proportions of the species in the regional species 

pool (instead of as derived from the data set under investigation). Under the assumption 

that the data are Poisson distributed counts, the minimal sufficient statistics are the row 

totals {𝑦𝑖+}, the column totals {𝑦+𝑗} and {∑ 𝑦𝑖𝑗𝑡𝑗}𝑗 . The third set of statistics can be 

replaced by the CWMs {𝑐𝑖} of Equation (A4). By setting the partial derivatives of the 

Poisson log-likelihood with respect to the parameters to zero (ter Braak 2017) we obtain 

the following three equations, 

 𝑦𝑖+ = 𝜇𝑖+, 𝑦+𝑗 = 𝜇+𝑗 and ∑ (𝑦𝑖𝑗 − 𝜇𝑖𝑗)𝑡𝑗𝑗 = 0   (A13) 

If 𝛽𝑖𝑡𝑗 is small, i.e. when the data are close to independence,  

𝜇𝑖𝑗 =  𝑅𝑖𝐶𝑗 exp(𝛽𝑖𝑡𝑗) ≈  𝑅𝑖𝐶𝑗(1 + 𝛽𝑖𝑡𝑗) ≈ 𝑦𝑖+𝑦+𝑗(1 + 𝛽𝑖𝑡𝑗)/𝑦++,   (A14) 

because exp(𝑥) ≈ 1 + 𝑥 for small 𝑥 and 𝜇̂𝑖𝑗 =  𝑦𝑖+𝑦+𝑗/𝑦++ under the null model (𝛽𝑖 =

0). To ensure that 𝑦𝑖+ = 𝜇𝑖+ and 𝑦+𝑗 = 𝜇+𝑗 in the approximation, the trait must be 

centered so that it has zero weighted mean after centering, where the weights are {𝑦+𝑗}, 

and the {𝛽𝑖} must also have zero weighted mean, where the weights are {𝑦𝑖+}, i.e. 
∑ 𝑦+𝑗𝑡𝑗 = 0𝑗  and ∑ 𝑦𝑖+𝛽𝑖 = 0𝑖 . On inserting approximation (A14) in the third equation 

in (A13) , we obtain 
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∑ 𝑦𝑖𝑗𝑡𝑗𝑗 −  ∑ 𝑦𝑖+𝑦+𝑗(1 + 𝛽𝑖𝑡𝑗)𝑡𝑗/𝑦++𝑗 = 0.   (A15) 

By solving this equation for 𝛽𝑖 and recalling that the trait has zero weighted mean, we 

obtain 

𝛽̂𝑖 =
∑ 𝑦𝑖𝑗𝑡𝑗𝑗

𝑦𝑖+
/ ∑ 𝑦+𝑗𝑗 𝑡𝑗

2 ∝ 𝑐𝑖,  (A16) 

the CWM of the centered trait for site i. Because of the centering of the trait, the CWMs 

{𝑐𝑖} also have zero weighted mean, where the weights are the site totals {𝑦𝑖+}, as 

∑ 𝑦𝑖+𝑐𝑖𝑖 =  ∑ 𝑦𝑖+ ∑ 𝑦𝑖𝑗𝑡𝑗/𝑦𝑖+𝑗 =  ∑ 𝑡𝑗 ∑ 𝑦𝑖𝑗𝑖𝑗 =  ∑ 𝑦+𝑗𝑡𝑗𝑗 = 0𝑖 ,   (A17) 

so that the{ 𝛽̂𝑖} are also centered as required below Equation (A14) and all estimation 

equations in (A13) are satisfied. 

In CWMr, the CWMs {𝑐𝑖} are regressed on to the environmental variable e using a 

simple linear model with intercept. The F-statistic and p-value of such a regression 

model are invariant to location and scale of the response and/or the predictor variable 

(i.e. do not change after addition of, or multiplication by, or a constant). Therefore it 

does not matter whether to regress the CWMs of the trait or of the centered trait on to 

the environmental variable.  

For SNC, I start from a log-linear model with species-specific response to the 

environmental variables. In this model, abundance is related to the environmental 

variable using a log-linear model with mean 

𝜇𝑖𝑗 =  𝑅𝑖𝐶𝑗exp (𝛾𝑗𝑒𝑖),   (A18) 

where 𝑅𝑖 and 𝐶𝑗 are site and species (fixed) main effects and 𝛾𝑗 is the species-specific 

response with respect to the environmental variable. Similar to the above derivation 

𝛾𝑗 =  
∑ 𝑦𝑖𝑗𝑒𝑖𝑖

𝑦+𝑗
/ ∑ 𝑦𝑖+𝑖 𝑒𝑖

2 ∝ 𝑢𝑗   (A19) 

with 𝑢𝑗  the SNC of species j and the {𝑒𝑖} have zero weighted mean (∑ 𝑦𝑖+𝑒𝑖𝑖 = 0).  

In SNCr, the SNCs {𝑢𝑗} are regressed on to the trait t in a simple linear model with 

intercept. The F-statistic and p-value of such a regression model are invariant to 

location and scale of the response and/or the predictor variable. Therefore it does not 

matter whether to regress the SNC of the environmental variable or of the centered 

environmental variable on to the trait.  

A3.5 Trait-environment correlations 

The correlations that follow directly from the (weighted) CWM/SNC regressions are 

unsuited for measuring trait-environment association; they can be overly variable and 

unstable (Peres-Neto, Dray & ter Braak 2017; ter Braak, Peres-Neto & Dray 2018). 

This section defines more stable measures of correlation that are inspired by the fourth-

corner correlation. First, I define a weighted correlation that encompasses the fourth-

corner correlation. Then I show how the CWM/SNC regressions are related to these 

correlations and finally I define new measures of correlation. The values of these new 

correlations may differ between CWMr and SNCr, i.e. between the site- and species-

level analyses. The correlations are combined by taking a signed minimum, or, if the 

two correlations differ in sign, by setting the final correlation to 0. Taking the (signed) 

minimum is akin to the max test as it takes the weaker relation as the final measure of 
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evidence for the relation. From the unweighted CWM/SNC regressions, we so obtain 

the unweighted fourth-corner correlation. From the N2-weighted CWM/SNC 

regressions we similarly obtain the N2-weighted four-corner correlation (or N2-

weighted correlation, for short). CWM/SNC regressions weighted by species and site 

total lead simply to the original fourth-corner correlation. Appendix 9 contains R-code 

to compute the N2-weigthed and unweighted variants of the fourth-corner correlation. 

 

A general definition of weighted correlation 
 

The fourth-corner correlation is a special case of the following definition of a weighted 

correlation between t and e. Let 𝑡̃𝑗 and 𝑒̃𝑖 be centered versions of the trait and 

environmental variable, with weighted-means computed using weights k = {𝑘𝑗} and r 

= {𝑟𝑖} : 

𝑡̃𝑗 = 𝑡𝑗 − ∑ 𝑘𝑗𝑗 𝑡𝑗/𝑘+ and 𝑒̃𝑖 =  𝑒𝑖 − ∑ 𝑟𝑖𝑒𝑖/𝑟+𝑖 . (A20) 

Then, the general definition is 

𝑓𝐖,𝐤,𝐫  = 𝑐𝑜𝑟𝐖,𝐤,𝐫(𝐭, 𝐞) =  
∑ 𝑤𝑖𝑗𝑖,𝑗 𝑡̃𝑗𝑒̃𝑖/𝑤++

{∑ (𝑘𝑗𝑗 𝑡̃𝑗
2/𝑘+  ∑ (𝑟𝑖𝑒̃𝑖

2/𝑟+)𝑖 }1/2 (A21) 

With this definition, the fourth-corner correlation is 𝑟𝐘,𝐤,𝐫 with 𝑟𝑖 = 𝑦𝑖+ and 𝑘𝑗 = 𝑦+𝑗, 

the row and column sums of Y. For general weights r and k, the site-level correlation 

is defined by setting 𝑤𝑖𝑗 = 𝑟𝑖𝑦𝑖𝑗/𝑦𝑖+ (so that 𝑤𝑖+ = 𝑟𝑖) and the species-level correlation 

by setting 𝑤𝑖𝑗 = 𝑘𝑗𝑦𝑖𝑗/𝑦+𝑗 (so that 𝑤+𝑗 = 𝑘𝑗). This choice is motivated by the link it 

gives to the (un)weighted CWM and SNC regressions as we will show in the next 

subsection. For the unweighted CWM/SNC regressions we use 𝑟𝑖 = 1 and 𝑘𝑗 = 1, and 

for the N2-weighted regressions we use 𝑟𝑖 = 𝑁2𝑖  and 𝑘𝑗 = 𝑁2𝑗 from Equations (A6) and 

(A9). With 𝑟𝑖 = 𝑦𝑖+ and 𝑘𝑗 = 𝑦+𝑗, the site- and species-level correlations are equal and 

identical to the original fourth-corner correlation, but for other weighting schemes, 

these correlations may differ in value and even in sign. The correlations are combined 

by taking a signed minimum, or, if the two correlations differ in sign, by setting the 

final correlation to 0.  

We conclude this subsection by noting that the correlation in Equation (A21) can also 

be expressed as “covariance divided by two standard deviations” as follows: 

𝑓𝐖,𝐤,𝐫  = 𝑐𝑜𝑟𝐖,𝐤,𝐫(𝐭, 𝐞) =  
𝑐𝑜𝑣𝐖(𝐭,𝐞)

𝑠𝑑𝐤(𝐭)𝑠𝑑𝒓(𝐞)
 (A22) 

with weighted covariance and standard deviations  

𝑐𝑜𝑣𝐖(𝐭, 𝐞) = ∑ 𝑤𝑖𝑗𝑖,𝑗 𝑡̃𝑗𝑒̃𝑖/𝑤++ (A23) 

𝑠𝑑𝐤(𝐭) =  {∑ 𝑘𝑗𝑗 𝑡̃𝑗
2/𝑘+ }1/2 and 𝑠𝑑𝐫(𝐞) =  {∑ 𝑟𝑖𝑖 𝑒̃𝑖

2/𝑟+ }1/2 (A24) 

The new weighted site- and species-level correlations differ only in the definition of 

the numerator by using different weights W (for the site-level 𝑤𝑖𝑗 = 𝑟𝑖𝑦𝑖𝑗/𝑦𝑖+ and the 

species-level 𝑤𝑖𝑗 = 𝑘𝑗𝑦𝑖𝑗/𝑦+𝑗 with, for the N2-weighted variant, 𝑟𝑖 = 𝑁2𝑖  and 𝑘𝑗 =

𝑁2𝑗). 
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Derivation and motivation for the weighted fourth-corner correlations 
 

In order to derive and motivate the new weighted fourth-corner correlations, we first 

show how the CWM regression with site total weights relates to the fourth-corner 

correlation and then extend the relation to other weighting schemes. Note that, for 𝐖 =
𝐘, the numerator in Equation (A21) can be re-expressed in terms of the CWM c  

∑ 𝑦𝑖𝑗𝑖,𝑗 𝑡̃𝑗𝑒̃𝑖/𝑦++ = ∑ {𝑦𝑖+ ∑ (𝑦𝑖𝑗𝑗 𝑡̃𝑗/𝑦𝑖+)𝑒̃𝑖/𝑦++)}𝑖 = ∑ 𝑦𝑖+𝑐𝑖𝑒̃𝑖/𝑦++𝑖 , (A25) 

which is a covariance between the CWM and the environmental variable, weighted by 

the site totals {𝑦𝑖+}. This covariance is used in the CWM regression (e.g. in the 

calculation of the slope of the regression) when weighted by these totals. The 

correlation associated with this regression divides this covariance by the weighted 

standard deviations of CWM and the environmental variable with the same weights. 

However, for a standardized trait, the weighted standard deviation of CWM is a 

measure of strength of the relation between Y and t (ter Braak 1987; ter Braak, Peres-

Neto & Dray 2018), so it is strange to divide by it (if Y and t are unrelated there cannot 

be trait-environment association). Instead, the usual fourth-corner correlation divides 

the covariance by the weighted standard deviations of t and e (see Equations (A21) - 

(A22)).  

In the r-weighted CWM regression, the essential covariance is ∑ 𝑟𝑖𝑐𝑖𝑒̃𝑖/𝑟+𝑖 . Similarly, 

in the k-weighted SNC regression, the essential covariance is ∑ 𝑘𝑗𝑢𝑗 𝑡̃𝑖/𝑘+𝑗 . The 

associated site- and species- level correlations are obtained by dividing these two 

covariances (which may differ in value and sign) by the k-weighted standard deviation 

of the trait and the r-weighted standard deviation of the environmental variable. These 

correlations can be expressed in terms of Equation (A21); for the site-level correlation, 

by setting 𝑤𝑖𝑗 = 𝑟𝑖𝑦𝑖𝑗/𝑦𝑖+ and, for the species-level correlation, by setting 𝑤𝑖𝑗 =

𝑘𝑗𝑦𝑖𝑗/𝑦+𝑗 as we show now. 

These essential covariances can be re-expressed in the form of the numerator of 

Equation (A21). In the r-weighted CWM regression, the essential covariance is  

∑
𝑟𝑖𝑐𝑖𝑒̃𝑖

𝑟+
=𝑖 ∑ 𝑟𝑖 ∑ (𝑦𝑖𝑗𝑗 𝑡̃𝑗/𝑦𝑖+)𝑒̃𝑖/𝑟+ =  ∑ (

𝑟𝑖𝑦𝑖𝑗

𝑦𝑖+
𝑖,𝑗 )𝑡̃𝑗𝑒̃𝑖/𝑟+𝑖 = ∑ 𝑤𝑖𝑗𝑖,𝑗 𝑡̃𝑗𝑒̃𝑖/𝑤++. (A26) 

with 𝑤𝑖𝑗 =  𝑟𝑖𝑦𝑖𝑗/𝑦𝑖+ so that 𝑟𝑖 = 𝑤𝑖+ and 𝑟+ = 𝑤++. 

Similarly, in the k-weighted SNC regression, the essential covariance is  

∑ 𝑘𝑗𝑢𝑗 𝑡̃𝑖/𝑘+ =𝑗 ∑ (𝑘𝑗𝑦𝑖𝑗/𝑦+𝑗𝑖,𝑗 )𝑡̃𝑗𝑒̃𝑖/𝑘+ = ∑ 𝑤𝑖𝑗𝑖,𝑗 𝑡̃𝑗𝑒̃𝑖/𝑤++. 

for 𝑤𝑖𝑗 =  𝑘𝑗𝑦𝑖𝑗/𝑦+𝑗, so that 𝑘𝑗 = 𝑤+𝑗 and 𝑘+ = 𝑤++. 

With 𝑟𝑖 = 𝑦𝑖+ and 𝑘𝑗 = 𝑦+𝑗, the site- and species-level correlations are equal and 

identical to the original fourth-corner correlation, but for other weighting schemes, 

these correlations may differ in value and even in sign. The correlations are combined 

by taking a signed minimum, or, if the two correlations differ in sign, by setting the 

final correlation to 0. 

Appendix 9 contains R-code to compute the N2-weigthed and unweighted variants of 

the fourth-corner correlation. 
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A4. Permutation testing and parametric bootstrap test 

 

If there is no analytical alternative, statistical significance tests can be carried out by 

Monte Carlo testing, either using permutations or using bootstraps. If available, 

permutation tests are in my view preferable as they have an exact finite sampling theory 

(Hemerik & Goeman 2018). The mechanics of the Monte Carlo permutation test 

(permutation test for short) are described in Box A1. For approximate permutation tests 

in more complex situations see Anderson and Robinson (2001) and Dekker et al. 

(2007). For comparison and completeness, Box A2 describes the parametric bootstrap 

test. 

In this paper, permutation tests are carried out by permuting the trait values t1, t2, ..., tm 

in any species-level test or the environmental values e1, e2, ..., en in any site-level test. 

The reason is that species and sites are the relevant units for assessing trait-environment 

association. 

In the WA-based methods, the site-level permutation test tests for the relation between 

CWM and e. The null hypothesis is that there is no relation between the CWM and e. 

Under the null hypothesis the units in e are therefore exchangeable and can be 

permuted. The inverse of the p-value issued from the (weighted) regression of CMW 

on e is used as test statistic. (In this simple case, many other test statistics, such as the 

slope or correlation from this regression are monotonic with the p-value and would have 

resulted in the same Monte Carlo p-value). Similarly, the species-level permutation test 

in the WA-based methods tests for the relation between SNC and t. The null hypothesis 

is that there is no relation between the SNC and t. Under the null hypothesis the units 

in t are therefore exchangeable and can be permuted. The inverse of the p-value issued 

from the (weighted) regression is used as test statistic. 

In the model-based methods, the null hypothesis is about a single parameter in a 

complex model. Moreover, the single parameter is associated with the interaction 

between t and e. To the best of my knowledge, there exists no general exact permutation 

method for this situation. For a discussion of (approximate) methods that have been 

proposed for complex models see Manly (2006), Dekker et al. (2007) and Pesarin and 

Salmaso (2010). For testing trait-environment association in the MLM3 model I 

propose a new approach, again based on both a species-level and a site-level test. The 

species-level test tests the null hypothesis that the species-specific response ({𝑐𝑗
∗ in 

Equation (2b) in the main text) are unrelated to the trait t, in the presence 𝜎𝑏 > 0, i.e. 

in the presence of site-specific response to the trait t. The site-level test tests the null 

hypothesis that the site-specific responses ({𝑏𝑖
∗} in Equation (2a) in the main text) are 

unrelated to the environmental variable e, in the presence 𝜎𝑐 > 0, i.e. in the presence 

of species-specific response to the environmental variable e. The two tests are combined 

by taking the maximum of the two resulting p-values (max test).  

A new model-based max test for trait-environment interaction 
 

We assume exchangeability of the values in t and e. A random permutation of the values 

in t is denoted by 𝐭𝝅 with individual values 𝑡𝜋(𝑗) and a permutation of the values in e is 

denoted by 𝐞𝝅 with individual values 𝑒𝜋(𝑖). A max test consists of a species-level test 

and a site-level test (see Appendix A5). 

Recall the derivation of the MLM3 model from the main text, starting from the model 
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𝐿𝑖𝑗 = 𝛼0 + 𝑎𝑗 + 𝑏𝑖
∗𝑡𝑗 + 𝑐𝑗

∗𝑒𝑖 + 𝑑𝑖 (A27) 

to which then the submodels are added 

𝑏𝑖
∗ = 𝛽0 + 𝛽𝑡𝑒

′ 𝑒𝑖 + 𝑏𝑖 (A28) 

𝑐𝑗
∗ = 𝛾0 + 𝛽𝑡𝑒

′′ 𝑡𝑗 + 𝑐𝑗  (A29) 

In the species-level test we wish to assess whether the species-specific responses {𝑐𝑗
∗} 

in Equation (A29) are related to the trait t, in the presence 𝜎𝑏 > 0 in the MLM3 model, 

i.e. in the presence of site-specific response to the trait t (Equation (A28) with 𝛽𝑡𝑒
′ =

0). The null hypothesis of the species-level test is thus H0 : 𝛽𝑡𝑒
′′ = 0. However, a random 

permutation of t, 𝐭𝜋 with individual values 𝑡𝜋(𝑗), does not only nullify the focal 

interaction term, represented by 𝛽𝑡𝑒
′′  in Equation (A29), but also the trait main effect 𝛽0 

and the variance 𝜎𝑏 of the site-specific responses {𝑏𝑖} to the trait (Equation (A28)), 

which are part of the complete MLM models (𝜎𝑏 is already 0 in MLM2). These issues 

can be solved by extending the data with the variable 𝐭𝜋0
, where 𝜋0 is a random 

permutation and not permuting the trait values involving the site-specific response to 

the trait in the model. The extended data is then analyzed with the (MLM2 or MLM3) 

model extended with a main effect for 𝐭𝜋0
. In step 3 of Box A1 the test statistic F0 for 

the data is calculated from the model (with, as in the main text, 𝑦𝑖𝑗~𝐷(𝐿𝑖𝑗) and the 

MLM3 term (𝛽0 + 𝑏𝑖)𝑡𝑗 split into 𝛽0𝑡𝑗 + 𝑏𝑖𝑡𝑗 and 𝑏𝑖 = 0 in MLM2) 

𝐿𝑖𝑗 =  𝛼0 + 𝑑𝑖 + 𝑎𝑗 + 𝛽0𝑡𝑗 + 𝛽0
∗𝑡𝜋0(𝑗) +  𝑏𝑖𝑡𝑗 + (𝛾0 + 𝑐𝑗)𝑒𝑖 + 𝛽𝑡𝑒𝑡𝑗𝑒𝑖 (A30) 

while in steps 4 and 5 of Box A1, the test statistic is computed from the model in which 

the 𝑡𝑗-values in the main and interaction terms are permuted: 

𝐿𝑖𝑗 =  𝛼0 + 𝑑𝑖 + 𝑎𝑗 + 𝛽0𝑡𝑗 + 𝛽0
∗𝑡𝜋(𝑗) + 𝑏𝑖𝑡𝑗 + (𝛾0 + 𝑐𝑗)𝑒𝑖 + 𝛽𝑡𝑒𝑡𝜋(𝑗)𝑒𝑖. (A31) 

In this way, the models for both the data and the permuted data contain the main effects 

of t and 𝐭𝝅 and also the same term for the site-specific response to the trait and the 

species-specific response to the environmental variable. The models in (A30) and (A31) 

are thus identical under H0: 𝛽𝑡𝑒 = 0.  

The site-level test is analogous to the species-level test, with the pair (species, t) 

interchanged with (site, e). Thus, in the site-level test we wish to assess whether the 

site-specific responses {𝑏𝑖
∗} in Equation (A28) are related to the environmental variable 

e, in the presence 𝜎𝑐 > 0, i.e. in the presence of species-specific response to the 

environmental variable e (Equation (A29) with 𝛽𝑡𝑒
′′ = 0). The null hypothesis of the 

species-level test is thus H0 : 𝛽𝑡𝑒
′ = 0. However, a random permutation of e, 𝐞𝜋 with 

individual values 𝑒𝜋(𝑗), does not only nullify the focal interaction term, represented in 

Equation (A28) by 𝛽𝑡𝑒
′ , but also the environmental main effect 𝛾0 and the variance 𝜎𝑐 

of the species-specific response to the environmental variable (Equation (A29)). These 

issues can be solved by extending the data with the variable 𝐞𝜋0
, where 𝜋0 is a random 

permutation and not permuting the environmental values involving the species-specific 

response to the environmental variable in the model. The extended data is then analyzed 

with the (MLM2 or MLM3) model extended with a main effect for 𝐞𝜋0
. In step 3 of 

Box A1 the test statistic F0 for the data is calculated from the model (with the term 

(𝛾0 + 𝑐𝑗)𝑒𝑖 split into 𝛾0𝑒𝑖 + 𝑐𝑗𝑒𝑖) 

𝐿𝑖𝑗 =  𝛼0 + 𝑑𝑖 + 𝑎𝑗 +  𝛾0𝑒𝑖 + 𝛾0
∗𝑒𝜋0(𝑖) + 𝑐𝑗𝑒𝑖 + (𝛽0 + 𝑏𝑖)𝑡𝑗 + 𝛽𝑡𝑒𝑡𝑗𝑒𝑖 (A32) 
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is used, while in steps 4 and 5 of Box A1, the test statistic is computed from the model 

in which the 𝑒𝑖-values in the main and interaction terms are permuted: 

𝐿𝑖𝑗 =  𝛼0 + 𝑑𝑖 + 𝑎𝑗 +  𝛾0𝑒𝑖 + 𝛾0
∗𝑒𝜋(𝑖) + 𝑐𝑗𝑒𝑖 + (𝛽0 + 𝑏𝑖)𝑡𝑗 + 𝛽𝑡𝑒𝑡𝑗𝑒𝜋(𝑖). (A33) 

In this way, the models for both the data and the permuted data contain the main effects 

of e and 𝐞𝝅 and also the same terms for the site-specific response to the trait and the 

species-specific response to the environmental variable. The models in (A32) and (A33) 

are thus identical under H0: 𝛽𝑡𝑒 = 0. 

 

Box A1. Monte Carlo Permutation test 

A Monte Carlo Permutation test is a statistical significance test to test a null 

hypothesis H0 (such as 𝛽𝑡𝑒 = 0) against an alternative hypothesis H1 (such as 𝛽𝑡𝑒 ≠
0). It carried out using random permutations according to the following steps: 

1. Select a test statistic F that is sensitive to the departure of H0 in the direction 

of H1 and select a number K of permutations such a K = 49, 99 or 499 (for 

reasons shown below). 

2. Select a group G of permutations that generates permuted data that are equally 

likely as the data under H0 or, more formally, a group that does not change 

the distribution of F under H0.  

3. Compute the test statistic for the data, yielding the value F0. 

4. Select a random permutation from the group, apply it to the data and calculate 

the test statistic for the permuted data, yielding F1. 

5. Repeat step 4 K-1 times so as to yield additional values F2, ..., FK. 

6. Compute the Monte Carlo significance level, i.e. compute the number of 

values F 0, F 1, F 2, ... , FK that is greater than or equal to F0 (this number is 

thus at least 1), and divide by K + 1. Denote the result by p. 

Remarks:  

• Under H0, the data can also be considered as a random permutation (e.g. 

another order of the environmental values would have been observed equally 

likely). For this reason, the test statistic F0 is added to the ones obtained after 

permutation, so that K is chosen as 1 less than a round number, such as 100. 

More formally, under H0 the data also result from a permutation from the 

group (namely, the identity permutation). 

• Under H0, the values of the test statistic F 0, F 1, F 2, ... , FK are exchangeable, 

so that the Monte Carlo p-value is unbiased, irrespective of the number K. 

• The complete set of permutations must have group structure, the importance 

of which is set out in Hemerik and Goeman (2018). Here, the group is the 

complete set of permutations of the chosen units, either the units of the trait 

data (i.e. species) or the units of the environmental data (i.e. sites). As there 

is only a single trait and single environmental variable, either the trait values 

t1, t2, ..., tm or the environmental values e1, e2, ..., en are randomly permuted. 

• The method of calculation of the test statistic in steps 3-5 must be exactly the 

same as the method used to calculate the test statistic for the data (yielding 
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F0). This guarantees the exchangeability of the test statistics F 0, F 1, F 2, ... , 

FK.  

• The detail of the K+1 in step 6 prevents p-values from being zero; p-values 

should never be zero (Phipson & Smyth 2010). 

 

 

Box A2. Parametric bootstrap test 

The parametric bootstrap test is a statistical significance test to test a null hypothesis 

H0 (such as 𝛽𝑡𝑒 = 0) against an alternative hypothesis H1 (such as 𝛽𝑡𝑒 ≠ 0). It carried 

out by simulating data from the null model according to the following steps: 

1. Select a test statistic F that is sensitive to the departure of H0 in the direction 

of H1 and select a number K of permutations such a K = 49, 99 or 499 (for 

reasons shown below). 

2. Fit the null model M0 to the data, i.e. the model of the null hypothesis, here 

with 𝛽𝑡𝑒 = 0.  

3. Compute the test statistic for the data, yielding the value F0. 

4. Simulate a data set from the null model M0, fit it to the simulated data and 

calculate the test statistic, yielding F1. 

5. Repeat step 4 K-1 times so as to yield additional values F2, ..., FK. 

6. Compute the Monte Carlo significance level, i.e. compute the number of 

values F 0, F 1, F 2, ... , FK that is greater than or equal to F0 (this number is 

thus at least 1), and divide by K + 1. Denote the result by p. 

Remarks:  

• Under H0, the data can also be considered as a bootstrap sample. For this 

reason, the test statistic F0 is added to the ones obtained after permutation, so 

that K is chosen as 1 less than a round number, such as 100.  

• With the assumption that the data under the null hypothesis are a random 

sample from model M0, the values of the test statistic F 0, F 1, F 2, ... , FK are 

exchangeable under H0, so that the Monte Carlo p-value is unbiased, 

irrespective of the number K. If the assumption does not (approximately) hold 

true, the parametric bootstrap test lacks theoretical underpinning. For 

example, if the response distribution using in the fit of M0 is binomial or 

Poisson, whereas the data have overdispersion, the parametric bootstrap test 

is likely to have inflated type I error rate. 

• The method of calculation of the test statistic in steps 3-5 must be exactly the 

same as the method used to calculate the test statistic for the data (yielding 

F0). This guarantees the exchangeability of the test statistics F 0, F 1, F 2, ... , 

FK. 

• The detail of the K+1 in step 6 prevents p-values from being zero; p-values 

should never be zero (Phipson & Smyth 2010). 
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A5. The max test combining site- and species-level tests 

 

In this paper, the p-values of the site- and species-level tests are combined by taking 

the maximum. Knowing about the issues in multiple testing, you might wonder whether 

this is a valid procedure and how it relates to multiple testing. First, note that the issue 

arises if one looks at the minimum of the p-values of the individual tests and compares 

that with the nominal level 𝛼 (e.g. 𝛼 = 0.05). The Bonferoni adjustment then says that, 

with two tests, 𝛼 should be divided by two, so as control the Type I error rate. The word 

“control” means that Type I error rate is guaranteed to be smaller than or equal to 𝛼. 

In the max test, the maximum is taken and no division by two (or other adjustment) is 

needed. The rationale follows from sequential testing theory (Goeman & Solari 2010; 

ter Braak, Cormont & Dray 2012) as explained in Box A3.  

In the case of trait-environment association, the Type I error rate is smaller than the 

nominal level if the null hypotheses of both the site-level and the species-level tests are 

true. The Type I error rate is equal to the nominal level, if only one of the null 

hypotheses is true. 

A5.1 WA-based methods 

In WA-based methods, the site-level null hypothesis is that CWM is unrelated to e and 

the species-level null hypothesis is that SNC is related to t. If both null hypotheses are 

rejected, there is thus statistical evidence that CWM and SNC are related to e and t, 

respectively. These relations are a pre-requisite for trait-environment association; they 

imply that species abundance is related to both e and t, but not necessarily that e and t 

have an interaction effect on abundance. If 𝜎𝑏 and/or 𝜎𝑐 (or, equivalently, 𝛽𝑥𝑡 and/or 

𝛽𝑧𝑒) are zero, the max text controls the Type I error rate, but if both 𝜎𝑏 and 𝜎𝑐 are 

nonzero, the max text may show some Type I error inflation. In this section, I present 

the theory why this happens. In Appendices A6-A8 I investigate by simulation how 

serious the inflation is for the three WA-based methods.  

The max test was developed for testing trait-environment association with the rationale 

that there exists trait-environment association if both t and e are related to the species 

abundances Y (ter Braak, Cormont & Dray 2012). The null hypothesis was that either 

t or e, or both t and e are not linked to Y, leading naturally to the max test (Box A3). In 

simulations using a one dimensional Gaussian model the max test controlled the Type 

I error rate and had also power to detect trait-environment association when there was 

one. Later, it was shown by simulation (Peres-Neto, Dray & ter Braak 2017) and by 

theory (ter Braak 2017) that the max test based on the squared fourth-corner correlation 

targets interaction in log-linear models and is not sensitive to main effects. Recently it 

was shown that this permutation-based max test is equivalent with the max test 

combining the permutation-based p-values of weighted CWMr and SNCr using the site 

and species totals as weights, respectively, and permuting the environmental values in 

the weighted CWMr and the trait values in the weighted SNCr (ter Braak, Peres-Neto 

& Dray 2018).  
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Box A3. Max test (ter Braak, Cormont & Dray 2012) 

Setup and assumptions  

Two possibly correlated tests are applied to the same data, addressing different null 

hypotheses H01 and H02. The joint null hypothesis is the composite: (H01 and H02) or 

(H01 or H02) are true and the alternative hypothesis is that both H01 and H02 are false. 

So both null hypotheses must be rejected to reject the joint null hypothesis. 

In sequential testing, H01 is tested first at level 𝛼 and, only if it is rejected (for p-value 

p1 < 𝛼), H02 is tested at level 𝛼 second, resulting in p-value p2. It is assumed that the 

individual tests are unbiased, i.e. have level 𝛼 when applied individually). The joint 

null hypothesis is rejected when both p1 < 𝛼 and p2 < 𝛼, i.e. that max(p1, p2)<𝛼 (max 

test).  

Theorem 

The overall type I error rate of the max test is at most 𝛼.  

Proof 

When the first test is judged significant, we either commit a type I error (if H01 is true 

with rate 𝛼) or we take the right decision when H01 is false, and we proceed with the 

second test. When the second test is judged significant, we either commit a type I 

error (if H02 is true with rate 𝛼) or take the right decision (if H02 is false). If H01 and 

H02 are both true, the overall type I error rate will be smaller than 𝛼 (both H01 and 

H02 are falsely rejected; if the tests are independent, the actual rate is 𝛼2); if either 

H01 or H02 is true, the overall type I error rate is 𝛼 (either H01 or H02 is falsely rejected). 

Note that one can start with testing H02 first and then H01, without any change in the 

outcome2. The same outcome is obtained by always carrying out both tests and 

judging significance if max(p1, p2)<𝛼. We conclude that the max test has almost an 

type I error rate of 𝛼. 

Remarks 

• H01 and H02 can also address the same null hypothesis with different test 

procedures. Then, both H01 and H02 are either true or false. If true, the overall 

type I error rate will be equal to or smaller than 𝛼 (equal if the tests are 

perfectly correlated, and otherwise smaller, e.g. 𝛼2, if the tests are 

independent). This max test thus controls the type I error rate also, but may 

suffer in terms of power. 

• The individual tests can be Monte Carlo tests (Goeman & Solari 2010). 

 

 

The main issue to be understood is why (weighted or unweighted) CWMr is not 

sufficient to test for trait-environment association. The issue is that the CWM of any 

trait, e.g. z with CWM ∑ 𝑦𝑖𝑗𝑧𝑗/𝑦𝑖+
𝑚
𝑗=1 , depends, at least to some small extent, on the 

environmental variable e, if the abundances Y ={𝑦𝑖𝑗} are, at least to some small extent, 

related to any interaction term involving the environmental variable e. The dependence 

                                                 
2 ter Braak et al. (2012) add an extra requirement here on the test statistic, but that requirement is 

redundant. 
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is bigger the stronger the Y- e relation3. Even a random trait interacting with e can 

therefore yield a significant CWMr.  

Another way of seeing the first issue is that the calculation of a CWM can be considered 

as a half-iteration in the iterative algorithm for correspondence analysis, alias reciprocal 

averaging (ter Braak & Prentice 1988). The issue can thus be expected to be bigger the 

higher the correlation between e and the first CA-ordination. The issue exists in both 

parametric CWMr and the permutation version in which the environmental values {𝑒𝑖} 

are permuted (as in the max test for trait-environment association). The issue can be 

countered by permuting the trait values {𝑡𝑗} as proposed by Zelený and coworkers 

(Zelený & Schaffers 2012; Zelený 2016). However, the resulting test, called the ZS-

modified test in ter Braak et al. (2018), is very conservative in the situation where it is 

most wanted, namely when both 𝜎𝑏 and 𝜎𝑐 are nonzero (ter Braak, Peres-Neto & Dray 

2018). 

The analogous issue exists in SNCr. The issue is that the SNC of any environmental 

variable, e.g. x with SNC ∑ 𝑦𝑖𝑗𝑥𝑖/𝑦+j
𝑛
𝑖=1 , depends, at least to some small extent, on the 

trait t, if the abundances Y ={𝑦𝑖𝑗} are, at least to some small extent, related to any 

interaction term involving the trait t, and the dependence is bigger the stronger the Y- 

t relation. A log-linear main effect of t is not an issue, but a logit-linear main effect may 

be an issue, as in the CWM-case. Even a random environmental variable can therefore 

yield a significant SNCr. The issue exists in both parametric SNCr and the permutation 

version in which the trait values {𝑡𝑗} are permuted (as in the max test for trait-

environment association).  

If the CWMr shows significance, there is thus evidence for the link Y⟷ e and, if the 

SNCr shows significance, there is thus evidence for the link Y⟷ t. If both show 

significance, it is thus possible that there is t-e association.  

The WA-based max test controls the type I error rate in the MLM3 model if 𝜎𝑏 and/or 

𝜎𝑐 (or, equivalently, 𝛽𝑥𝑡 and/or 𝛽𝑧𝑒) are zero, for the following reason. Under the null 

hypothesis (𝛽𝑡𝑒 = 0), abundance does not depend on any interaction term involving the 

environmental variable e if 𝜎𝑐 = 𝛽𝑧𝑒 = 0. There is thus no unobserved trait interacting 

with e that gives spurious significance in CWMr. CWMr thus does not carry any 

spurious significance. A significant CWMr is thus true evidence against the null 

hypothesis 𝛽𝑡𝑒 = 0. Informally said, in this case, “CWMr is only significant when e 

truly interacts with t (and not with another trait, as there isn’t any)”. There might be an 

unobserved environmental variable interacting with the trait (𝜎𝑏 > 0 or 𝛽𝑡𝑥 ≠ 0), that 

gives spurious significance in SNCr, but as the max test takes the maximum of the p-

values, this does not have an effect on the Type I error control of the max test.  

Reversely, if 𝜎𝑏 = 𝛽𝑡𝑥 = 0, abundance does not depend on any interaction term 

involving the trait t, except when 𝛽𝑡𝑒 ≠ 0 in which case t interacts with e. There is thus 

no unobserved environmental variable interacting with t that gives spurious 

significance in SNCr. SNCr thus does not carry any spurious significance. A significant 

SNCr is thus true evidence against the null hypothesis 𝛽𝑡𝑒 = 0. Informally said, “SNCr 

is only significant when t truly interacts with e (and not with another environmental 

variable, as there isn’t any)”. There might be an unobserved trait interacting with the 

                                                 
3 A log-linear main effect of e is not an issue because it factors out in the sample total 𝑦𝑖+ and therefore 

cancels out via the division by 𝑦𝑖+; but, a logit-linear main effect cancels out only partially, particularly 

when some of the probabilities are large (say >0.3), so for logit-models main effects may be an issue (see 

section A3.3). 
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environmental variable (𝜎𝑐 > 0 or 𝛽𝑧𝑒 ≠ 0), that gives spurious significance in CWMr, 

but as the max test takes the maximum of the p-values, this does not have an effect on 

the Type I error control of the max test. 

However, if both 𝜎𝑏 and 𝜎𝑐 are nonzero, both CWMr and SNCr carry spurious 

significance (Y⟷ e and Y⟷ t, but e↮t), and the max text may show some Type I 

error inflation. This scenario does not exist in the one-dimensional (Gaussian) model. 

The scenario where the max test may fail, was thus not detected until two-dimensional 

(Gaussian) models and simulations models such as in Appendix A8 were included in 

the empirical evaluation of the max test (ter Braak, Peres-Neto & Dray 2017; ter Braak, 

Peres-Neto & Dray 2018). By simulation I investigate how serious the Type I error rate 

inflation is and whether the inflation and power differ among the different WA-based 

methods. 

A5.2 Model-based methods 

In MLM-based methods, the site-level test tests the null hypothesis that the site-specific 

responses ({𝑏𝑖
∗} in Equation (A28)) are unrelated to the environmental variable e, in the 

presence 𝜎𝑐 > 0, i.e. in the presence of species-specific response to the environmental 

variable e. The species-level test tests the null hypothesis that the species-specific 

response ({𝑐𝑗
∗} in Equation (A29)) are unrelated to the trait t, in the presence 𝜎𝑏 > 0, 

i.e. in the presence of site-specific response to the trait t. The max test combines both 

tests by taking the maximum of the p-values. Both tests address the trait-environment 

interaction coefficient 𝛽𝑡𝑒. One may therefore wonder whether these two null 

hypotheses are identical (which would perhaps result in an overly conservative test, see 

first Remark in Box A3). However, in MLM3 they are not; the site-based test addresses 

submodel (A28) with H1: 𝛽𝑡𝑒
′ =0 and the species-based test addresses submodel (A29) 

with H2: 𝛽𝑡𝑒
′′ =0.  

MLM2 lacks submodel (A28); MLM3 is thus more strict in judging any trait-

environment interaction than MLM2. The site-based component of the max test using 

a MLM2-based analysis may be able to correct for the missing site term when applied 

to data conforming to the MLM3 model. 

 

Model-based max test versus bootstrap test: simulation results 
 

A small simulation study was carried out to investigate the Type I error rate and power 

of the model-based max test (Boxes A1 and A3) and the more usual parametric 

bootstrap test (Box A2). Both tests use the inverse of the Wald test-based p-value as 

test statistic. 

Six species and 100 sites with a log-linear model are simulated using the simulation 

model of Appendix A8. The parameters were set to 𝜎𝑏 = 𝜎𝑐 = 0.5 with structured noise 

with coefficient 𝛽𝑧∗𝑥∗ = 1 (see Appendix A8). In this scenario with 𝛽𝑡𝑒 = 0, the 

parametric MLM3 Wald test has an inflated Type I error rate. Using 250 simulated data 

sets, the rate is estimated as 0.127 (at the 0.05 level)4. The same data sets were also 

analyzed with model-based site and species permutation (as in section A5.2) and the 

                                                 
4 Replacement of the Wald test by the likelihood ratio test reduced the Type I error rate inflation only 

slightly. 
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bootstrap (49 randomizations per test). Site and species permutation resulted in 

rejection rates of 0.108 and 0.031, showing that model-based site permutation only is 

not sufficient to control the Type I error rate. The model-based max test and the 

bootstrap test both had a rejection rate of 0.031 (compared to 0.042 for the max test 

using N2-weighted CWM/SNC lm). The power was investigated by setting 𝛽𝑡𝑒 = 1. 

The rejection rates were 0.61 and 0.70 for the model-based max test and the bootstrap 

test, respectively, compared to 0.55 for N2-weighted CWM/SNC lm. The first two p-

values are significantly different (p <0.01), the second and third are not (p =0.21), when 

tested with the exact binomial test. 

This small simulation study suggests that (1) the model-based permutation test is not 

necessarily overly conservative; (2) the bootstrap test is robust against structured 

residual variation that is not included in the MLM3 model; (3) the bootstrap test is more 

powerful than the model-based permutation test (15% more rejections) and N2-

weighted CWM/SNC lm (28% more rejections), at the cost of more assumptions and 

(compared to N2-weighted CWM/SNC lm) more computing time. 

 

A5.3 A geometric view on the testing problem 

The interaction between the single quantitative trait t and the single environmental 

variable e defines a one-dimensional subspace in the full (n-1)(m-1)-dimensional space 

of site×species interactions. One might argue that the error in the (n-1)(m-1)-1 

dimensional space of such interactions (without the t×e interaction) is a sufficient basis 

for testing for trait-environment association. However, any structured and unstructured 

interactions are part of this space, but their total size is not very useful to judge the size 

of the t×e interaction. 

The max test is motivated by considering two subspaces, (1) the (n-1)-dimensional 

space of the t×sites interactions (Equation (A12)) and (2) the (m-1)-dimensional space 

of the species×e interactions (Equation (A18)), the intersection of which is the one-

dimensional t×e interaction. The variance components 𝜎𝑏
2 and 𝜎𝑐

2 of MLM3 measure 

the size of the interactions in these two subspaces. In the max test, the size of the t×e 

interaction is compared to the size of interactions in each of these two subspaces. The 

size of the interactions in the remaining (n-1)(m-1)-(n-1)-(m-1)+1-dimensional space is 

considered of less importance.  

 

The statistical machinery underlying the test of t-e interaction in MLM3 evaluates the 

sizes of interactions in each of the spaces mentioned. The simulations in Figure A2 

suggest that the standard error of 𝛽̂𝑡𝑒 depends much more strongly on 𝜎𝑏
2 and 𝜎𝑐

2 than 

on the other structured and unstructured interactions.  
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A6. Further analysis of simulation results for the Revisit data 

A6.1 Further analysis 

For the type I error rate and power simulations, I calculated the efficiency of the max 

test based on N2-weighted regressions with respect to the Wald test based on MLM3, 

defined as the rejection rate at the 5% nominal level of the first method divided by that 

of the second method. I also calculated the agreement between the test results, defined 

as the percentage of simulated data sets for which both test outcomes results agreed at 

the 5% level. Concerning disagreement, I also calculated the percentage of data sets in 

which MLM3 showed significance and the WA method did not (M+N−) and the 

reverse case (M−N+). I also calculated the correlation between the logarithm of the p-

values of the MLM3 Wald test and the max test based on N2-weighted CWM/SNC 

regressions.  

In simulations that focused on bias and variance of estimators, I also calculated the 

correlation between 𝛽𝑡𝑒 and the variants of the fourth-corner correlations, defined in 

section 3.5 of Appendix A3.  

A6.2 Results 

Table A1 shows the additional results from the simulations based on the Revisit data. 

The relative power of N2-weighted regressions with respect to MLM3 and the 

agreement are at least 0.82 and 78%, respectively. MLM2 and MLM3 showed little 

bias, except in the MLM2-based standard error. All correlations are >0.6 with one 

exception (0.22 in a case where all p-values are small).  

 

Table A1. Measures of correspondence between WA- and MLM-based results in the 

simulations of Figure 4 based on the Revisit data in the main text (Agree and disagree 

are percentages of test outcomes at the 5% level, M= MLM3, N = N2-w = N2-weighted 

CWM/SNC lm, unw = unweighted, + = p<-0.05, - = p>0.05, FC =  fourth-corner 

correlation, se= standard error, sd = standard deviation).  

true  Relative 

power  

Agree 

% 

Disagree  

%  

Bias in 𝛽̂𝑡𝑒 

 

% Bias se(𝛽̂𝑡𝑒): 

w.r.t. sd of 𝛽̂𝑡𝑒 in 

simulations 

Correlations of p-value and 

variants of  fourth-corner 

correlation with p-value and 

𝛽̂𝑡𝑒 from MLM3 

𝛽𝑡𝑒 𝜎𝑏 

 

𝑁2 𝑤 𝑙𝑚

𝑀𝐿𝑀3
 

𝑁2 𝑤 𝑙𝑚

𝑀𝐿𝑀3
 

M+ 

N- 

M-

N+ 

MLM2 MLM3 MLM2 MLM3 p-val  

N2-w 

FC 

N2-w 

FC 

 

FC  

unw 

0 0.34 0.92 96 2 2 -0.01 0.00 -15 3 0.65 0.80 0.69 0.76 

0.1 0.34 0.93 87 7 6 -0.02 -0.01 -18 -2 0.81 0.80 0.72 0.78 

0.2 0.34 0.82 78 15 6 -0.03 -0.02 -18 -1 0.76 0.78 0.72 0.76 

0.3 0.34 0.91 87 10 2 -0.03 -0.02 -22 -6 0.72 0.77 0.72 0.77 

0.4 0.34 0.94 94 6 0 -0.02 -0.01 -17 3 0.59 0.69 0.66 0.71 

0.6 0.34 1.00 100 0 0 -0.03 -0.01 -23 -4 0.22 0.72 0.71 0.64 

0 1.00 0.94 95 3 2 -0.01 0.00 -57 -7 0.75 0.90 0.86 0.86 
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A7. Analysis and simulations based on the Aravo data 

A7.1 Introduction 

Data analysis and simulations in the main text are confined to a single data set, the 

Revisit data, for which a betabinomial model with logit link is used. In this appendix 

the same analyses are carried out based on another data set, the aravo data set in the R 

package ade4 (Dray & Dufour 2007), for which Poisson and negative binomial models 

with log link are used. As this data shows negligible overdispersion, the simulations 

were based on the Poisson version of the MLM3 model. These simulations are also a 

test of how the N2-weighted variant performs in a Poisson log-linear model, where the 

fourth-corner correlation is expected to perform well (ter Braak 2017). 

A7.2 Material and methods 

Data set 
 

The data is the aravo data set in the R package ade4 (Dray & Dufour 2007). It has 82 

plant species and 75 sites and derives from a study by Choler (2005) who investigated 

the shift in Alpine plant traits along a snow-melt gradient. Here we considered only one 

trait and one environmental variable, namely SLA (Specific Leaf Area) and Snow 

(mean snowmelt date in Julian day averaged over 1997-1999). The abundance data is 

recorded on a six-level scale based on the percentage of cover of each vascular plant. 

In ade4, the abundances are integer values 0-5. 

 

Data analysis and simulations 
 

The WA- and model-based methods were applied to the aravo data, resulting in 

estimates for the trait-environment interaction and parametric and permutation-based 

p-values for testing this interaction.  

ter Braak et al. (2017) analysed the aravo data using a negative binomial distribution 

and did not detect any clear pattern that would suggest an ill-specified mean-variance 

relation. Initial analyses based on this distribution (called ‘nbinom2’ in glmmTMB) 

showed tiny overdispersion compared to the Poisson distribution. Therefore the 

subsequent analyses and simulations were based on the Poisson distribution. Because 

the glmmTMB library cannot fit models without overdispersion, we switched to the R 

library lme4 (Bates et al. 2015) to fit MLM2 and MLM3. The code for MLM3 was: 

library(lme4) 

fpol2 <- y~ poly(trait,2) + poly(env,2) + trait:env +  

(1+trait|site)+ (1+env|species)) 

MLM3 <- glmer(fpol2, data=dat, family= poisson,  

nAGQ=0, control = glmerControl(calc.derivs=F)) 

summary(MLM3) 

The quadratic terms in this model are highly significant and were therefore kept in the 

subsequent analyses. The Poisson and negative binomial models have the log link by 
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default. The trait and environmental variables were standardized to zero mean and unit 

variance so as to get standardized estimates of 𝛽𝑡𝑒, 𝜎𝑏 and 𝜎𝑐. 

The resulting MLM3 model was used to simulate new data sets with the R code 

simulate(MLM3), from which a parametric bootstrap confidence interval for 𝛽𝑡𝑒 was 

constructed. Subsequently, the MLM3 object was modified by changing the entry for 𝛽𝑡𝑒 

so as to simulate models without and with varying strengths of trait-environment 

interaction. Additional simulations were carried out to investigate the robustness of the 

methods to large site-specific trait effects, both in terms of type I error rate (for 𝛽𝑡𝑒 =
0) and bias (for 𝛽𝑡𝑒 >  0). For this, the entry for 𝜎̂𝑏 was increased to 1. Sometimes, 

species had no occurrence in the simulation data set and such species were removed 

before fitting the models. 

 

A7.3 Results 

Data set 
 

With a squared main effects included, MLM3 gave a better fit than MLM2 (𝜒2
2 = 40, 

p << 0.0001). The coefficients of squared SLA and squared Snow variables were both 

negative and significant (p < 0.01). The trait- and environmental related standard 

deviations are 𝜎̂𝑏 = 0.25 and 𝜎̂𝑐 = 1.47, compared to 𝜎̂𝑏 = 0.34 and 𝜎̂𝑐 = 0.42 in the 

Revisit data. 

The MLM3 estimate of 𝛽𝑡𝑒 is 1.18 with a standard error of 0.18. Two thousand 

parametric bootstraps gave an almost normal distribution of 𝛽𝑡𝑒 with mean 1.19 and 

standard deviation 0.18. The usual normality-based confidence interval of 1.18±2*0.18 

= (0.82, 1.53) thus almost agrees with the bootstrap confidence interval. The usual 

fourth-corner correlation is 0.48, the N2-weighted and unweighted correlations are 0.41 

and 0.49, respectively.  

The parametric and permutation-based p-values for testing the trait-environment 

interaction were <0.001 for all methods.  

 

Simulations 
 

Fig. A1 shows rejection rates (Type I error rate for 𝛽𝑡𝑒 = 0 and power for 𝛽𝑡𝑒 > 0) of 

each method, when reality is the same as for the MLM3 model with parameters from 

the fit to the Aravo data using a Poisson response distribution. For 𝜎𝑏 = 1, MLM2 and 

fourth corner show strong type I error rate inflation (rejection rates of 0.21 and 0.15, 

respectively). Of the methods that have good type I error control, MLM3 has the highest 

power, closely followed by lm CWM/SNC. The power of N2-weighted regression is at 

least 70% of the power of MLM3 in these simulations. As in the Revisit data (Table 

A1), the correlation of 𝛽̂𝑡𝑒 with the N2-weighted fourth-corner correlation is higher than 

that with the usual fourth-corner correlation (Table A2). 
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Fig. A1. Rejection rates of methods for data from the MLM3 model with parameters fit 

to the Aravo data using a Poisson response distribution except that 𝛽𝑡𝑒 was set post-hoc 

to the value on the abscissa, based on 250 simulated data sets for each value of 𝛽𝑡𝑒 

(Wald test for MLM2 and MLM3 and permutation-based max test for the WA-based 

methods with F-value test statistic and 499 site and species permutations). For 𝛽𝑡𝑒 = 0, 

additional simulations with 𝜎𝑏 = 1 were carried out and the lines start at this scenario 

so as to emphasize potential Type I error rate inflation. The horizontal solid line is at 

the nominal significance threshold; rates above the dashed line (at 0.078) are 

significantly greater than 0.05. 



49 

 

Table A2. Measures of correspondence between WA- and MLM-based results in the 

simulations based on the Aravo data in Figure A1 (Agree and disagree are fractions of 

test outcomes at the 5% level, M= MLM3, N = N2-w = N2-weighted CWM/SNC lm, 

unw = unweighted, + = p<-0.05, - = p>0.05, FC =  fourth-corner correlation, w.r.t. = 

with respect to).  
true  Relative 

power  

Agree 

% 

Disagree  

%  

Bias 𝛽̂𝑡𝑒 

 

% Bias se(𝛽̂𝑡𝑒): 

w.r.t. sd of 𝛽̂𝑡𝑒 in 

simulations 

Correlations of p-value and 

variants of  fourth-corner 

correlation with p-value and 

𝛽̂𝑡𝑒 from MLM3 

𝛽𝑡𝑒 𝜎𝑏 

 

𝑁2 𝑤 𝑙𝑚

𝑀𝐿𝑀3
 

𝑁2 𝑤 𝑙𝑚

𝑀𝐿𝑀3
 

M+ 

N- 

M-

N+ 

MLM2 MLM3 MLM2 MLM3 p-val  

N2-w 

FC 

N2-w  

FC 

 

FC  

unw 

0 0.25 1.00 96 2 2 -0.04 -0.04 1 3 0.66 0.71 0.42 0.84 

0.375 0.25 0.70 74 20 6 -0.01 -0.01 -4 1 0.77 0.71 0.42 0.72 

0.5 0.25 0.73 73 24 3 -0.01 -0.01 -3 -1 0.75 0.63 0.38 0.68 

0.75 0.25 0.90 88 11 1 0.00 0.00 -3 -1 0.64 0.71 0.42 0.74 

1 0.25 0.98 98 2 0 0.01 0.01 1 4 0.31 0.59 0.23 0.65 

0 1 1.00 96 2 2 0.04 -0.01 -28 0 0.55 0.77 0.35 0.75 
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A8. Simulations of count and binomial data 

 

A8.1 Introduction 

The simulations in the main text and in Appendix A7 have the advantage that realistic 

parameter values are being used, as these as obtained from the data, but have the 

disadvantages that (1) the simulation model is identical to the analysis model (at least 

for MLM3) and (2) the number of species and sites cannot be varied freely. This 

appendix extends MLM3 with structured noise and gives simulation results using this 

extended model. The particular aims of these simulations are to investigate (1) whether 

MLM3 is sensitive to structured noise, (2) how it performs with small number of species 

and/or sites and (3) whether WA-based methods are able to control the type I error 

when both 𝜎𝑏 and 𝜎𝑐 are large (i.e. in a situation of concern for the max text as explained 

in section A5.1) . 

A8.2 Material and methods 

The simulation model 
 

The simulation model adds structured and unstructured noise to the MLM3 model of 

Equation (A1) as in ter Braak et al. (2017). The structured noise is obtained from two 

other unobserved variables, the trait variable z* and environmental variables x*, that 

interact with coefficient 𝛽𝑧∗𝑥∗. Both are drawn as independent standard normals. The 

unstructured noise is obtained from a standard normal variable 𝜖 of length nm scaled to 

standard deviation 𝜎𝜖. Furthermore, the linear trait and environmental effects are 

replaced by general noisy functions, in the Equation (A34) represented by the symbols 

𝑅𝑖 and 𝐶𝑗. The details are as follows. 

In the simulation model the expected abundance 𝜇𝑖𝑗 of species j with trait value 𝑡𝑗 in 

site i with environmental value 𝑒𝑖 is 

𝑙𝑖𝑛𝑘(𝜇𝑖𝑗) =  𝛼0 + 𝑅𝑖 + 𝐶𝑗 + 𝛽𝑡𝑒𝑡𝑗𝑒𝑖 + 𝛽𝑡𝑥𝑡𝑗𝑥𝑖 + 𝛽𝑧𝑒𝑧𝑗𝑒𝑖 + 𝛽𝑧∗𝑥∗𝑧𝑗
∗𝑥𝑖

∗  + 𝜖𝑖𝑗 (A34) 

with  

• 𝛼0 is the intercept parameter, accounting for the overall mean abundance, 

• 𝑅𝑖 is the row main effect plus noise that is a function of i and/or 𝑒𝑖 only, 

• 𝐶𝑗 is the column main effect plus noise that is a function of j and/or 𝑡𝑗 only,  

• 𝛽𝑡𝑒 , 𝛽𝑧𝑒 ,  𝛽𝑡𝑥 and 𝛽𝑧∗𝑥∗ are parameters that govern the importance of the 

associated interaction terms, 

• 𝑧𝑗~𝑁(0,1) and 𝑧𝑗
∗~𝑁(0,1), two multivariate normal random variables with 

cor(𝑧𝑗, 𝑧𝑗
∗) = 𝜌1, but independent of 𝑡𝑗, that could represent two unobserved trait 

variables that are independent of the observed variable 𝑡𝑗. 
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• 𝑥𝑖~𝑁(0,1) and 𝑥𝑖
∗~𝑁(0,1), two multivariate normal random variables with 

cor(𝑥𝑖, 𝑥𝑖
∗) = 𝜌2, but independent of 𝑒𝑖, that could represent two unobserved 

environmental variables that are independent of the observed variable 𝑒𝑖. 

• 𝜖𝑖𝑗~𝑁(0, 𝜎𝜖
2), an independent normal random variable (with variance 𝜎𝜖

2) that 

could represent unobserved full rank variation leading to overdispersion in the 

abundance beyond the overdispersion via the conditional distribution of 𝑦𝑖𝑗 

given 𝜇𝑖𝑗.  

Recall that in terms of a mixed model (Equation (3) of the main text and Equation (A3)) 

𝛽𝑡𝑥 = 𝜎𝑏 and 𝛽𝑧𝑒 = 𝜎𝑐. Unless noted explicitly otherwise, we used in our simulations 

• 𝛼0 = log(30) with log link for count data and 𝛼0= logit(0.3) with logit link for 

binomial data, 

• 𝑅𝑖 =  0.05𝑒𝑖 − 0.1𝑒𝑖
2 +  𝜀𝑟𝑖 with 𝜀𝑟𝑖 an independent normal random variable: 

𝜀𝑟𝑖~𝑁(0, 0.01), giving a common Gaussian response component with optimum 

at 0.25 and tolerance 2.24, 

• 𝐶𝑗 =  0.05𝑡𝑗 − 0.1𝑡𝑗
2 +  𝜀𝑐𝑗 with 𝜀𝑐𝑗 an independent normal random variable: 

𝜀𝑐𝑗~𝑁(0, 0.01), giving a common Gaussian response component with optimum 

at 0.25 and tolerance 2.24, 

• 𝜎𝜖 = 0.2, giving unstructured interaction among species and sites that is 

unrelated to the trait-environment association between {𝑡𝑗} and {𝑒𝑖}. 

• 𝜌1 = 𝜌2 = 0, making the structured noise (x* and z*) independent of the random 

effects (x and z).  

The site and species random effects 𝑑𝑖 and 𝑎𝑗 in Equation (A3) are represented by 𝜀𝑟𝑖 

and 𝜀𝑐𝑗 in the simulation model; these are uncorrelated with 𝑥𝑖 and 𝑧𝑗, whereas they can 

be correlated in the MLM3 model as fitted to data. They are small compared to those 

in the Revisit and aravo data. 

For count data, the abundance 𝑦𝑖𝑗 of species j in site i is drawn from a negative-binomial 

distribution with mean parameter 𝜇𝑖𝑗, overdispersion parameter 1, giving variance 

function 𝜇𝑖𝑗 + 𝜇𝑖𝑗
2 . For binomial data, the abundance 𝑦𝑖𝑗 is drawn from a binomial 

distribution with total 100 (as in the Revisit data) and probability 𝜇𝑖𝑗. 

For the purpose of trait-environment association the key parameters are 𝛽𝑡𝑒 , 𝛽𝑧𝑒 , 𝛽𝑡𝑥 

and 𝛽𝑧∗𝑥∗, and the most important distinction is whether 𝛽𝑡𝑒 = 0 or 𝛽𝑡𝑒 ≠ 0. If 𝛽𝑡𝑒 =
0, then the trait and the environment may influence abundance through the row and 

column effects 𝑅𝑖 and 𝐶𝑗, but there is no trait-environment association. However, if 

𝛽𝑡𝑒 ≠ 0 then there is trait-environment association. With the simulations, we 

investigated whether the statistical methods under investigation can measure the trait-

environment association and whether the associated significance tests can detect it, in 

particular whether these tests are valid and useful to test the null hypothesis 𝐻0: 𝛽𝑡𝑒 =
0 versus the alternative hypothesis 𝐻1: 𝛽𝑡𝑒 ≠ 0. For validity, the tests should control 

the type I error at rate 𝛼, taken as 𝛼 = 0.05, that is, they should lead to at most 100 𝛼% 

rejections of the null hypothesis if in fact 𝐻0: 𝛽𝑡𝑒 = 0 holds (closer to 100 𝛼% is better). 

For usefulness, they should have sufficient power, that is, they should lead to a large 

fraction of rejections under the alternative hypothesis (larger is better).  
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Simulation scenarios 
 

In two series of simulations the number of species (m) and sites (n) were varied: 10, 50 

and 100 species or sites in a log-linear model series (series I) and 15, 50 and 100 in a 

logit model series (series II). In these series all nuisance interaction coefficients (all 

except 𝛽𝑡𝑒) were set to 0.5, unless noted otherwise. These settings made the MLM3 

model symmetric in species and sites, so that only six of the nine possible combinations 

of n and m are presented. To investigate whether the methods are robust against 

correlation between the random effect and the structured noise, these series were 

repeated with a correlation of 0.5 between x and x* and between z and z* (𝜌1 = 𝜌2 =
0.5). For the study of the MLM estimators of 𝛽𝑡𝑒 and their variance, these series were 

also repeated with all nuisance interaction coefficients set to 1. 

These series revealed some type I error rate inflation in the Wald test of MLM3 for 

n=10 or m=10. In a third series (series III), this is further investigated with n, m = 5, 10, 

20 for log-linear models and with 𝛽𝑧∗𝑥∗ = 0 to see whether the inflation is still present 

without structured noise.  

In the fourth series (series IV), the WA-based methods are compared in more detail. In 

this series, the nuisance interaction coefficients were varied: 𝛽𝑡𝑥 , 𝛽𝑧𝑒 and 𝛽𝑧∗𝑥∗ were 

either 0 or 0.5. This series was to falsify the claim that the WA-based max test always 

controls the type I error rate when either 𝛽𝑡𝑥 or 𝛽𝑧𝑒 is zero or both are zero, and to study 

the type I error rate inflation when both 𝛽𝑡𝑥 and 𝛽𝑧𝑒 are nonzero. 

In a fifth series (series V), the model-based methods are studied in more detail in terms 

of bias in either the estimate of 𝛽𝑡𝑒 and its standard error. In this series, with n=50 and 

m=30 and 𝛽𝑡𝑒 = 0, the parameters 𝛽𝑡𝑥 , 𝛽𝑧𝑒 and 𝛽𝑧∗𝑥∗ are either 0 or 0.5, giving eight 

scenarios. A similar series with 𝛽𝑡𝑒 = 0.3, which led to similar conclusions as series V, 

is not shown. 

In each scenarios the number of simulated data sets was 250 and the number of 

permutations in WA-based methods was 499. All methods were applied to the same 

data sets and the same permutations. The formula used in fitting MLM2 was 

 
fpol2MLM2 <- y~ poly(trait,2) + poly(env,2) + trait:env +  

(1|site)+ (1+env|species)) 

 

and in fitting MLM3 

 
fpol2MLM3 <- y~ poly(trait,2) + poly(env,2) + trait:env +  

(1+trait|site)+ (1+env|species)) 

The results were analyzed as in section AA6.1. 
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A8.3 Results 

Type I error rates and power 
 

In Series I-III (with nonzero nuisance interaction coefficients: Tables A3-A5) MLM2 

shows considerable type I error rate inflation (rejection rates between 0.10 and 0.53). 

MLM3 and N2- weighted lm perform much better with moderate inflation (up to 0.12). 

The inflation occurs with small n or m for MLM3 and with large n and m for N2-

weighted lm. This inflation could not be made smaller by changing from the Ward test 

to the LRT test; it might be removed by resampling using the bootstrap test or the 

model-based max test (section A5.2). The type I error inflation in N2-weighted lm is 

generally somewhat lower than in fourth corner and lm CWM/SNC (Tables A3-A6).  

The results for simulations with and without correlation between the random effects 

and the structure noise are rather similar (Tables A3a,b and Tables A4a,b), except that, 

with correlation, MLM2 has even higher type I error rate inflation than without 

correlation, and the WA-methods appear to have somewhat higher type I error inflation, 

for large n and m, with than without correlation. 

In Series I-II the relative power of N2-weighted lm with respect to MLM3 ranges from 

0.70 to 1.05. For small n or m, N2-weighted lm is also somewhat less powerful than 

fourth corner and lm CWM/SNC (relative power range: 0.62 to 0.96); for larger n or m, 

N2-weighted lm is only less powerful when fourth corner and lm CWM/SNC do not 

control the type I error rate.  

The agreement between test results of MLM3 and N2-weighted lm ranges between 75 

and 98%; the disagreement percentages reflect the differences between the two methods 

in type I error rates and power for null models. The correlation between the log p-values 

of the methods ranges between 0.80 and 0.97, except when the power of methods is 

above 0.9 (so that most of the p-values are small or very small; the number of 

permutations limits the p-values of the WA-methods to be above 0.002, whereas MLM3 

has no limit).  

In Series IV, all three WA-based methods fully controlled the type I error rate when 

either 𝛽𝑡𝑥 = 0 or 𝛽𝑧𝑒 = 0 (Table A6a). When both 𝛽𝑡𝑥 ≠ 0 and 𝛽𝑧𝑒 ≠ 0 the methods 

showed some inflation, up to a rejection rate of 0.10. Out of the 10, the numbers of 

scenarios with inflation are 6, 5 and 2 for fourth corner, lm CWM/SNC and N2-weighted 

lm (Table A6a). Increasing the nuisance interactions from 0.5 to 1 led to lower (or no) 

Type I error inflation (as can be seen by comparing the first three versus the last three 

rows of the second halve of Table A6a). The somewhat better type I error rate control 

of N2-weighted lm led to slightly less power (Table A6b).  

Table A3. Series I: rejection rates of, and agreement between, four methods to detect 

trait-environment interaction for simulated negative binomial count data with 𝛽𝑡𝑥 =
𝛽𝑧𝑒 = 𝛽𝑧∗𝑥∗ = 0.5. (Agree and disagree are percentages of test outcomes at the 5% 

level, M= MLM3, N = N2-w = N2-weighted CWM/SNC lm, unw = unweighted, + = 

p<-0.05, - = p>0.05, FC =  fourth-corner correlation, Cor = correlation between p-

values of N2-weighted CWM/SNC lm and MLM3). Inflated type I error rates (values 

above 0.078) are shown in bold, and the corresponding (relative) power in gray; for 

null models, all relative rejection fractions are grayed (250 simulations for each 

scenario; MLM uses the log-link with negative binomial response distribution). 

  



54 

 

Table A3a. Structured noise (x* and z*) independent of the random effects (x and z). 

sites species Fraction rejected 
Relative 

power  

Agree 

% 

Disagree  

%  

Cor  

n 

 

m Fourth 

corner 

lm 

CWM/ 

SNC 

MLM2 MLM3 N2-

weighted 

lm 

𝑁2 𝑤 𝑙𝑚

𝑀𝐿𝑀3
 

𝑁2 𝑤 𝑙𝑚

𝑀𝐿𝑀3
 

M+ 

N- 

M-

N+ 

p-val  

N2-w, 

MLM3 

Null models: 𝛽𝑡𝑒 = 0 

10 10 0.044 0.036 0.160 0.084 0.032 0.38 95 5 0 0.86 

10 50 0.068 0.072 0.124 0.096 0.060 0.63 95 4 1 0.85 

10 100 0.036 0.036 0.116 0.092 0.032 0.35 93 6 0 0.87 

50 50 0.100 0.108 0.180 0.052 0.064 1.23 96 1 2 0.88 

50 100 0.076 0.088 0.112 0.052 0.072 1.38 97 0 2 0.89 

100 100 0.132 0.120 0.188 0.056 0.056 1.00 95 2 2 0.89 

Non-null models: 𝛽𝑡𝑒 = 0.25 

10 10 0.120 0.108 0.326 0.204 0.104 0.51 90 10 0 0.91 

10 50 0.200 0.196 0.376 0.352 0.176 0.50 82 18 0 0.86 

10 100 0.180 0.188 0.360 0.328 0.156 0.48 83 17 0 0.88 

50 50 0.640 0.716 0.820 0.652 0.624 0.96 91 6 3 0.85 

50 100 0.760 0.844 0.888 0.808 0.744 0.92 90 8 2 0.80 

100 100 0.916 0.952 0.972 0.924 0.916 0.99 96 2 2 0.72 

 

Table A3b. Structured noise (x* and z*) correlated with the random effects (x and z) 

with a correlation of 0.5 between x and x* and between z and z* (𝜌1 = 𝜌2 = 0.5). 

sites species Fraction rejected 
Relative 

power  

Agree 

% 

Disagree  

%  

Cor  

n 

 

m Fourth 

corner 

lm 

CWM/ 

SNC 

MLM2 MLM3 N2-

weighted 

lm 

𝑁2 𝑤 𝑙𝑚

𝑀𝐿𝑀3
 

𝑁2 𝑤 𝑙𝑚

𝑀𝐿𝑀3
 

M+ 

N- 

M-

N+ 

p-val  

N2-w, 

MLM3 

Null models: 𝛽𝑡𝑒 = 0 

10 10 0.056 0.060 0.231 0.104 0.056 0.54 94 5 0 0.84 

10 50 0.052 0.048 0.431 0.088 0.044 0.50 95 5 0 0.85 

10 100 0.084 0.088 0.528 0.120 0.052 0.43 92 8 1 0.89 

50 50 0.100 0.100 0.200 0.048 0.064 1.33 95 2 3 0.80 

50 100 0.084 0.072 0.232 0.044 0.056 1.27 96 1 2 0.81 

100 100 0.148 0.144 0.196 0.060 0.104 1.73 94 1 5 0.79 

Non-null models: 𝛽𝑡𝑒 = 0.25 

10 10 0.132 0.140 0.414 0.224 0.116 0.52 87 12 1 0.84 

10 50 0.264 0.284 0.714 0.348 0.208 0.60 86 14 0 0.87 

10 100 0.248 0.284 0.820 0.412 0.160 0.39 75 25 0 0.87 

50 50 0.732 0.748 0.836 0.668 0.568 0.85 87 12 2 0.83 

50 100 0.812 0.852 0.928 0.788 0.644 0.82 82 16 2 0.80 

100 100 0.940 0.980 0.984 0.948 0.872 0.92 92 8 0 0.70 
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Table A4. Series II: rejection rates of, and agreement between, four methods to detect 

trait-environment interaction for simulated binomial count data with binomial total of 

100 and 𝛽𝑡𝑥 = 𝛽𝑧𝑒 = 𝛽𝑧∗𝑥∗ = 0.5. (Agree and disagree are percentages of test outcomes 

at the 5% level, M= MLM3, N = N2-w = N2-weighted CWM/SNC lm, unw = 

unweighted, + = p<-0.05, - = p>0.05, FC =  fourth-corner correlation, Cor = correlation 

between p-values of N2-weighted CWM/SNC lm and MLM3). Inflated type I error rates 

(values above 0.078) are shown in bold, and the corresponding (relative) power in gray; 

for null models, all relative rejection fractions are grayed (250 simulations for each 

scenario; MLM uses the logit-link with beta-binomial response distribution). 
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Table A4a. Structured noise (x* and z*) independent of the random effects (x and z). 

sites species Fraction rejected 
Relative 

power  

Agree 

% 

Disagree  

%  

Cor  

n 

 

m Fourth 

corner 

lm 

CWM/ 

SNC 

MLM2 MLM3 N2-

weighted 

lm 

𝑁2 𝑤 𝑙𝑚

𝑀𝐿𝑀3
 

𝑁2 𝑤 𝑙𝑚

𝑀𝐿𝑀3
 

M+ 

N- 

M-

N+ 

p-val  

N2-w, 

MLM3 

Null models: 𝛽𝑡𝑒 = 0 

15 15 0.060 0.048 0.170 0.064 0.052 0.81 98 2 0 0.96 

50 15 0.068 0.064 0.120 0.068 0.064 0.94 97 2 1 0.97 

100 15 0.064 0.060 0.109 0.088 0.056 0.64 95 4 1 0.96 

50 50 0.112 0.092 0.200 0.040 0.092 2.30 95 0 5 0.97 

100 50 0.088 0.080 0.112 0.044 0.068 1.55 98 0 2 0.96 

100 100 0.108 0.100 0.164 0.056 0.096 1.71 96 0 4 0.97 

Non-null models: 𝛽𝑡𝑒 = 0.25 

15 15 0.288 0.276 0.512 0.272 0.264 0.97 94 4 3 0.90 

50 15 0.332 0.320 0.536 0.376 0.300 0.80 90 9 1 0.87 

100 15 0.400 0.380 0.541 0.504 0.360 0.71 86 14 0 0.89 

50 50 0.780 0.780 0.862 0.676 0.756 1.12 90 1 9 0.83 

100 50 0.836 0.828 0.884 0.776 0.816 1.05 94 1 5 0.81 

100 100 0.964 0.964 0.972 0.920 0.944 1.03 97 0 3 0.62 

 

Table A4b. Structured noise (x* and z*) correlated with the random effects (x and z) 

with a correlation of 0.5 between x and x* and between z and z* (𝜌1 = 𝜌2 = 0.5). 

sites species Fraction rejected 
Relative 

power  

Agree 

% 

Disagree  

%  

Cor  

n 

 

m Fourth 

corner 

lm 

CWM/ 

SNC 

MLM2 MLM3 N2-

weighted 

lm 

𝑁2 𝑤 𝑙𝑚

𝑀𝐿𝑀3
 

𝑁2 𝑤 𝑙𝑚

𝑀𝐿𝑀3
 

M+ 

N- 

M-

N+ 

p-val  

N2-w, 

MLM3 

Null models: 𝛽𝑡𝑒 = 0 

15 15 0.068 0.076 0.214 0.064 0.072 1.12 98 1 2 0.91 

50 15 0.076 0.084 0.116 0.088 0.072 0.82 98 2 0 0.95 

100 15 0.032 0.036 0.094 0.064 0.032 0.50 96 4 0 0.96 

50 50 0.104 0.092 0.194 0.044 0.092 2.09 95 0 5 0.96 

100 50 0.084 0.088 0.128 0.056 0.088 1.57 96 0 4 0.97 

100 100 0.128 0.128 0.180 0.064 0.124 1.94 94 0 6 0.96 

Non-null models: 𝛽𝑡𝑒 = 0.25 

15 15 0.252 0.252 0.410 0.264 0.252 0.95 96 3 2 0.92 

50 15 0.372 0.360 0.502 0.428 0.336 0.79 91 9 0 0.93 

100 15 0.320 0.336 0.484 0.420 0.296 0.70 87 13 0 0.92 

50 50 0.752 0.740 0.859 0.636 0.716 1.13 90 1 9 0.85 

100 50 0.868 0.844 0.916 0.792 0.808 1.02 94 2 4 0.81 

100 100 0.972 0.968 0.980 0.920 0.956 1.04 96 0 4 0.64 
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Table A5. Series III: rejection rates of, and agreement between, four methods to detect 

trait-environment interaction for simulated negative binomial count data with 𝛽𝑡𝑥 =
𝛽𝑧𝑒 = 0.5 and 𝛽𝑧∗𝑥∗ = 0. (LRT = likelihood ratio test; - failed). Inflated type I error 

rates (values above 0.078) are shown in bold, and the corresponding (relative) power in 

gray; for null models, all relative rejection fractions are grayed (250 simulations for 

each scenario; MLM uses the log-link with negative binomial response distribution). 

sites species Fraction rejected 

n 

 

m Fourth 

corner 

lm 

CWM/ 

SNC 

MLM2 MLM3 MLM3 

LRT 

N2-

weighted 

lm 

Null models: 𝛽𝑡𝑒 = 0 

5 5 0.012 0.012 0.199 0.159 - 0.012 

5 10 0.028 0.032 0.202 0.153 - 0.024 

5 20 0.044 0.048 0.299 0.164 - 0.048 

10 10 0.028 0.060 0.229 0.116 - 0.060 

10 20 0.036 0.040 0.177 0.080 0.112 0.040 

20 20 0.048 0.072 0.185 0.010 0.099 0.072 
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Table A6. Series IV: rejection rates of three WA-based methods for 𝛽𝑡𝑒 = 0 (a) and 

𝛽𝑡𝑒 = 0.375 (b) to detect trait-environment interaction for simulated binomial count 

data with n = m=50 and binomial total of 100. Inflated type I error rates (values above 

0.078) are shown in bold, and the corresponding (relative) power in gray; for null 

models, all relative rejection fractions are grayed (250 simulations for each scenario). 

Table A6a Null models: 𝛽𝑡𝑒 = 0 

(a)   
Fraction rejected 

Relative power w.r.t 

N2-weighted lm 

𝛽𝑡𝑥 

𝜎𝑏 
𝛽𝑧𝑒 

𝜎𝑐 
𝛽𝑧∗𝑥∗ 

Fourth 

corner 

lm 

CWM/ 

SNC 

N2-

weighted 

lm 

𝐹𝐶

𝑁2 𝑤 𝑙𝑚
 

𝑙𝑚 𝐶/𝑆

𝑁2 𝑤 𝑙𝑚
 

Either 𝛽𝑡𝑥 = 0 or 𝛽𝑧𝑒 = 0  

0 0 0 0.042 0.042 0.042 1.00 1.00 

0 0 0.5 0.004 0.004 0.006 0.67 0.67 

0 0.5 0 0.058 0.062 0.058 1.00 1.07 

0 0.5 0.5 0.044 0.046 0.048 0.92 0.96 

0 1 0 0.054 0.050 0.052 1.04 0.96 

0 1 0.5 0.060 0.054 0.060 1.00 0.90 

0.5 0 0 0.038 0.040 0.036 1.06 1.11 

0.5 0 0.5 0.054 0.060 0.056 0.96 1.07 

1 0 0 0.042 0.050 0.054 0.78 0.93 

1 0 0.5 0.040 0.044 0.052 0.77 0.85 

Both 𝛽𝑡𝑥 ≠ 0 and 𝛽𝑧𝑒 ≠ 0  

0.5 0.5 0 0.092 0.094 0.090 1.02 1.04 

0.5 0.5 0.5 0.098 0.100 0.084 1.17 1.19 

0.5 0.5 1 0.080 0.074 0.066 1.21 1.12 

0.5 1 0 0.058 0.060 0.048 1.21 1.25 

0.5 1 0.5 0.080 0.072 0.066 1.21 1.09 

1 0.5 0 0.070 0.070 0.056 1.25 1.25 

1 0.5 0.5 0.058 0.060 0.058 1.00 1.03 

1 1 0 0.090 0.084 0.070 1.29 1.20 

1 1 0.5 0.088 0.086 0.076 1.16 1.13 

1 1 1 0.074 0.072 0.064 1.16 1.13 
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Table A6b Non-null models: 𝛽𝑡𝑒 = 0.375  

(b)   Fraction rejected Relative power  

𝛽𝑡𝑥 
 
𝛽𝑧𝑒 𝛽𝑧∗𝑥∗ 

Fourth 

corner 

lm 

CWM/ 

SNC 

N2-

weighted 

lm 

𝐹𝐶

𝑁2 𝑤 𝑙𝑚
 𝑙𝑚 𝐶/𝑆

𝑁2 𝑤 𝑙𝑚
 

Either 𝛽𝑡𝑥 = 0 or 𝛽𝑧𝑒 = 0  

0 0 0 1.000 1.000 1.000 1.00 1.00 

0 0 0.5 1.000 1.000 1.000 1.00 1.00 

0 0.5 0 1.000 1.000 1.000 1.00 1.00 

0 0.5 0.5 0.992 0.996 1.000 0.99 1.00 

0 1 0 0.676 0.664 0.624 1.08 1.06 

0 1 0.5 0.716 0.704 0.656 1.09 1.07 

0.5 0 0 0.996 0.996 0.996 1.00 1.00 

0.5 0 0.5 0.996 0.996 0.992 1.00 1.00 

1 0 0 0.676 0.660 0.652 1.04 1.01 

1 0 0.5 0.708 0.696 0.680 1.04 1.02 

Both 𝛽𝑡𝑥 ≠ 0 and 𝛽𝑧𝑒 ≠ 0  

0.5 0.5 0 0.984 0.980 0.976 1.01 1.00 

0.5 0.5 0.5 0.976 0.972 0.968 1.01 1.00 

0.5 0.5 1 0.968 0.968 0.964 1.00 1.00 

0.5 1 0 0.660 0.644 0.628 1.05 1.03 

0.5 1 0.5 0.660 0.656 0.648 1.02 1.01 

1 0.5 0 0.636 0.608 0.608 1.05 1.00 

1 0.5 0.5 0.588 0.568 0.568 1.04 1.00 

1 1 0 0.520 0.480 0.448 1.16 1.07 

1 1 0.5 0.488 0.472 0.456 1.07 1.04 

1 1 1 0.524 0.492 0.480 1.09 1.03 
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Estimation bias and standard error 
 

In Series V (with n=50 and m=30), MLM2 estimates 𝛽𝑡𝑒 without visible bias in log-

linear null models, but underestimates the standard error of 𝛽̂𝑡𝑒 when there are sizeable 

random effects; no bias is visible in MLM3 (Fig. A2). In MLM3, the standard error of 

𝛽̂𝑡𝑒 increases sharply with the size of the variance components 𝜎𝑏
2 and 𝜎𝑐

2 but only 

slightly with the size the structured noise (𝛽𝑧∗𝑥∗); MLM2 fails to pick up the variance 

in 𝜎𝑏
2, as it does not include this random component (Fig. A2). 

Series I and II (Tables A7 and A8) show almost no bias in 𝛽̂𝑡𝑒 in both MLM2 and 

MLM3, except in logit-models in non-null models with large nuisance interactions 

(Tables A8c). This bias in logistic non-null models disappears in MLM3, but not in 

MLM2, when the parameter governing residual correlation (𝛽𝑧∗𝑥∗) is set to zero (Table 

A8d).  

Series I and II (Tables A7 and A8) show large downward bias in the estimator of the 

standard error in MLM2 and, for small n or m, some downward bias in MLM3.  

The correlations between the MLM3 estimator of the interaction and the N2-weighted 

fourth-corner correlation ranges from 0.88 to 0.98 in the Series I and II and from 0.70 

to 0.97 in Series I and II with the nuisance interactions set to 1. The correlations with 

the original fourth-corner correlations are generally somewhat lower.  

 

Fig. A2. Series V: 𝛽̂𝑡𝑒 (est. of 𝛽𝑡𝑒) and its standard error (s.e.) given by MLM2 and 

MLM3 in simulated null models (𝛽𝑡𝑒 = 0) with varying amounts of sizes of random 

effects (n = 50, m = 30; log-linear model with negative binomial response 

distribution).  
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Table A7. Series I: Bias in 𝛽̂𝑡𝑒 and its standard error given by MLM2 and MLM3, and 

the correlation between the MLM3 estimate of 𝛽𝑡𝑒 and three variants of the  fourth-

corner correlation in simulated negative binomial count data with 𝛽𝑡𝑥 = 𝛽𝑧𝑒 = 𝛽𝑧∗𝑥∗ =
0.5. (Cor = correlation; FC =  fourth-corner correlation, N2-w = N2-weighted, unw = 

unweighted; 250 simulations for each scenario; MLM uses the log-link with negative 

binomial response distribution). 

(A7a) Structured noise (x* and z*) independent of the random effects (x and z). 

(A7b). Structured noise (x* and z*) correlated with the random effects (x and z) with a 

correlation of 0.5 between x and x* and between z and z* (𝜌1 = 𝜌2 = 0.5). 

(A7c). Series I with large nuisance interactions (𝛽𝑡𝑥 = 𝛽𝑧𝑒 = 𝛽𝑧∗𝑥∗ = 1). 
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Table A7a. Structured noise (x* and z*) independent of the random effects (x and z). 

sites species 

Bias in 𝛽̂𝑡𝑒 

 

Bias in se(𝛽̂𝑡𝑒): 

% of sd of 𝛽̂𝑡𝑒 in 

simulations 

Cor of variants of FC 

correlation with 𝛽̂𝑡𝑒 

from MLM3 

n 

 

m MLM2 MLM3 MLM2 MLM3 FC 

N2-w  

FC 

 

FC  

unw 

Null models: 𝛽𝑡𝑒 = 0 

10 10 0.03 0.04 -26 -10 0.90 0.87 0.91 

50 10 0.02 0.02 -11 0 0.92 0.86 0.93 

100 10 -0.01 0.00 -9 -4 0.93 0.87 0.94 

50 50 0.00 0.00 -31 -5 0.94 0.88 0.95 

100 50 0.00 0.00 -19 0 0.94 0.87 0.97 

100 100 0.00 0.00 -28 1 0.95 0.90 0.97 

Non-null models: 𝛽𝑡𝑒 = 0.25 

10 10 -0.01 -0.01 -36 -21 0.88 0.82 0.88 

50 10 0.02 0.02 -21 -11 0.90 0.85 0.92 

100 10 0.00 0.00 -22 -17 0.88 0.85 0.91 

50 50 0.00 0.00 -29 -3 0.91 0.78 0.93 

100 50 -0.01 -0.01 -23 -7 0.89 0.82 0.93 

100 100 0.00 0.00 -35 -10 0.92 0.79 0.93 

 

Table A7b. Structured noise (x* and z*) correlated with the random effects (x and z) 

with a correlation of 0.5 between x and x* and between z and z* (𝜌1 = 𝜌2 = 0.5). 

sites species 

Bias in 𝛽̂𝑡𝑒 

 

Bias in se(𝛽̂𝑡𝑒): 

% of sd of 𝛽̂𝑡𝑒 in 

simulations 

Cor of variants of FC 

correlation with 𝛽̂𝑡𝑒 

from MLM3 

n 

 

m MLM2 MLM3 MLM2 MLM3 FC 

N2-w  

FC 

 

FC  

unw 

Null models: 𝛽𝑡𝑒 = 0 

10 10 -0.01 -0.01 -38 -16 0.90 0.87 -0.01 

50 10 0.01 0.01 -61 -14 0.94 0.90 0.01 

100 10 0.00 -0.01 -69 -11 0.93 0.89 0.00 

50 50 0.00 -0.01 -23 8 0.91 0.80 0.00 

100 50 0.00 0.00 -38 6 0.92 0.83 0.00 

100 100 0.00 0.00 -29 -1 0.93 0.84 0.00 

Non-null models: 𝛽𝑡𝑒 = 0.25 

10 10 0.02 0.02 -40 -15 0.86 0.84 0.88 

50 10 0.00 0.00 -61 -15 0.86 0.85 0.91 

100 10 0.00 0.01 -67 -5 0.85 0.86 0.91 

50 50 0.01 0.01 -26 4 0.89 0.72 0.91 

100 50 0.01 0.01 -42 -1 0.88 0.74 0.91 

100 100 0.00 0.00 -29 -2 0.91 0.75 0.93 
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Table A7c. Series I with large nuisance interactions (𝛽𝑡𝑥 = 𝛽𝑧𝑒 = 𝛽𝑧∗𝑥∗ = 1). 

sites species 

Bias in 𝛽̂𝑡𝑒 

 

Bias in se(𝛽̂𝑡𝑒): 

% of sd of 𝛽̂𝑡𝑒 in 

simulations 

Cor of variants of FC 

correlation with 𝛽̂𝑡𝑒 

from MLM3 

n 

 

m MLM2 MLM3 MLM2 MLM3 FC 

N2-w  

FC 

 

FC  

unw 

Null models: 𝛽𝑡𝑒 = 0 

10 10 0.02 0.01 -36 -11 0.86 0.76 0.89 

50 10 0.00 -0.01 -22 -14 0.88 0.76 0.94 

100 10 0.00 0.00 -18 -14 0.89 0.76 0.94 

50 50 -0.01 -0.01 -26 3 0.88 0.67 0.91 

100 50 0.00 0.00 -16 2 0.88 0.62 0.91 

100 100 -0.01 -0.01 -26 4 0.87 0.63 0.91 

Non-null models: 𝛽𝑡𝑒 = 0.5 

10 10 0.06 0.03 -35 -11 0.75 0.58 0.77 

50 10 -0.01 -0.01 -15 -4 0.75 0.54 0.79 

100 10 -0.07 -0.06 -17 -13 0.73 0.57 0.78 

50 50 -0.02 -0.02 -32 -5 0.78 0.52 0.82 

100 50 -0.02 0.00 -11 8 0.67 0.38 0.75 

100 100 -0.03 -0.01 -29 2 0.70 0.38 0.72 

 

 

 

 

 

Table A8. Series II: Bias in 𝛽̂𝑡𝑒 and its standard error given by MLM2 and MLM3, and 

the correlation between the MLM3 estimate of 𝛽𝑡𝑒 and three variants of the  fourth-

corner correlation in simulated binomial count data with binomial total of 100 and 

𝛽𝑡𝑥 = 𝛽𝑧𝑒 = 𝛽𝑧∗𝑥∗ = 0.5. (Cor = correlation; FC =  fourth-corner correlation, N2-w = 

N2-weighted, unw = unweighted; 250 simulations for each scenario; MLM uses the 

logit-link with beta-binomial response distribution). 

(A8a) Structured noise (x* and z*) independent of the random effects (x and z). 

(A8b). Structured noise (x* and z*) correlated with the random effects (x and z) with a 

correlation of 0.5 between x and x* and between z and z* (𝜌1 = 𝜌2 = 0.5). 

(A8c). Series II with large nuisance interactions (𝛽𝑡𝑥 = 𝛽𝑧𝑒 = 𝛽𝑧∗𝑥∗ = 1). 

(A8d). Series II with large nuisance interactions (𝛽𝑡𝑥 = 𝛽𝑧𝑒 = 1), but no residual 

correlation (𝛽𝑧∗𝑥∗ = 0). 
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Table A8a. Structured noise (x* and z*) independent of the random effects (x and z). 

sites species 

Bias in 𝛽̂𝑡𝑒 

 

Bias in se(𝛽̂𝑡𝑒): 

% of sd of 𝛽̂𝑡𝑒 in 

simulations 

Cor of variants of FC 

correlation with 𝛽̂𝑡𝑒 

from MLM3 

n 

 

m MLM2 MLM3 MLM2 MLM3 FC 

N2-w  

FC 

 

FC  

unw 

Null models: 𝛽𝑡𝑒 = 0 

15 15 0.00 0.00 -27 2 0.97 0.97 0.97 

50 15 -0.01 -0.01 -22 -10 0.97 0.97 0.97 

100 15 0.00 0.00 -4 3 0.98 0.98 0.98 

50 50 0.00 0.00 -28 2 0.98 0.99 0.98 

100 50 0.00 0.00 -28 -11 0.99 0.99 0.99 

100 100 0.00 0.00 -31 -2 0.99 0.99 0.99 

Non-null models: 𝛽𝑡𝑒 = 0.25 

15 15 -0.05 -0.04 -30 -2 0.93 0.94 0.94 

50 15 -0.03 -0.02 -17 -5 0.93 0.93 0.93 

100 15 -0.03 -0.02 -18 -12 0.94 0.94 0.94 

50 50 -0.02 -0.01 -28 1 0.94 0.94 0.94 

100 50 -0.03 -0.01 -16 2 0.94 0.94 0.95 

100 100 -0.03 -0.02 -30 0 0.94 0.95 0.95 

 

Table A8b. Structured noise (x* and z*) correlated with the random effects (x and z) 

with a correlation of 0.5 between x and x* and between z and z* (𝜌1 = 𝜌2 = 0.5). 

sites species 

Bias in 𝛽̂𝑡𝑒 

 

Bias in se(𝛽̂𝑡𝑒): 

% of sd of 𝛽̂𝑡𝑒 in 

simulations 

Cor of variants of FC 

correlation with 𝛽̂𝑡𝑒 

from MLM3 

n 

 

m MLM2 MLM3 MLM2 MLM3 FC 

N2-w  

FC 

 

FC  

unw 

Null models: 𝛽𝑡𝑒 = 0 

15 15 0.00 -0.01 -35 -7 0.96 0.96 0.96 

50 15 0.00 0.00 -19 -7 0.97 0.98 0.98 

100 15 0.00 -0.01 -21 -14 0.97 0.98 0.98 

50 50 0.00 -0.01 -32 -3 0.98 0.99 0.98 

100 50 0.00 -0.01 -23 -3 0.98 0.99 0.99 

100 100 0.00 -0.01 -34 -5 0.99 0.99 0.99 

Non-null models: 𝛽𝑡𝑒 = 0.25 

15 15 
-0.04 -0.03 -37 -12 0.93 0.93 0.93 

50 15 
-0.04 -0.03 -16 -4 0.94 0.95 0.95 

100 15 
-0.04 -0.03 -17 -11 0.94 0.94 0.94 

50 50 
-0.03 -0.02 -30 -2 0.95 0.95 0.95 

100 50 
-0.04 -0.03 -21 -3 0.95 0.95 0.95 

100 100 
-0.04 -0.04 -27 4 0.94 0.95 0.95 
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Table A8c. Series II with large nuisance interactions (𝛽𝑡𝑥 = 𝛽𝑧𝑒 = 𝛽𝑧∗𝑥∗ = 1). 

sites species 

Bias in 𝛽̂𝑡𝑒 

 

Bias in se(𝛽̂𝑡𝑒): 

% of sd of 𝛽̂𝑡𝑒 in 

simulations 

Cor of variants of FC 

correlation with 𝛽̂𝑡𝑒 

from MLM3 

n 

 

m MLM2 MLM3 MLM2 MLM3 FC 

N2-w  

FC 

 

FC  

unw 

Null models: 𝛽𝑡𝑒 = 0 

15 15 -0.04 -0.04 -31 -3 0.94 0.95 0.94 

50 15 0.00 0.01 -22 -10 0.96 0.97 0.96 

100 15 0.00 0.00 -19 -11 0.97 0.97 0.97 

50 50 0.01 0.02 -32 -3 0.97 0.98 0.98 

100 50 0.00 0.00 -17 2 0.97 0.98 0.98 

100 100 0.00 0.00 -28 3 0.97 0.98 0.98 

Non-null models: 𝛽𝑡𝑒 = 0.5 

15 15 -0.16 -0.11 -36 -7 0.91 0.91 0.91 

50 15 -0.16 -0.10 -17 -3 0.91 0.91 0.91 

100 15 -0.16 -0.10 -13 -7 0.92 0.93 0.93 

50 50 -0.17 -0.12 -29 1 0.92 0.93 0.93 

100 50 -0.17 -0.12 -24 -5 0.92 0.93 0.93 

100 100 -0.17 -0.11 -36 -8 0.93 0.94 0.94 

 

Table A8d. Series II with large nuisance interactions (𝛽𝑡𝑥 = 𝛽𝑧𝑒 = 1), but without 

residual correlation (𝛽𝑧∗𝑥∗ = 0). 

sites species 

Bias in 𝛽̂𝑡𝑒 

 

Bias in se(𝛽̂𝑡𝑒): 

% of sd of 𝛽̂𝑡𝑒 in 

simulations 

Cor of variants of FC 

correlation with 𝛽̂𝑡𝑒 

from MLM3 

n 

 

m MLM2 MLM3 MLM2 MLM3 FC 

N2-w  

FC 

 

FC  

unw 

Non-null models: 𝛽𝑡𝑒 = 0.5 

15 15 -0.10 -0.01 -40 -8 0.90 0.92 0.91 

50 15 -0.10 0.01 -23 -13 0.93 0.93 0.93 

100 15 -0.12 -0.02 -18 -11 0.92 0.92 0.92 

50 50 -0.10 0.02 -31 -4 0.91 0.93 0.92 

100 50 -0.11 -0.01 -20 -3 0.92 0.93 0.93 

100 100 -0.11 0.00 -30 2 0.91 0.92 0.91 
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A9. R functions used in the tutorial  

 

This appendix presents the R functions used in the Tutorial (Appendix A1).  

A9.1 Utility functions in file utility_functions.r 

The utility functions to make trait-environment data suitable for GLMM, which are 

used to fit the MLM models to data, are: 

make_obj_for_traitenv - forms an object of class TE_obj (Trait-Environment object), 

with testing for empty sites and species 

expand4glmm - function to change a TE_obj into a dataframe for use in glm and glmm 

(MLM); suitable for multiple traits and environmental variables 

dat4MLM2TE_obj - the reverse of expand4glmm (single trait and single env variable 

only) 

There are some more functions for internal usage. The full code is as follows. 

 

Code 
 

# Appendix to ter Braak 2019  
#New robust weighted averaging- and model-based methods for assessing trait-environ
ment relationships. 
 
make_obj_for_traitenv <- function(E1, L, T1, cut_off = 0){ 
  # makes object of class TE_obj from matrices or dataframes from L,E1 and T1 (L=Y) 
  # no factors allowed, as all is converted to matrices 
  # the object is a list of three matrices: L, E, T 
  # @param cut_off species occurring strictly less then cut_off are deleted 
   
  L <- as.matrix(L) 
  E1 <- as.matrix(E1) 
  T1 <- as.matrix(T1) 
  # check_L() 
  rows<-seq_len(nrow(L)) 
  cols<-seq_len(ncol(L)) 
  rni <-which(rowSums(L)==0) 
  repeat { 
    if (length(rni)) {L <- L[-rni,,drop = FALSE]; rows <-rows[-rni]} 
    ksi <- which(colSums(L)==0) 
    if (length(ksi)) {L <- L[,-ksi, drop = FALSE]; cols <- cols[-ksi]} 
    rni <-which(rowSums(L)==0) 
    if ( length(rni)==0 & length(ksi)==0){break} 
  } 
  E1 <-as.matrix(E1)[rows,,drop = FALSE] 
  T1 <-as.matrix(T1)[cols,,drop = FALSE] 
  # end check_L() 
  if(cut_off >0 ){ 
    abOcc <- apply(L>0,2,mean) 
    L <- L[,abOcc>cut_off, drop =FALSE] 
    T1 <- as.matrix(T1)[abOcc>cut_off,, drop = FALSE] 
  }  
  #print(str(L)) 
  if(is.null(rownames(L))) rownames(L)<- paste("site", 1:nrow(L), sep="") 
  if(is.null(colnames(L))) colnames(L)<- paste("spec",1:ncol(L),sep="") 
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  rownames(E1)= rownames(L); if(is.null(colnames(E1))){ if (ncol(E1)>1) colnames(E1
) <-  paste("E", 1:ncol(E1), sep = "") else colnames(E1) <- "env"} 
  rownames(T1)= colnames(L); if(is.null(colnames(T1))){ if (ncol(T1)>1) colnames(T1
) <-  paste("T", 1:ncol(T1), sep = "") else colnames(T1) <- "trait"} 
  obj = list(L=L, E=E1,T = T1) 
  class(obj) = c("TE_obj", class(obj)) 
  return(obj) 
} 
 
expand4glmm <- function(obj, K= 0){ 
  # K  = 0 for Poisson/Negative binomial counts and Binomial total for (beta-)binom
ial 
  # adapted from Jamil et al 2013 
  if ('trait0' %in% names(obj)) inPermut_r_c = TRUE else inPermut_r_c = FALSE 
  with(obj, { 
    sitespec <- expand.grid(rownames(L),colnames(L)) 
    site <-sitespec[,1]; species<-sitespec[,2] 
    y <- as.vector(as.matrix(L)) 
    Evec <-  E[site,, drop = FALSE];  rownames(Evec)= NULL 
    Tvec <-  T[species,, drop = FALSE]; rownames(Tvec)= 1:nrow(Tvec) 
    if (inPermut_r_c){ 
      Evec0 <-  env0[site,, drop = FALSE];  rownames(Evec0)= NULL 
      Tvec0 <-  trait0[species,, drop = FALSE]; rownames(Tvec0)= 1:nrow(Tvec0) 
    } else {Evec0 =NULL; Tvec0 = NULL} 
    if (is.null(colnames(E)))  { 
      colnames(Evec) = paste("env", 1:ncol(Evec), sep = "")  
    } 
    if (is.null(colnames(T))) { 
      colnames(Tvec) = paste("trait", 1:ncol(Tvec), sep = "") 
    } 
    ET <- Rten2_with_names(Evec,Tvec) 
    if (inPermut_r_c){ 
      XYZ <- data.frame(y,site,species, obs = 1:length(y),Tvec, Evec, ET, Tvec0,  E
vec0) 
      names(XYZ)[c(5:6, 8:9)] <- c("trait", "env","trait0", "env0") 
    } else { 
      XYZ <- data.frame(y,site,species, obs = 1:length(y),Tvec, Evec, ET) 
      names(XYZ)[5:6] <- c("trait", "env") 
    }  
    if (K[1]>0) XYZ$y = cbind(y, K-y) 
    return(XYZ) # XYZ notation of Jamil et al 2013 
  }) 
} 
 
 
dat4MLM2TE_obj<- function(dat, cut_off = 0){ 
  # create abundance matrix TE_obj from a dataframe dat that is in standard order  
  #     first all data from site 1, then site 2, 
  #        with the all species listed in each site (so include 0 abundances) and 
  #        species having the same order in each site  
  # @param dat dataframe with names y, sites, species 
  # create abundance matrix L, environmental variable vector E and trait vector T 
  # BEWARE: currently works for a single trait and environmental variable only!!!! 
  dat$site=factor(dat$site) 
  dat$species=factor(dat$species) 
  n_sites <-nlevels(factor(dat$site)) 
  n_species <-nlevels(dat$species) 
  species <- dat$species[seq(from  = 1, by = n_sites, length.out = n_species)] 
  sites <- dat$site[1:n_sites] 
  # create the usual trait T, environment E and abundance matrix L;  
  # these would normally the original data.. but are here derived from the existing 
data.frame dat 
  T <- matrix(dat$trait[seq(from  = 1, by = n_sites, length.out = n_species)], nrow 
= n_species, dimnames = list(species, "trait")) 
  E <- matrix(dat$env[1:n_sites], nrow = n_sites, dimnames = list(sites, "env")) 
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  if (length(dat$y)>nrow(dat)){ # e.g. with binomial response 
    L <- matrix(dat$y[,1], nrow = n_sites,ncol = n_species, dimnames = list(sites= 
sites,species=species)) 
  } 
  else { # e.g. with count data 
    L <- matrix(dat$y, nrow = n_sites,ncol = n_species, dimnames = list(sites= site
s,species=species)) 
  } 
  # check the data for empty species and sites and bring them in standard format of 
class TE_obj 
  obj <- make_obj_for_traitenv(E1 = E, L = L,T1 = T, cut_off = cut_off) 
} 
 
 
Rten2_with_names <- function(X1,X2) { 
  one.1 <- matrix(1,1,ncol(X1)) 
  one.2 <- matrix(1,1,ncol(X2)) 
  res  <- kronecker(X1,one.2)*kronecker(one.1,X2) #  column of X2 runs fastest 
  colnames(res) <- kronecker(colnames(X1),colnames(X2),function(a,b){ paste(b, a, s
ep = ":")} ) 
  rownames(res) <- rownames(X1) 
  return(res) 
} 

A9.2 MLM3 plots in file plot.MLM3.r 

The function plot.MLM3 plots the fixid and random effect of an MLM3 object using 

ggplot2. The current R code has restrictions on the names of variables. The names in 

the data.frame (model.frame) of MLM3 should be in any order y, species, sites, trait, 

env. The data should be in column-wise order (first all the data of the first species, then 

the second....), as is the case when the data for an MLM3 fit is generated by the utility 

function make_obj_for_traitenv (see Appendix 1.1 Aravo data for an example). The 

function uses the libraries ggplot2 and dplyr.  

 

plot.MLM3 <- function(MLM3, verbose = FALSE, title = paste( 'site and species effec
ts (fixed + random) against env and trait' )){ 
  # plot of a fitted MLM3 object 
  # the names in the data.frame (model.frame) of MLM3 should be in any order 
  # y, species, sites, trait, env 
  # data should be in column-wise order (first all the data of the first species, t
hen the second....) 
  library(ggplot2) 
  library(dplyr) 
  # get data in Y, trait, env form (Figure 1)--------------------------------------
-------------------------- 
  dat <-model.frame(MLM3)  
  n_sites <- with(dat, nlevels(factor(site))) 
  n_species <- with(dat, nlevels(factor(species))) 
  species <- dat$species[seq(from  = 1, by = n_sites, length.out = n_species)] 
  sites <- dat$site[1:n_sites] 
  trait <- dat$trait[seq(from  = 1, by = n_sites, length.out = n_species)] 
  env <- dat$env[1:n_sites] 
  if (length(dat$y) > nrow(dat)){ 
    # binomial data 
     Y <- matrix(dat$y[,1], nrow = n_sites,ncol = n_species, dimnames = list(sites= 
sites,species=species)) 
  } else { 
    # count data 
     Y <- matrix(dat$y, nrow = n_sites,ncol = n_species, dimnames = list(sites= sit
es,species=species)) 
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  } 
   
  # extract random effect and b_te non-null ---------------------------------------
--- 
   
  if (verbose) print(summary(MLM3)) 
  B <- summary(MLM3)$coefficients$'cond' 
   
  b_te <- B[nrow(B),1]; gamma0 <- B["env",1]; beta0 <- B["trait",1]  
  xx <- ranef(MLM3)$'cond' 
  b_i <- xx$site$trait; c_j <-xx$species$env 
   
  b_i_star <- beta0 + b_te*env + b_i      # Eq (2a) 
  c_j_star <- gamma0 + b_te*trait + c_j   # Eq (2b) 
   
  ETdat <- data.frame(env, b_i_star, N = rowSums(Y>0), level = "sites") 
  names(ETdat)[2]<- "b_star" 
  ETdat$beta0 = beta0 
  ETdat$b_tslope = beta0 + b_te*env 
   
  TEdat <- data.frame(trait, c_j_star= c_j_star, N = colSums(Y>0), level = "species
") 
  names(TEdat)[2]<-"c_star" 
  TEdat$gamma0 = gamma0 
  TEdat$b_eslope = gamma0 + b_te*trait 
   
  ETTEdat <- full_join(ETdat, TEdat, by= c("N","level")) 
  # facet plot -------------------------------------------------------------- 
  pp <- ggplot(ETTEdat) +  
    geom_point(aes(x= env, y = b_star, size = N), shape = 1) + 
    geom_point(aes(x= trait, y = c_star, size = N), shape = 16) + 
    geom_line(aes(x = env, y = b_tslope), size = 2) + 
    geom_line(aes(x = trait, y = b_eslope), size = 2) + 
    geom_hline(yintercept = 0, linetype = 'dotted',size = 1) + 
    geom_line(aes(x = env, y = beta0), linetype = 'longdash', size = 1) + 
    geom_line(aes(x = trait, y = gamma0), linetype = 'longdash', size = 1) + 
    facet_wrap(~level, scales = "free") + 
    ggtitle(title) +  
    xlab("environmental variable                                    trait") + 
    ylab("estimated effects")  
  return(pp) 
} 

 

 

 

A9.3 Parametric bootstrap test in file Bootstrap_test_prmtrc.r 

The function Bootstrap_test_prmtrc performs a bootstrap significance test of a fitted MLM3 

object. The test statistic can be “Wald” or “LRT”; the latter is slower. The parameter 

Binomial_total is to decide whether the response should be matrix (as in logit models) 

or vector (as in log-linear models). The parameter Binomial_total should be set to the 

Binomial total N in the former case. The parameter nAGQ is used in lme4 to decide on 

the accuracy of numerical approximation to integrals; the value 0 gives the quickest fit. 



71 

 

Code 
 

# Appendix to ter Braak 2019  
#New robust weighted averaging- and model-based methods for assessing trait-environ
ment relationships. 
Bootstrap_test_prmtrc <- function(MLM3, test_stat = "Wald", nrepet = 19, Binomial_t
otal = 0, nAGQ = 0, ...) { 
  # Bootstrap test based on test_stat (Wald or LRT or both) according to Box A2 in 
Appendix A3. 
  # MLM3 is a fitted glmmTMB or lme4 objects 
  # Binomial_total  = 0 for Poisson/Negative binomial counts and Binomial total for 
(beta-)binomial 
  # BEWARE the interaction coefficient is likely the last one, in the code nrow(B), 
.... adapt if not  
 
  # Step 1: arguments test_stat (Wald or LRT) and nrepet 
  # Step 2: fit the null model 
  formulaNULL <- update(formula(MLM3),  ~ . - trait:env ) 
  dat <-model.frame(MLM3)   
  if (class(MLM3)[1] =="glmmTMB") { 
  #  suppressWarnings(MLM0 <- glmmTMB(formulaNULL, data=dat, family= family(MLM3))) 
    suppressWarnings(MLM0 <- update(MLM3, formulaNULL)) 
  } else { 
    suppressWarnings(MLM0 <- update(MLM3, formulaNULL,  nAGQ=nAGQ, control = glmerC
ontrol(calc.derivs=F))) 
  }  
  # Step 3: get F0: the test statistic from the data 
  if (test_stat %in% c("Wald", "both")) { 
    if (class(MLM3)[1] == "glmmTMB"){ 
      B <- summary(MLM3)$coefficients$'cond' 
    } else { # lme4 
      B <- summary(MLM3)$coefficients     
    } 
    # BEWARE the interaction coefficient is likely the last one.... adapt if not  
    obs1 <- 1/B[nrow(B),4] # 1/p-value 
    names(obs1) <- "Wald" 
  } 
  if (test_stat %in% c("LRT", "both")) { 
    obs2 <-  logLik(MLM3) - logLik(MLM0) 
    names(obs2) <- "LRT" 
  } 
  if (test_stat=="Wald") obs <- obs1 else if (test_stat=="LRT") obs <- obs2 else ob
s<- c(obs1,obs2) 
  if (test_stat == "both") id_LRT <-2 else id_LRT <- 1 
  obj <- dat4MLM2TE_obj(dat) # TE_obj  
  n_sites <- nrow(obj$L); n_species <- ncol(obj$L) 
 
  sim.boot <- matrix(0, nrow = nrepet, ncol = length(obs)) 
  colnames(sim.boot) <- paste("boot",names(obs), sep ="") 
  for (i in 1:nrepet){ 
    # step 4 and 5: simulated from the null model and calculate the test statistic 
    Ysim <- simulate(MLM0) 
    L <- matrix(Ysim[[1]], nrow = n_sites,ncol = n_species, dimnames = list(sites= 
rownames(obj$L),species=colnames(obj$L))) 
    obj.sim <- make_obj_for_traitenv(obj$E, L, obj$T) 
    dat.sim <- expand4glmm(obj.sim, K = Binomial_total) 
    if (class(MLM3)[1] == "glmmTMB"){ 
      suppressWarnings(MLM3.sim <- try(glmmTMB(formula(MLM3), data=dat.sim, family= 
family(MLM3)))) 
      if (!class(MLM3.sim)[1]=="try-error"){ 
        B <- summary(MLM3.sim)$coefficients$'cond'} 
      else {B <- matrix(NA, nrow =2, ncol = 4); MLM3.sim = 0} 
    } else if (class(MLM3)[1] == "glmerMod") { 
      suppressWarnings(MLM3.sim <- try(glmer(formula(MLM3), data=dat.sim, family= f
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amily(MLM3),  nAGQ=nAGQ, control = glmerControl(calc.derivs=F)))) 
      if (!class(MLM3.sim)[1]=="try-error"){ 
        B <- summary(MLM3.sim)$coefficients 
      } else {B <- matrix(NA, nrow =2, ncol = 4); MLM3.sim = 0} 
    } 
    if (test_stat %in% c("Wald","both")){ 
      sim.boot[i,1] <- 1/B[nrow(B),4] 
    } 
    if (test_stat %in% c("LRT","both")) { # LRT: refit null model 
      if (class(MLM3.sim)[1] =="glmmTMB") { 
        suppressWarnings(MLM0.sim <- try(glmmTMB(formulaNULL, data=dat.sim, family= 
family(MLM3)))) 
      } else { 
        suppressWarnings(MLM0.sim <- try(update(MLM3.sim, formulaNULL,  nAGQ=nAGQ, 
control = glmerControl(calc.derivs=F)))) 
      } 
      if (class(MLM0)[1]=="try-error") { 
        sim.boot[i,id_LRT] <- NA 
      } else sim.boot[i,id_LRT] <- logLik(MLM3.sim) - logLik(MLM0.sim) 
    }   
  }   
  # step 6:     Compute the Monte Carlo significance level,  
  #           i.e. compute the number of values F 0, F 1, F 2, ... , FK  
  #           that is greater than or equal to F0 (this number is thus at least 1),  
  #           and divide by K + 1 (with K = nrepet). 
  if (length(obs)==1){ 
    isna.r <-  sum(is.na(sim.boot)) 
    p_boot <- (sum(abs(sim.boot) >= abs(obs), na.rm = TRUE) + 1)  / (nrepet- isna.r  
+ 1) 
  } else { 
    obs.mat <- matrix(rep(abs(obs),each=nrepet), nrow= nrepet, ncol=length(obs)) 
    isna.r <-  colSums(is.na(sim.boot)) 
    p_boot <- (colSums(abs(sim.boot) >= obs.mat, na.rm=TRUE) + 1)/ (nrepet - isna.r 
+ 1) 
  } 
  if (test_stat %in% c("Wald","both")) p_val1 <- 1/obs[1] 
  if (test_stat %in% c("LRT","both"))  p_val2 <- pchisq(2*obs[id_LRT], df =1, lower
.tail = FALSE)  
  if (test_stat=="Wald") p_val <- p_val1 else if (test_stat=="LRT") p_val <- p_val2 
else p_val<- c(p_val1,p_val2) 
  if (test_stat == "both") { 
    result <- cbind(p_prmtrc= p_val, p_boot = p_boot) 
     
  } else result <- c(p_prmtrc= p_val, p_boot = p_boot) 
  attr(result, "nrepet")<- nrepet 
  return(list(p_values=result, nrepet = nrepet, sim.boot=sim.boot, MLM0 = MLM0, obs 
= obs, test_stat = test_stat)) 
} 

A9.4 MLM3-based permutational max test in the file MLM3_p_max.r 

The function MLM3_p_max performs a permutation-based max test of an fitted MLM3. The 

test statistic can be “Wald” or “LRT”; the latter is slower. The parameter Binomial_total 

is to decide whether the response should be matrix (as in logit models) or vector (as in 

log-linear models). The parameter Binomial_total should be set to the Binomial total N 

in the former case. The parameter nAGQ is used in lme4 to decide on the accuracy of 

numerical approximation to integrals; the value 0 gives the quickest fit. 

The function MLM3_p_max depends on a number of functions of which the most important 

ones are: 
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MLM_Wald_bte – function that calculates the parametric p-value or its inverse for an 

MLM model.  

PermutationTest_r_c_max - max test by randomizing sites and species; the function 

differs from pmax_PermutationTest (ter Braak et al. 2017 PeerJ) (from which 

is adapted) by allowing different test statistics for the site-level and species-

level test; the test statistic(s) must be specified by the function argument 

FUN_test_statistics, which is set by the options. Options are set by the 

argument options = setoptions4pmax_test(). 

Code 
 

 

# Appendix to ter Braak 2019  
#New robust weighted averaging- and model-based methods for assessing trait-environ
ment relationships. 
MLM3_p_max <- function(MLM3, nrepet = 19, Binomial_total = 0, test_stat = "Wald", n
AGQ =0) { 
  #n_sites <- nrow(obj$L); n_species <- ncol(obj$L)  
   
  options1 <- setoptions4pmax_test(verbose = TRUE,  
            FUN_test_statistics =  list(init= init_MLM_pmax, test= MLM_Wald_bte), 
                                   with.MLM= TRUE, nrepet = nrepet, 
                                   perm.mat.spe = 0 , perm.mat.sit = 0, print = 10, 
                                   test_statistics_are_1divp = c(TRUE), nmax = 6, f
ilek = 1) 
   
  if (test_stat == "Wald") {with.LRT<-FALSE; LRT <- FALSE} else {with.LRT<-TRUE; LR
T <- TRUE; } 
   
  if (class(MLM3)[1] =="glmmTMB") library = "glmmTMB" else library = "lme4" 
  options2 <- setoptions4MLM( formula = formula(MLM3), 
                              family = family(MLM3), K = Binomial_total, 
                              model.name= c("MLM3"), estimation = FALSE, 
                              library = library, output = "short", nAGQ =nAGQ, 
                              with.LRT= with.LRT, LRT.only = LRT, verbose = FALSE) 
  options3 <- c(options1,options2[-length(options2)]) 
  obj <- dat4MLM2TE_obj(model.frame(MLM3)) # TE_obj  
  # aa <- MLM_Wald_bte(obj, options3) 
  # aa 
  result <- PermutationTest_r_c_max(obj, options = options3) 
  return(result) 
} 
 
MLM_Wald_bte <- function(obj, options,  ...){ 
  #  function for use in PermutationTest_r_c_max 
  # @param obj object of class TE_obj (made by function make_obj_for_traitenv(E, L, 
T,cutoff)) 
  # @formula model formula using names created by expand4glmm(obj, K = K)[use verbo
se = TRUE to see these names] 
  # @param K is binomial total; if K[1]==0 data are not binomial or presence / abse
nce 
  #                      K can be a scalar or vector of n*m (number of sites * numb
er of species) 
  # @param family glm family; use character form 
  # @param library use "glmmTMB" or else (e.g. "lme4") 
  # @param verbose If TRUE, prints the names for use in formula. 
  # @param estimation if TRUE, the interaction coefficient is given, else testing i
s carried out via the Wald test 
  # @value test statistic: 1/pWald_b_te 
  result <- with(options, 
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 { 
   if (estimation){ 
     col_b_te = 1 # column position of the interaction coefficient to select it 
     invert_p_value = FALSE 
   } else col_b_te = 4   # column position of the p-value to select it 
   dat <- expand4glmm(obj, K = K) 
   #names(dat)[c(5:6, 8:9)] <- c("trait", "env","trait0", "env0") 
   #if (verbose) print(str(dat)) 
   if (library == "glmmTMB"){ 
     suppressWarnings( MLM <- try(glmmTMB(formula, data=dat, family= family))) 
     if (!class(MLM)[1]=="try-error"){ 
       B <- summary(MLM)$coefficients$'cond'} 
     else {B <- matrix(NA, nrow =2, ncol = 4); MLM = 0} 
   } else if  (library == "lme4") { 
     suppressWarnings(MLM <- try(glmer(formula, data=dat, family= family,  nAGQ=nAG
Q, control = glmerControl(calc.derivs=F)))) 
     if (!class(MLM)[1]=="try-error"){ 
       B <- summary(MLM)$coefficients 
     } else {B <- matrix(NA, nrow =2, ncol = 4); MLM = 0} 
   } else {print(paste("library", library ,"not implemented"))} 
   # BEWARE the interaction coefficient is likely the last one.... adapt if not  
   p_val_Wald <- B[nrow(B),col_b_te] 
   if (verbose){ 
     print(summary(MLM)) 
     if (estimation) {names(p_val_Wald) <- "b_te"} else names(p_val_Wald) <- "p_val
_Wald" 
     print(p_val_Wald) 
   } 
   if (is.character(family) ) testnam <- paste(library, family, "MLMWald", sep = ".
") else testnam <- paste(library, "MLMWald", sep = ".") 
   if (invert_p_value & !estimation) test_stat <- 1/p_val_Wald else test_stat <- p_
val_Wald 
   #test_stat <- matrix(test_stat, nrow = 2, ncol = 1, dimnames =list(c("rows","col
s"), testnam) ) 
   if (with.LRT){ 
     formulaNULL <- update(formula(MLM),  ~ . - trait:env ) 
     if (class(MLM)[1] =="glmmTMB") { 
       suppressWarnings(MLM0 <- try(update(MLM, formula = formulaNULL))) 
     } else { 
       suppressWarnings(MLM0 <- try(update(MLM, formulaNULL,  nAGQ=nAGQ, control = 
glmerControl(calc.derivs=F)))) 
     } 
     if (class(MLM0)[1]=="try-error") { 
       if (class(MLM)[1] =="glmmTMB") suppressWarnings(MLM0 <- try(glmmTMB(formulaN
ULL, data=dat, family= family(MLM)))) else 
         suppressWarnings(MLM0 <- try(glmer(formula, data=dat, family= family,  nAG
Q=nAGQ, control = glmerControl(calc.derivs=F)))) 
       if (class(MLM0)[1]=="try-error") { 
         p_val_LRT <- NA 
       } else { 
         p_val_LRT <- pchisq(2*( logLik(MLM) - logLik(MLM0)), df =1, lower.tail = F
ALSE) 
       } 
     } else p_val_LRT <- pchisq(2*( logLik(MLM) - logLik(MLM0)), df =1, lower.tail 
= FALSE) 
     if (invert_p_value) test_stat2 <- 1/p_val_LRT else test_stat2 <- p_val_LRT 
     names(test_stat2) <- "pval LRT" 
     if (is.character(family) ) testnam2 <- paste(library, family, "MLM.LRT", sep = 
".") else testnam2 <- paste(library, "MLM.LRT", sep = ".") 
      
     #test_stat2 <- matrix(test_stat2, nrow = 2, ncol = 1, dimnames =list(c("rows",
"cols"), testnam2) ) 
     # print(test_stat2) 
     if (LRT.only) { 
       test_stat <- test_stat2 
       } else {  
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       test_stat <- c(test_stat,test_stat2) 
       names(test_stat) <- c("p_val_Wald", "p_val_LRT") 
     } 
   }  
   #print(test_stat) 
   if (estimation) { 
     test_stat <- c(test_stat, B[nrow(B),2]) # standard error 
     names(test_stat) <- c("b_te","se_b_te")  
   } #else rownames(test_stat)<- c("teststat.site","teststat.species") 
   if (verbose) print(test_stat) 
   if (output =="short"){ 
     result <- test_stat 
   } else { 
     result <- list(test_stat = test_stat, model = MLM ) 
   } 
   return(result) 
                 }) 
  return(result) 
} 
 
 
init_MLM_pmax <- function(obj, options){list(obj=obj, options=options)} 
 
 
PermutationTest_r_c_max <- function(obj, options = c(setoptions4pmax_test(),setopti
ons4MLM()),  ...) { 
  # Specialized max test for WA-based and model-based MLM based methods  
  #function to determine randomization p-values based on test statistics for rows a
nd columns  
  # based on row and column based permutations of (possibly model-based) test-stati
stics, 
  # such as the anova  F-value or chisq-value or equivalently, 1/p-values  
  # The function examimes exceedance and takes the absolute value of the test-stati
stics, that explains why 1/p-value can be used. 
  #   
  # @param obj object of class TE_obj (from make_obj_for_traitenv) 
  # @param FUN_test_statistics  function that returns one or more test statistics (
value or vector) 
  #                        it should return 1/pval 
  # 
  #  
  # obj from make_obj_for_traitenv(E, L, T, cut_off): matrices L,E and T (one envir
onmental variable, 1-many traits) 
  # e.g.FUN_test_statistic =  
  # ... options for FUN_test_statistic 
  # BEWARE: the size calculation is adapted from Miller et al 2018 MEE but  
  # is only trustworthy if the null model holds true!!!!  
  # For a non-null model the size is biased upwards (ter Braak, 2019 in prep.) 
   
  # for  permutation of model-based methods trait0 and env0 are not permuted, where
as E and T are. 
  # the model formula can thus contain the terms env0 and trait0 
   
   
   
  if (is.matrix(options$perm.mat.spe)) options$perm.mat.spe <- options$perm.mat.spe
[sample(nrow(options$perm.mat.spe)),] 
  if (is.matrix(options$perm.mat.site)) options$perm.mat.site <- options$perm.mat.s
ite[sample(nrow(options$perm.mat.site)),] 
   
  result <- options$FUN_test_statistics$init(obj,options) 
  obj <- result$obj; options <- result$options 
  rm(result) 
  options_sites <- options_species <- options 
  options_sites$verbose  <- options_species$verbose <- FALSE 
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  options_species$level <- "species" 
  options_sites$level <- "sites" 
  if (options$with.MLM){ 
    # add random T and E to data: trait0 and env0 and update formulas accordingly 
    i_spe0 <- sample(1:nrow(obj$T), 1) 
    i_sit0 <- sample(1:nrow(obj$E), 1) 
    per.col <- syssample(i = i_spe0, options$perm.mat.spe, n =ncol(obj$L)) 
    obj$trait0 <- matrix(obj$T[per.col,,drop =FALSE],nrow= nrow(obj$T), ncol =ncol(
obj$T))  # used in species level 
    per.row <- syssample(i = i_sit0, options$perm.mat.site, n =nrow(obj$L))                                                        
    obj$env0 <- matrix(obj$E[per.row,,drop =FALSE],nrow= nrow(obj$E), ncol =ncol(ob
j$E)) # used in site level 
     
    #  e.g:  y ~  trait*env  + (1 + trait| site) + (1 + env|species) becomes 
    #       y ~  trait*env  + trait0 + (1 + trait| site) + (1 + env|species) #for s
pecies 
    # #     y ~  trait*env  + env0 + (1 + trait| site) + (1 + env|species) # for si
tes 
     
    options_species$formula <-  update(options_species$formula, ~ . + trait0 ) 
    options_sites$formula  <-  update(options_sites$formula, ~ . + env0 ) 
  }  
  obs.species <- options_species$FUN_test_statistics$test(obj, options = options_sp
ecies) 
  obs.sites <- options_sites$FUN_test_statistics$test(obj, options = options_sites) 
  obs <- rbind(obs.sites,obs.species) 
  if (options$verbose) print(obs) 
  if (length(options$test_statistics_are_1divp)==1) { 
    options$test_statistics_are_1divp <- rep(options$test_statistics_are_1divp, nco
l(obs)) 
  } else if (length(options$test_statistics_are_1divp)!=ncol(obs)){ 
    print(paste("Warning: length of options$test_statistics_are_1divp  (", length(o
ptions$test_statistics_are_1divp) ,") is not equal to number of teststatistics: ",n
col(obs) )) 
    options$test_statistics_are_1divp <- rep(options$test_statistics_are_1divp, nco
l(obs)) 
  }  
  if (options$with.MLM){ 
    # change trait0 and env0 to T and E in data and update formulas so that only en
v:trait is permuted 
    obj$trait0 <- obj$T 
    obj$env0 <- obj$E 
    #  e.g:  y ~  trait*env  + trait0 + (1 + trait| site) + (1 + env|species) becom
es 
    #       y ~  trait*env  + trait0 + (1 + trait0| site) + (1 + env|species) #for 
species 
    # #     y ~  trait*env  + env0 + (1 + trait| site) + (1 + env0|species) # for s
ites 
     
    options_species$formula <- update(options_species$formula,~ . -(1+trait|site)+(
1+trait0|site)) 
    options_sites$formula <- update(options_sites$formula,~ . -(1+env|species)+(1+e
nv0|species)) 
     
  } 
  nrepet <- options$nrepet 
  if(is.matrix(options$perm.mat.spe)|| is.matrix(options$perm.mat.sit)){ 
    nrepet <- min(c(nrow(options$perm.mat.spe)-1,nrow(options$perm.mat.sit)-1, nrep
et) )#  minus identity ispe_0 isit_0 permutation (which gives collinearity) 
  } else { nrepet <- options$nrepet} 
  sim.row <- matrix(0, nrow = nrepet, ncol = ncol(obs)) 
  sim.col <- matrix(0, nrow = nrepet, ncol = ncol(obs)) 
   
   
  for(i in 1:nrepet){ 
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    per.row <- syssample(i = i, exclude = i_sit0, perm.mat = options$perm.mat.site, 
n =nrow(obj$E)) 
    per.col <- syssample(i = i, exclude = i_spe0, perm.mat = options$perm.mat.speci
es, n =nrow(obj$T)) 
    #permute_rows_columns <- function(obj, per.row,per.col){ 
    obj.row <- obj.col <-  obj  # obj.rc <- obj 
    obj.row$E <-obj.row$E[per.row,,drop =FALSE] 
    obj.col$T <-obj.col$T[per.col,,drop =FALSE] 
    suppressWarnings(sim.row[i, ] <- options_sites$FUN_test_statistics$test(obj.row
,options = options_sites)) 
    suppressWarnings(sim.col[i, ] <- options_species$FUN_test_statistics$test(obj.c
ol,options = options_species)) 
    if (!i%%options$print){ 
      iteration <- i 
      print(iteration) 
      if (options$filek >=0 ) save(options, sim.row, sim.col, obs, iteration, file 
=paste("perm_r_c",options$filek,".rdata", sep = "")) 
    } 
  } 
  ialpha <- 1/options$alpha 
  if (ncol(obs)==1){ 
    isna.r <-  sum(is.na(sim.row)) 
    isna.c <-  sum(is.na(sim.col)) 
    pval.row <- (sum(abs(sim.row) >= abs(obs[1,]), na.rm = TRUE) + 1)  / (nrepet- i
sna.r  + 1) 
    pval.col <- (sum(abs(sim.col) >= abs(obs[2,]), na.rm = TRUE) + 1)  / (nrepet- i
sna.c  + 1) 
    if (options$falseSize){ 
      size.row <- (sum(sim.row >= ialpha, na.rm=TRUE))/ (nrepet - isna.r) 
      size.col <- (sum(sim.col >= ialpha, na.rm=TRUE))/ (nrepet - isna.c) 
      size.max <- (sum(max(sim.row,sim.col) >= ialpha, na.rm=TRUE))/ (nrepet - isna
.c) 
    } 
  } else { 
    obs.mat.row <- matrix(rep(abs(obs[1,]),each=nrepet), nrow= nrepet, ncol=ncol(ob
s)) 
    isna.r <-  colSums(is.na(sim.row)) 
    pval.row <- (colSums(abs(sim.row) >= obs.mat.row, na.rm=TRUE) + 1)/ (nrepet - i
sna.r + 1) 
    isna.c <-  colSums(is.na(sim.col)) 
    obs.mat.col <- matrix(rep(abs(obs[2,]),each=nrepet), nrow= nrepet, ncol=ncol(ob
s)) 
    pval.col <- (colSums(abs(sim.col) >= obs.mat.col, na.rm=TRUE) + 1)/ (nrepet - i
sna.c + 1) 
    if(options$falseSize){ 
      size.row <- (colSums(sim.row >= ialpha, na.rm=TRUE))/ (nrepet - isna.r) 
      size.col <- (colSums(sim.col >= ialpha, na.rm=TRUE))/ (nrepet - isna.c) 
      colnames(sim.row) = colnames(obs) 
      colnames(sim.col) = colnames(obs) 
    } 
  } 
  obs[,options$test_statistics_are_1divp] <- 1/obs[,options$test_statistics_are_1di
vp]    
  #result <- t(rbind(test_stat = obs, p.site.permut = pval.row, p.species.permut = 
pval.col, pmax.permut = pmax(pval.row, pval.col))) 
  result <- c(c(obj$p_values[-3]), p.site.permut = pval.row, p.species.permut = pva
l.col, pmax.permut = pmax(pval.row, pval.col)) 
   
  attr(result, "nrepet")<- nrepet 
  if (options$falseSize) result <- cbind(result, t(rbind(size.row = size.row, size.
col = size.col))) 
  return(list(p_values=result, nrepet = nrepet, obs = obs,sim.row=sim.row, sim.col 
= sim.col)) 
} 
 
syssample <- function(i = 0, exclude = 0, perm.mat = 0, n = 10){ 
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  # function to generate either random samples (if !is.matrix(perm.mat)) or 
  # a systematic sample: i-th or for i>= exclude: i+1 th row of permat (i.e. withou
t the excluded sample) 
  # exclude = 0 for no exclude, or permutation number to exclude 
  if (is.matrix(perm.mat)){ 
    if (!exclude){ ii <- i} else{ 
      if(i<exclude) ii <- i else {ii <- i + 1} 
    } 
    sam <- perm.mat[ii,] 
  } else { 
    sam <-sample(x=n) 
  }   
  return(sam) 
} 
 
f_allPerms <- function(n){  
  # all permutation matrix without identity and reverse order  
  library(permute) 
  result <- allPerms(n)[1:(numPerms(n)/2 - 1)  ,] 
  result[sample(nrow(result)),] 
} 

 

Code for setting options (file setoptions.r) 
 

These are functions to set options in the MLM3 fit and max test in the functions 

MLM_Wald_bte and  PermutationTest_r_c_max. 

 

setoptions4pmax_test <- function(verbose = TRUE, FUN_test_statistics = CWMSNC, with
.MLM= FALSE 
 , nrepet = 49, level = 'sites', perm.mat.spe = 0 , perm.mat.sit = 0, print = 10, 
 falseSize = FALSE, alpha = 0.05, test_statistics_are_1divp = TRUE, nmax = 6, filek 
= -1){ 
  # set options for use in PermutationTest_r_c_max 
  # perm.mat.spe =0 : random sample; else number of species,  
  # if perm.mat.spe or sit >= nmax : random sampling only 
  # or if the number of systematic samples 
  if (perm.mat.spe > 0 & perm.mat.spe < nmax) perm.mat.spe <- f_allPerms(perm.mat.s
pe) 
  if (perm.mat.sit > 0 & perm.mat.sit < nmax) perm.mat.sit <- f_allPerms(perm.mat.s
it) 
  if (filek ==0 ) filek <- sample(1000,1) 
  list(verbose = verbose, FUN_test_statistics = FUN_test_statistics, with.MLM= with
.MLM, 
       nrepet= nrepet, level = level,perm.mat.spe=perm.mat.spe, perm.mat.sit= perm.
mat.sit,  print = print, 
       falseSize = falseSize, alpha = alpha, test_statistics_are_1divp =  
   test_statistics_are_1divp, filek = filek ) 
} 
 
 
setoptions4MLM<- function(   formula = y~ poly(trait,2) + poly(env,2) + trait:env + 
(1+trait|site)+ (1+env|species),  
                             family = "nbinom2", K = 0, 
                             model.names= c("MLM3"),  
                             library = "glmmTMB", nAGQ=0, 
                             estimation = FALSE, invert_p_value = TRUE, output = "s
hort", 
                             with.LRT= FALSE, LRT.only = FALSE, verbose = FALSE){ 
  # LRT: use the LRT test  instead of the Wald test 
  # if LRT == FALSE and with.LRT == TRUE then LRT is an extra test statistic; name 
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it in model.names!!! 
  if (LRT.only) with.LRT <- TRUE 
  list(formula = formula,  family =  family, model.names = model.names, library=lib
rary, nAGQ=nAGQ, 
       estimation = estimation, invert_p_value = invert_p_value, K= K, output = out
put, 
       with.LRT= with.LRT, LRT.only =LRT.only,  verbose = verbose) 
} 

A9.5 WA-based analyses in file WAregressions.r 

The functions for the weighted averaging(WA)-based methods are in the file 

WAregressions.r. There are three functions for users: 

• CWMSNC_regressions: WA regressions (CWM/SNC regressions) with permutation 

testing.  

• summary.CWMSNCr    : summary of CWMSNC_regressions 

• plot.CWMSNCr    : Plots of CWMSNC_regressions (main effects and trait-env 

association) 

 

There are three weighing options in CWMSNC_regressions,  

1. weighing = "N2" for N2-weighted CWM/SNC regression (N2-weighted 

lm) 

2. weighing = "unw" for unweighted, giving (permutation-based) lm 

CWM/SNC  

3. weighing = "FC" for the fourth-corner correlation (fourth).  

There is a cutoff option in CWMSNC_regressions to set a minimal number of occurrences 

of a species and in a site (default 0, which only removes only empty sites and species 

without any presence; see the utility function make_obj_for_traitenv;see section A9.1). 

The remaining functions are for internal use in the above three main functions. The 

tutorial also uses WA_p_max for checking of the fast verson of the permutational max test 

used in CWMSNC_regressions. For details on the WA-based regression, see the function 

CWMSNC_regressions0, which is used once in the fast version but repeatedly in the non-

fast version of the permutational max test. The R-code for the permutational max test 

(function PermutationTest_r_c_max) has been given in section A9.4.  

 

Code 
 

# Appendix to ter Braak 2019  
#New robust weighted averaging- and model-based methods for assessing trait-environ
ment relationships. 
 
# functions for the statistical analysis of trait-environment association 
# 1 CWMSNC_regressions: Weighted averaging (WA) regressions (CWM/SNC regressions) w
ith permutation testing, 
#                       with and without N2- or RK (Fourth-corner correlations) wei
ghting 
# 2 summary.CWMSNCr   : summary of CWMSNC_regressions 
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# 3 plot.CWMSNCr      : Plots of CWMSNC_regressions (main effects and trait-env ass
ociation) 
# 
# the remaining functions are for internal use in the above three main functions 
 
 
 
CWMSNC_regressions<-function(E, L=0, T=0, weighing = "N2", cutoff = 0, nrepet = 499
){ 
  # combination of CWM- and SNC-based regressions, possibly weighted. 
  # @param E  object from class TE_obj from make_obj_for_traitenv(E, L, T,cutoff) o
r n-vector or nx1 matrix with the environmental values  
  # @param L  n x m matrix of abundance values or nonspecified if E = object from f
unction make_obj_for_traitenv(E,L,T,cutoff) 
  # @param T  m-vector or m x 1 matrix with trait values or nonspecified if E = obj
ect from function make_obj_for_traitenv(E,L,T,cutoff) 
  # @ weighing = 0 or "unw": no weights 
  #          = 1 or "RK" or "FC"  weights are the row and columns totals of L, as i
n the original fourth-corner 
  #          = 2 or "N2" weights are the Hill N2-effective numbers 
  #               (effective number of occurrences of a species and N2-diversity of 
a site) 
  # @cutoff  if E is not a TE_obj, cutoff on minimal number of occurrences of a spe
cies 
   
  if(class(E)[1]!="TE_obj"){ 
    obj <- make_obj_for_traitenv(E,  L,  T,cut_off = cutoff) 
  } else obj <- E 
  result <- CWMSNC_regressions0(obj, weighing = weighing) 
  # correlations 
  result$wcorCWMSNC <- with(result, c(wcor(CWM,E),wcor(SNC,T))) 
  names( result$wcorCWMSNC) <-  paste(result$weighing, c("_CWM_E","_SNC_T"),"_cor", 
sep="") 
  result$wFC <- with(result,FC_cor_generalized(obj, wE = wsites, wT = wspecies, R = 
R, K = K)) 
  names(result$wFC) <- paste(result$weighing, c("_sites","_species", "_fourth_corne
r"),"_cor", sep="") 
  # p-values of association 
  result$p_values <- WA_p_max1(obj, weighing= weighing, nrepet =nrepet)$p_values 
  attr(result$p_values, which = "nrepet") <- nrepet 
  class(result) <- "CWMSNCr" 
  return(result) 
}  
 
summary.CWMSNCr <- function(result, digits = 3){ 
  # result should be an object resulting from CWMSNC_regressions 
  res <- rbind(result$wFC, result$p_values[-c(1,2)]) 
  rownames(res) <- paste(c("correlations", "p-values"), " (", result$weighing, ")" 
, sep = "") 
  colnames(res) <- c("sites","species","min/max") 
  attr(res, "nrepet")<- attr(result$p_values, which = "nrepet") 
  print(res, digits = digits) 
} 
 
 
plot.CWMSNCr <- function(result,title = paste(result$weighing, '-regressions of CWM 
on env and SNC on trait',sep= "") ){ 
  # plot of a CWMSNCr object 
   
  #title = paste(result$weighing, '-regressions of CWM on env and SNC on trait',sep
= "") 
   
  library(ggplot2) 
   
  ETdat <- with(result, data.frame( E,  CWM, R, wsites, meanT, wmeanCWM, level = "s
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ites")) 
  names(ETdat) <- c("E", "CWM", "R", "N2", "meanT","wmeanCWM" ,"level") 
   
  TEdat <- with(result, data.frame( T,  SNC, K, wspecies, meanE, wmeanSNC, level = 
"species")) 
  names(TEdat) <- c("T", "SNC", "K", "N2", "meanE","wmeanSNC","level") 
   
   
  ETTEdat <- suppressMessages(dplyr::full_join(ETdat,TEdat)) 
   
  # facet plot -------------------------------------------------------------- 
  suppressMessages(p.main <-  ggplot(data= ETTEdat) + 
                     geom_point(aes(x= E, y = log(R), size = N2),shape = 1) +  stat
_smooth(aes(x= E, y = log(R), weight=N2), method = "gam") + 
                     geom_point(aes(x= T, y = log(K), size = N2), shape = 16) + sta
t_smooth(aes(x= T, y = log(K), weight=N2), method = "gam") + 
                     xlab(" env                                                     
trait")+ 
                     ylab(" log totals") + 
                     facet_wrap(~level, scales = "free") + 
                     ggtitle("log site and species totals vs env and trait")) 
  suppressMessages(p.assoc <-  ggplot(data= ETTEdat) + 
                     geom_point(aes(x= E, y = CWM, size = N2),shape = 1) +  stat_sm
ooth(aes(x= E, y = CWM, weight=N2), method = "gam") + 
                     geom_point(aes(x= T, y = SNC, size = N2), shape = 16) + stat_s
mooth(aes(x= T, y = SNC, weight=N2), method = "gam") + 
                     xlab(" env                                                     
trait")+ 
                     ylab("weighted means") + 
                     geom_line(aes(x = E, y = meanT), linetype = 'dotted', size = 1
)+ 
                     geom_line(aes(x = T, y = meanE), linetype = 'dotted', size = 1
) + 
                     geom_line(aes(x = E, y = wmeanCWM), linetype = 'longdash', siz
e = 1)+ 
                     geom_line(aes(x = T, y = wmeanSNC), linetype = 'longdash', siz
e = 1) + 
                     facet_wrap(~level, scales = "free") + 
                     ggtitle(title)) 
  #  print(p.main) 
  #  print(p.assoc) 
  return(list(p.main,p.assoc)) 
} 
 
# the remaining functions are for internal use in the above three main functions 
 
FC_cor_generalized <- function(E, L=0, T=0, wE=rep(1,nrow(L)) , wT= rep(1,ncol(L)),  
wNam = "w", R = rowSums(L), K = colSums(L)){ 
  # generalized fourth-corner correlation: wE and wT are weights for sites and spec
ies respectively. 
  # if wE == R and wT == K it gives the fourth-corner correlation  
  # value: three correlations, one for sites and one for species and the signed min
imum (0 if different in sign) 
  
  # local function 
  f_cor_min <- function(x){ 
    # takes the signed minimum correlation if the correlations have the same sign (
close to min) 
    # 0  if the correlations differ in sign 
    if (sum(is.na(x))) return(NA) 
    if (prod(x) < 0 ) { # the two elements in x diffent sign 
      g <- 0   
    } else { 
      g <-  sign(x[1]) * min(abs(x)) # min 
    } 
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    g 
  } 
  # end local function 
  if(class(E)[1]!="TE_obj"){ 
    obj <- make_obj_for_traitenv(E,L, T,cutoff) 
  } else obj <- E 
  wE <- wE/sum(wE) 
  wT <- wT/sum(wT) 
  result <- with(obj, { 
    Estd_w <- standardize_w(E,wE) 
    Tstd_w <-  standardize_w(T,wT) 
    Lw_si <- diag(wE/R)%*% L 
    Lw_sp <-  L %*% diag(wT/K) 
    #Fourthcorner  <- t(Estd_w)  %*% (L%*% Tstd_w)  
    r_wE <- (t(Estd_w) %*% (Lw_si %*% Tstd_w))/sum(wE) # sum(wE)== sum(Lw_si) 
    r_wT <- sum((t(Lw_sp)%*% Estd_w) *  Tstd_w)/sum(wT) # sum(wT)== sum(Lw_sp) 
    result <- c(r_wE, r_wT) 
    result <- c(result, f_cor_min(result)) 
    names(result) <-paste(wNam, c("wFC_r_sites", "wFC_r_species", "wFC_r_min"), sep 
= "_") 
    return(result) 
  }) 
  return(result) 
} 
 
 
 
# Hill number of order 2: N2 
fN2 <- function(x){x <- x/sum(x); 1/sum(x*x)} 
 
 
CWMSNC_regressions0<-function(E,L=0,T=0, weighing = 0, cutoff = 0){ 
# combination of CWM- and SNC-based regressions, possibly weighted. 
# @param E  object from class TE_obj from make_obj_for_traitenv(E,L,T,cutoff) or n-
vector or nx1 matrix with the environmental values  
# @param L  n x m matrix of abundance values or nonspecified if E = object from fun
ction make_obj_for_traitenv(E,L,T,cutoff) 
# @param T  m-vector or m x 1 matrix with trait values or nonspecified if E = objec
t from function make_obj_for_traitenv(E,L,T,cutoff) 
# @ weighing = 0 or "unw": no weights 
#          = 1 or "RK" or "FC" weights are the row and columns totals of L, as in t
he original fourth-corner 
#          = 2 or "N2" weights are the Hill N2-effective numbers 
#               (effective number of occurrences of a species and N2-diversity of a 
site) 
# @cutoff  if E is not a TE_obj, cutoff on minimal number of occurrences of a speci
es 
   
  if(class(E)[1]!="TE_obj"){ 
    obj <- make_obj_for_traitenv(E1 = E, L = L,T1 = T,cutoff) 
  } else obj <- E 
  result <- with(obj,{ 
      R <- rowSums(L) # the site totals  
      K <- colSums(L) # the species totals 
      if (weighing %in% c(0,"unw") ){ 
        wsites <- rep(1, nrow(L)) 
        wspecies <-rep(1,ncol(L)) 
        weighing = "unw" 
      } else if (weighing %in% c(1,"RK","FC")){ 
        wsites <- R 
        wspecies <-K 
        weighing = "RKw" 
      } else if (weighing %in% c(2,"N2")){ 
        N2_si <- apply(L, 1, fN2) 
        N2_sp <- apply(L, 2, fN2) 
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        wsites <- N2_si 
        wspecies <- N2_sp 
        weighing = "N2w" 
      } 
      CWM <- (L%*%T)/R #Community weighted mean wrt to trait T (mean trait value pe
r site) 
      SNC <- (t(L)%*%E)/K  # Species niche centroid wrt to environmental variable E 
(mean environmental value per species) 
      meanE <- mean_w(E) 
      meanT <- mean_w(T) 
      wmeanCWM <- mean_w(CWM, w = wsites) 
      wmeanSNC <- mean_w(SNC, w = wspecies) 
      # site-level regression of CWM on E 
      lm_CWMe <- lm(CWM~E, weights = wsites) 
      if (ncol(CWM) ==1) { 
        anova_site <- anova(lm_CWMe) 
        F_sites <- anova_site$`F value`[1]# get F-value and p-value of site-level t
est 
        Prob.site<- anova_site$"Pr(>F)"[1]  
      } else {F_sites <-NA; Prob.site <- NA} 
      # species-level regression of SNC on T 
      lm_SNCt <- lm(SNC~T, weights =   wspecies) 
      if (ncol(SNC)==1){ 
        anova_species <- anova(lm_SNCt) 
        F_species <- anova_species$`F value`[1]# get F-value and P-value of species
-level test  
        Prob.species <- anova_species$"Pr(>F)"[1]  
      } else {F_species <-NA; Prob.species <- NA} 
      result<-list(p_values = c(p.site.prmtrc=Prob.site,p.species.prmtrc=Prob.speci
es,p.max.prmtrc=max(Prob.site,Prob.species)), F_values =  c(F_sites = F_sites, F_sp
ecies= F_species), 
                   lm_CWMe = lm_CWMe, lm_SNCt = lm_SNCt, CWM = CWM, SNC = SNC, 
                   E = E, T = T, L = L, meanE = meanE, meanT = meanT, wmeanCWM = wm
eanCWM, wmeanSNC = wmeanSNC, 
                   R=R, K= K, wsites = wsites, wspecies=wspecies,weighing=weighing,
cutoff=cutoff) 
    return(result) 
    } 
  ) 
  return(result) 
}  
  
CWMr<-function(E,L=0,T=0, weighing = "unw", cutoff = 0){ 
  # CWMr CWM-based regressions, possibly weighted. 
  # @param E  object from class TE_obj from make_obj_for_traitenv(E,L,T,cutoff) or 
n-vector or nx1 matrix with the environmental values  
  # @param L  n x m matrix of abundance values or nonspecified if E = object from f
unction make_obj_for_traitenv(E,L,T,cutoff) 
  # @param T  m-vector or m x 1 matrix with trait values or nonspecified if E = obj
ect from function make_obj_for_traitenv(E,L,T,cutoff) 
  # @ weighing = 0 or "unw": no weights 
  #          = 1 or "RK" or "FC" or "regular" weights are the row and columns total
s of L 
  #          = 2 or "N2" weights are the Hill N2-effective numbers 
  #               (effective number of occurrences of a species and N2-diversity of 
a site) 
  # @cutoff  if E is not a TE_obj, cutoff on minimal number of occurrences of a spe
cies 
   
  if(class(E)[1]!="TE_obj"){ 
    obj <- make_obj_for_traitenv(E,L,T,cutoff) 
  } else obj <- E 
  result <- with(obj,{ 
    R <- rowSums(L) # the site totals  
    if (weighing %in% c(0,"unw") ){ 
      wsites <- NULL 
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    } else if (weighing %in% c(1,"RK", "FC")){ 
      wsites <- R 
    } else if (weighing %in% c(2,"N2")){ 
      N2_si <- apply(L, 1, fN2) 
      wsites <- N2_si 
    } 
    CWM <- (L%*%T)/R #Community weighted mean wrt to trait T (mean trait value per 
site) 
    # site-level regression of CWM on E 
    lm_CWMe <- lm(CWM~E, weights = wsites) 
    anova_site <- anova(lm_CWMe) 
    F_sites <- anova_site$`F value`[1]# get F-value and p-value of site-level test 
    Prob.site<- anova_site$"Pr(>F)"[1]  
    result<-list(p_values =Prob.site, F_value = F_sites, 
                 lm_CWMe = lm_CWMe,  CWM = CWM,  E = E, T = T, L = L, wsites = wsit
es,weighing=weighing,cutoff=cutoff) 
     
    return(result) 
  } 
  ) 
  return(result) 
}  
 
 
SNCr<-function(E,L=0,T=0, weighing = 0, cutoff = 0){ 
  # CWMr CWM-based regressions, possibly weighted. 
  # @param E  object from class TE_obj from make_obj_for_traitenv(E,L,T,cutoff) or 
n-vector or nx1 matrix with the environmental values  
  # @param L  n x m matrix of abundance values or nonspecified if E = object from f
unction make_obj_for_traitenv(E,L,T,cutoff) 
  # @param T  m-vector or m x 1 matrix with trait values or nonspecified if E = obj
ect from function make_obj_for_traitenv(E,L,T,cutoff) 
  # @ weighing = 0: no weights 
  #          = 1 or "RK" or "FC" or  weights are the row and columns totals of L 
  #          = 2 or "N2" weights are the Hill N2-effective numbers 
  #               (effective number of occurrences of a species and N2-diversity of 
a site) 
  # @cutoff  if E is not a TE_obj, cutoff on minimal number of occurrences of a spe
cies 
   
  if(class(E)[1]!="TE_obj"){ 
    obj <- make_obj_for_traitenv(E,L,T,cutoff) 
  } else obj <- E 
  result <- with(obj,{ 
    #R <- rowSums(L) # the site totals  
    K <- colSums(L) # the species totals 
    if (weighing %in% c(0,"unw") ){ 
      wsites <- NULL 
      wspecies <-NULL 
    } else if (weighing %in% c(1,"RK", "FC")){ 
      #wsites <- R 
      wspecies <-K 
    } else if (weighing %in% c(2,"N2")){ 
      N2_sp <- apply(L, 2, fN2) 
      wspecies <-N2_sp 
    } 
    SNC <- (t(L)%*%E)/K  # Species niche centroid wrt to environmental variable E (
mean environmental value per species) 
    #species-level regression of SNC on T 
    lm_SNCt <- lm(SNC~T, weights =   wspecies) 
    anova_species <- anova(lm_SNCt) 
    F_species <- anova_species$`F value`[1]# get F-value and P-value of species-lev
el test 
    Prob.species<- anova_species$"Pr(>F)"[1] 
    result<-list(p_values =Prob.species, F_value = F_species, 
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                 lm_SNCt = lm_SNCt,  SNC = SNC,  E = E, T = T, L = L, wspecies = ws
pecies,weighing=weighing,cutoff=cutoff) 
     
    return(result) 
  } 
  ) 
  return(result) 
}  
 
CWMSNCr <- function(obj, options){ 
  # level in c("species","sites","both") 
  if(class(obj)[1]!="TE_obj") {print("obj must be of class TE_obj in CWMSNCr"); ret
urn(obj)} 
  WA <- with(options,{ 
  if (level == "sites") WA <- c(site_p = CWMr(obj, weighing = weighing)$p_values) e
lse 
    if (level == "species") { 
      WA <- c(species_p =SNCr(obj, weighing =weighing )$p_values) 
    } else if (level == "both") { 
      WA <- c(CWMr(obj, weighing =weighing)$p_values,SNCr(obj, weighing =weighing )
$p_values) 
      names(WA)<- c("site_p", "species_p") 
    } 
  return(WA) 
  }) 
  if (options$invert_p_value) WA <- 1/WA 
  return(WA) 
} 
 
WA_p_max <- function(obj, nrepet = 19,  weighing = "N2", score_test = TRUE, fast = 
TRUE) { 
  if (!fast){ 
    # following the description with test stat = 1/p_value of regressions performed 
in full 
    result <- WA_p_max0(obj, nrepet = nrepet,  weighing = weighing) 
  } else { 
    # short cut, which is even more general (allows multi-trait multi-envi) 
    if(ncol(obj$E)==1 && ncol(obj$T == 1)) score_test = FALSE 
    result <- WA_p_max1(obj, nrepet = nrepet,  weighing = weighing, wsvd = score_te
st) 
  } 
  return(result) 
} 
 
WA_p_max0 <- function(obj, nrepet = 19,  weighing = "N2") { 
  #n_sites <- nrow(obj$L); n_species <- ncol(obj$L)  
   
  options1 <- setoptions4pmax_test(verbose = FALSE,  
                       FUN_test_statistics = list(init=function(obj,options){list(o
bj =obj, options = options)}, test=CWMSNCr),  
                       with.MLM= FALSE, nrepet = nrepet, 
                       perm.mat.spe = 0 , perm.mat.sit = 0, print = 1000, 
                       test_statistics_are_1divp = c(TRUE), nmax = 6, filek = -1) 
  options2 <- setoptions4WA(weighing = weighing , invert_p_value = TRUE, fast = FAL
SE) 
  options3 <- c(options1,options2[-length(options2)]) 
  result <- PermutationTest_r_c_max(obj, options = options3) 
  return(result) 
} 
 
 
 
# local functions 
mean_w <- function(X,w = rep(1/nrow(X),nrow(X))){t(w/sum(w))%*% X} 
center_w <- function(X,w = rep(1/nrow(X),nrow(X))){ X - rep(1,length(w))%*%t(w)%*% 
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X } 
standardize_w <- function(X,w = rep(1/nrow(X),nrow(X)), wsvd = FALSE){ 
  # NB requires w to be have sum 1 
  ones <- rep(1,length(w)) 
  Xc <- X - ones %*% t(w)%*% X 
  Xstd <- Xc / ones%*%sqrt(t(ones)%*%(Xc*Xc*w))      
  if (wsvd) Xstd <- wSVD(Xstd, w) 
return(Xstd) 
} 
 
wcor <- function(X, Y=X, w = rep(1,nrow(X))){ 
  # weighted correlation between matrix X and Y 
  w <- w/sum(w) 
  Xstd <- standardize_w(X, w) 
  Ystd <- standardize_w(Y, w) 
  t(Xstd) %*% diag(w) %*% Ystd 
  } 
 
wSVD <- function(Y,w=rep(1/nrow(Y),nrow(Y))){ 
  sw <- sqrt(w) 
  Ystar <- Y*sw 
  svdY <- svd(Ystar) 
  Ustar <- svdY$u 
  id <- which(svdY$d > 1.e-6) 
  return(Ustar[,id, drop = FALSE]/sw) 
} # returns w-orthogonalized Y 
 
init_WA4_pmax <- function(obj, options){ 
 res <- CWMSNC_regressions0(obj, weighing = options$weighing) 
 Wn <- res$wsites/sum(res$wsites) 
 Ws <- res$wspecies/sum(res$wspecies) 
 names(res) 
 E <-standardize_w(res$E, Wn, wsvd = options$wsvd) 
 T <- standardize_w(res$T, Ws, wsvd = options$wsvd) 
 CWM <- res$L%*%T/res$R #CWM wrt to standardized T (trait), and with wSVD orthogona
lized 
 SNC <- t(res$L)%*%E/res$K # SNC wrt to standardized E (environment) and with wSVD 
orthogonalized 
 result <- list(E=E,T=T, CWM=CWM, SNC = SNC, p_values = res$p_values, Wn = Wn, Ws=W
s) 
 return(list(obj = result, options = options)) 
} 
 
#obj_init <- init_WA4pmax(obj,options) 
 
test_stat_WA <- function(obj, options){ 
  test_stat <- with(obj, { 
    if (options$level =="sites"){ 
      Estd <- standardize_w(E, Wn, wsvd = options$wsvd) 
      test_stat <- t(Estd)%*%diag(Wn)%*% CWM  
      #test_stat <- sum(test_stat*test_stat) 
      return(t(rep(1,ncol(Estd))) %*% (test_stat*test_stat)%*% rep(1,ncol(CWM))) 
       
    } else { 
      Tstd <- standardize_w(T, Ws, wsvd = options$wsvd) 
      test_stat <- t(Tstd)%*% diag(Ws)%*% SNC 
      return(t(rep(1,ncol(Tstd))) %*% (test_stat*test_stat)%*% rep(1,ncol(SNC))) 
       
    } 
     #return(sum(test_stat*test_stat)) 
    }) 
 return(test_stat)   
} 
 
#test_stat_WA(obj_init,options) 
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WA_p_max1 <- function(obj, nrepet = 19,  weighing = "N2", wsvd = TRUE) { 
  #n_sites <- nrow(obj$L); n_species <- ncol(obj$L)  
   
  options1 <- setoptions4pmax_test(verbose = FALSE,  
                                   FUN_test_statistics = list(init= init_WA4_pmax, 
test= test_stat_WA),  
                                   with.MLM= FALSE, nrepet = nrepet, 
                                   perm.mat.spe = 0 , perm.mat.sit = 0, print = 500
0, 
                                   test_statistics_are_1divp = c(FALSE), nmax = 6, 
filek = -1) 
  options2 <- setoptions4WA(weighing = weighing, invert_p_value = FALSE, wsvd = wsv
d, fast = TRUE) 
  options3 <- c(options1,options2[-length(options2)]) 
  result <- PermutationTest_r_c_max(obj, options = options3) 
  return(result) 
} 
setoptions4WA<- function(weighing = 0, level = "both", invert_p_value = TRUE, fast 
= TRUE, wsvd=TRUE,  verbose = FALSE){ 
  list(weighing = weighing, level = level, invert_p_value = invert_p_value, fast = 
fast, wsvd= wsvd, verbose = verbose) 
} 

 

A10. R functions for simulation 

 

Simulations in the paper are either based on modifying a fitted MLM3 model or using 

the simulation model described in section A8.2. The code is in the folder Simulations 

with subfolders Rdata and Rfunctions, containing the fitted MLM3 models for the 

Revisit and Aravo data, and the data generating function generate_data implementing 

data derived simulation and the simulation model of Appendix 8 (section A8.2).  

 

A10.1 Simulation scenarios 

The simulated data using fitted MLM3 models were generated as shown in the files 

• Revisit_based_SimulationsFig5.r, 

• Revisit_based_SimulationsFig6.r and 

• Aravo_based_SimulationsFigA1.r. 

 The simulation Series I-V are in files with these names. As examples, I present here 

the code of Revisit_based_SimulationsFig5 and simulation Series V. The code of the 

other files is similar. 

 

 

Code Revisit_based_SimulationsFig5.r 
 

#Appendix to ter Braak 2019  
#New robust weighted averaging- and model-based methods for assessing trait-environ
ment relationships. 
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rm(list=ls(all=TRUE))  # remove all existing items from the workspace 
#source("Rfunctions/WAregressionsMLM_rand_max_test.r") 
#source("Rfunctions/PowerSimulation_functions3.r") #NEW version 
# source("Rfunctions/generate_trait_env_community_data.r") 
# source("Rfunctions/setoptions.r") 
source("Rfunctions/utility_functions.r") 
 
library(glmmTMB) 
 
load("Rdata/MLM3.Rdata") 
summary(MLM3) 

##  Family: betabinomial  ( logit ) 
## Formula:           
## y ~ env * trait + (1 + trait | site) + (1 + env | species) 
## Data: dat 
##  
##      AIC      BIC   logLik deviance df.resid  
##   6193.9   6262.9  -3086.0   6171.9     3889  
##  
## Random effects: 
##  
## Conditional model: 
##  Groups  Name        Variance Std.Dev. Corr   
##  species (Intercept) 2.1786   1.4760          
##          env         0.1776   0.4214   0.41   
##  site    (Intercept) 0.2255   0.4749          
##          trait       0.1134   0.3367   -0.92  
## Number of obs: 3900, groups:  species, 75; site, 52 
##  
## Overdispersion parameter for betabinomial family (): 3.35  
##  
## Conditional model: 
##             Estimate Std. Error z value Pr(>|z|)     
## (Intercept) -5.42782    0.21827 -24.868  < 2e-16 *** 
## env         -0.68239    0.12503  -5.458 4.82e-08 *** 
## trait        1.00306    0.19788   5.069 4.00e-07 *** 
## env:trait    0.25117    0.09583   2.621  0.00876 **  
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

# set interaction coef and variance parameters, 
# sigma_b = sd of trait slopes, sigma_c = sd of env slopes 
id_sigma_b = which(MLM3$fit$parfull == MLM3$fit$par[10]) # 264 
id_sigma_c = which(MLM3$fit$parfull == MLM3$fit$par[7]) # 261 
b_te = MLM3$sdr$par.fixed[4] 
sigma_b = exp(MLM3$fit$parfull[id_sigma_b]) 
sigma_c = exp(MLM3$fit$parfull[id_sigma_c]) 
sigma_b # trait.site = effect other env 

##     theta  
## 0.3367028 

sigma_c # env.species = effect other trait 

##     theta  
## 0.4213998 

b_te_values = c(0, 0.1, 0.2, 0.3, 0.4, 0.6) 
sigma_b_values <-  c(sigma_b, 1) 
sigma_c_values <-  c(sigma_c) 
scenarios <- expand.grid(b_te_values,sigma_b_values,sigma_c_values) 
names(scenarios) = c("b_te","sigma_b", "sigma_c") 
id  <-  scenarios[,"sigma_b"]  == sigma_b | scenarios[,"b_te"] == 0 
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scenarios <- scenarios[ id ,] 
nrow(scenarios) 

## [1] 7 

scenarios 

##   b_te   sigma_b   sigma_c 
## 1  0.0 0.3367028 0.4213998 
## 2  0.1 0.3367028 0.4213998 
## 3  0.2 0.3367028 0.4213998 
## 4  0.3 0.3367028 0.4213998 
## 5  0.4 0.3367028 0.4213998 
## 6  0.6 0.3367028 0.4213998 
## 7  0.0 1.0000000 0.4213998 

n_simul <- 2 # 250 
#  --------------------------------------------------------------------- 
klist <- 1:nrow(scenarios) 
Scenario.list <-  vector("list", length = nrow(scenarios)) 
 
 
for (k in klist){ 
  b_te <-scenarios[k, "b_te"] 
  sigma_b <- scenarios[k, "sigma_b"] 
  sigma_c <- scenarios[k, "sigma_c"] 
   
  MLM3$sdr$par.fixed[4] <- b_te # not needed, but to be sure 
  MLM3$fit$par[4]<- b_te 
  MLM3$fit$parfull[4] <- b_te 
  MLM3$fit$parfull[id_sigma_b] <- log(sigma_b) 
  MLM3$fit$parfull[id_sigma_c] <- log(sigma_c) 
   
  options <- list() 
  options$model <- "MLM"; options$MLM = MLM3 
  if (options$model == "MLM"){ 
    # Simulation from an existing MLM model for which simulate(mod) exists(lme4 or 
glmm.TMB model) 
    mod <- options$MLM 
    dat<- model.frame(mod)   
    obj <- dat4MLM2TE_obj(dat) # TE_obj  
    n_sites <- nrow(obj$L); n_species <- ncol(obj$L) 
  } else {   
    n_sites <- scenarios$n[k]; n_species <- scenarios$m[k] 
    } 
  # one trait one environmental variables  data----------------------------------- 
  for (i in 1:n_simul){ 
    if (options$model == "MLM"){ 
      Ysim <- simulate(mod) 
      L <- matrix(Ysim[[1]], nrow = n_sites,ncol = n_species, dimnames = list(sites
= rownames(obj$L),species=colnames(obj$L))) 
      obj.sim <- make_obj_for_traitenv(L,obj$E,obj$T) 
    } else { 
      if (options$model %in% c("RC","loglin")) model.coefs = options_RC else model.
coefs = options_Gau 
      obj.sim <- generate_data(n_species,n_communities = n_sites, model= options$mo
del, model.coefs = model.coefs) 
    } 
    Scenario.list[[k]][[i]] = obj.sim 
  } 
} 
 
save.image(paste("SimsForFig5",".Rdata ", sep = "")) 
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Code Series V 
 

#Appendix to ter Braak 2019  
#New robust weighted averaging- and model-based methods for assessing trait-environ
ment relationships. 
 
rm(list=ls(all=TRUE))  # remove all existing items from the workspace 
source("Rfunctions/generate_trait_env_community_data.r") 
source("Rfunctions/utility_functions.r") 
 
 
b_te_values <-  c(0) # b_te 
b_tx_values <-  c(0,0.5) # sigma_b 
b_ze_values <- c(0,0.5) # sigma_c 
b_zx_star_values <-  c(0,0.5) # b_z*x* 
cor_z_zstar <- 0 # rho_1 
cor_x_xstar <- 0# rho_2 
n_species_values <- 30 
n_sites_values <- 50 
 
scenarios <- expand.grid(b_te_values,n_sites_values, n_species_values, b_zx_star_va
lues, b_tx_values, b_ze_values) 
names(scenarios) = c("b_te","n","m", "b_zx*","b_tx", "b_ze") 
 
nrow(scenarios) 

## [1] 8 

scenarios 

##   b_te  n  m b_zx* b_tx b_ze 
## 1    0 50 30   0.0  0.0  0.0 
## 2    0 50 30   0.5  0.0  0.0 
## 3    0 50 30   0.0  0.5  0.0 
## 4    0 50 30   0.5  0.5  0.0 
## 5    0 50 30   0.0  0.0  0.5 
## 6    0 50 30   0.5  0.0  0.5 
## 7    0 50 30   0.0  0.5  0.5 
## 8    0 50 30   0.5  0.5  0.5 

n_simul <- 2 # 250 
 
Scenario.list <-  vector("list", length = 2) 
 
m0 <- 30 
klist <- 1:nrow(scenarios) 
 
Scenario.list <-  vector("list", length = nrow(scenarios)) 
 
 
for (k in klist){ 
  b_ze <- scenarios[k, "b_ze"] 
  b_te <- scenarios[k, "b_te"] 
  b_zx_star <- scenarios[k, "b_zx*"] 
  b_tx <- scenarios[k, "b_tx"] 
  n_species <- scenarios[k, "m"] 
  n_sites <- scenarios[k, "n"] 
  interacts <- set_interactions(b_te = b_te, b_ze =b_ze, b_tx = b_tx, b_zx_star = b
_zx_star, cor_x_xstar = cor_x_xstar, cor_z_zstar = cor_z_zstar) 
  options_RC <- setoptions4RC( intercept =  m0,  interactions = interacts, 
                      main_E = set_main(linear = 0.05, quadratic= -0.1, noise = 0.1
),# main effect models for E and x 
                      main_T = set_main(linear = 0.05, quadratic= -0.1, noise = 0.1
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),  # main effect models for T and z 
                      sigma_epsilon_ij = 0.2, 
                      link= "log", size= 0, 
                      distribution = "negbin") # 
  options <- options_RC 
  options$model <- "RC"; options$MLM = NA 
  if (options$model == "MLM"){ 
    # Simulation from an existing MLM model for which simulate(mod) exists(lme4 or 
glmm.TMB model) 
    mod <- options$MLM 
    dat<- model.frame(mod)   
    obj <- dat4MLM2TE_obj(dat) # TE_obj  
    n_sites <- nrow(obj$L); n_species <- ncol(obj$L) 
  } else {   
    n_sites <- scenarios$n[k]; n_species <- scenarios$m[k] 
    } 
  # one trait one environmental variables  data----------------------------------- 
  for (i in 1:n_simul){ 
    if (options$model == "MLM"){ 
      Ysim <- simulate(mod) 
      L <- matrix(Ysim[[1]], nrow = n_sites,ncol = n_species, dimnames = list(sites
= rownames(obj$L),species=colnames(obj$L))) 
      obj.sim <- make_obj_for_traitenv(L,obj$E,obj$T) 
    } else { 
      if (options$model %in% c("RC","loglin")) model.coefs = options_RC else model.
coefs = options_Gau 
      obj.sim <- generate_data(n_species,n_communities = n_sites, model= options$mo
del, model.coefs = model.coefs) 
    } 
    Scenario.list[[k]][[i]] = obj.sim 
  } 
} 
 
save.image(paste("SeriesV",".Rdata ", sep = "")) 

 

 

A10.2 generate_data 

The code for the simulation model of Appendix A8.2 is as follows. The code is based 

on that of ter Braak et al. (2018). 
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Code 
 

#Appendix to ter Braak 2019 
#New robust weighted averaging- and model-based methods for assessing trait-environ
ment relationships. 
 
generate_data <- function(n_species,n_communities, model= "RC", model.coefs){ 
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  # model = RC, Gau, Gau2d 
  # for RC/loglin: 
  #  model.coefs= list(coefs=c(b_te, b_ze, b_tx, b_zx_star),sigma_epsilon_ij  = sig
ma_epsilon_ij, mu0=mudat0, 
  #                    coefsE=  coefsE,coefsT=  coefsT) 
  #          coefsE = c(d1,d2,d3):   d1*E + d2*E^2 + d3*rnorm(n, 0,1) 
  #          coefsT = c(d1,d2,d3):   d1*T + d2*T^2 + d3*rnorm(n, 0,1), 
  #          coefsx = c(d1,d2,d3):   d1*x + d2*x^2 + d3*rnorm(n, 0,1), 
  #          coefsz = c(d1,d2,d3):   d1*z + d2*z^2 + d3*rnorm(n, 0,1) 
  #          added noise if d3 is nonzero 
  # for Gau and Gau2d 
  # model.coefs = 
  # list(tolerance = tolerance, 
  #       mu_max = mu0, rho_T = rho_T,  rho_E = rho_E, distribution = distri_Y, 
  #       link.mu = "log", sigma = sigma, nu = nu) 
  # data: one trait one environmental variables observed --------------------------
--------- 
  T <- sort(as.matrix(model.coefs$r_dist(n_species))) 
  E <- sort(as.matrix(model.coefs$r_dist(n_communities))) 
  if (model %in% c("RC", "loglin")){ 
    Y <- generate_RC_community(E= E, T= T, model.coefs) 
    E_true = E; T_true = T 
  } else if (model=="Gau2d"){ 
    # null model if rho_E and rho_T are length 1 
    z1 <- rnorm(n_species); x1 <- rnorm(n_communities); err <-rnorm(n_communities) 
    z2 <- rnorm(n_species); x2 <- rnorm(n_communities); trr <-rnorm(n_species) 
    rho_E1=model.coefs$rho_E[1] 
    rho_T1=model.coefs$rho_T[1] 
    if (length(model.coefs$rho_E)==1) rho_E2=0 else rho_E2=model.coefs$rho_E[2] 
    if (length(model.coefs$rho_T)==1) {rho_T2=model.coefs$rho_T[1]; rho_T1=0} else 
rho_T2=model.coefs$rho_T[2] 
    c1 <- (1-rho_E1^2-rho_E2^2); d1 <-(1-rho_T1^2-rho_T2^2) 
    if (c1 <0 | d1<0) stop("sum square correlations in Gau2d exceed 1 in test_model
s()") 
    E = rho_E1*x1 + rho_E2*x2+sqrt(1-rho_E1^2-rho_E2^2)*err 
    T = rho_T1*z1 + rho_T2*z2+sqrt(1-rho_T1^2-rho_T2^2)*trr 
    Y <- generate_community_Gaussian_response_2d(E = x1, T = z1,x=x2,z=z2, model.co
efs) 
    E_true = x1; T_true = z1 
  } else if (model=="Gau"){ 
    z <- rnorm(n_species); x <- rnorm(n_communities) 
    rho_E=model.coefs$rho_E[1] 
    rho_T=model.coefs$rho_T[1] 
    z_star <- rho_T * T + sqrt(1 - rho_T^2)*z # rho_T = 0 == trait random; Eqn A.2 
    x_star <- rho_E * E + sqrt(1 - rho_E^2)*x # rho_E = 1 == env NOT random  Eqn A.
2 
    # thus: as rho_T = 0 and rho_E = 1 
    # z_star = z # the trait governing the Gaussian model, but, alas, unobserved (l
atent) 
    # x_star = E # the observed trait that is also the one governing the Gaussian m
odel 
    Y <- generate_community_Gaussian_response(E = x_star, T = z_star, model.coefs) 
    E_true = x_star; T_true = z_star 
  } 
  E<- as.matrix(E); colnames(E)= "E1" 
  T <- as.matrix(T); colnames(T)= "T1" 
  obj = list(L=Y, E = E, T = T) #, E_true = E_true, T_true = T_true, model.coefs= m
odel.coefs ) 
  class(obj) = c("TE_obj", class(obj)) 
  return(obj) 
} 
 
# function to generate data: RC-model/ loglinear model with y~NegBin eqn A.3-------
------------- 
generate_RC_community <- function(E,T, model.coefs, fct = 0.8, max.try = 5){ 
  # 
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  # one environmental variable E, one trait T 
  # main effects: 
  #    row and column effects functions 
  #       f_row and f_col: a polynomial in E, T,x and z respectively 
  #           d1*E + d2*E^2 + d3*rnorm(n, 0,1), with coefsE = c(d1,d2,d3) 
  #           d1*T + d2*T^2 + d3*rnorm(n, 0,1), with coefsT = c(d1,d2,d3) 
  #           d1*x + d2*x^2 + d3*rnorm(n, 0,1), with coefsx = c(d1,d2,d3) 
  #           d1*z + d2*z^2 + d3*rnorm(n, 0,1), with coefsz = c(d1,d2,d3) 
  #           added noise if d3 is nonzero 
  # interaction effects 
  #        b1*T*E + b2*z*E + b3*T*x + b4*xx*zz eps with coefs = c(b1,b2,b3,b4) 
  #        with z ~ N(0,1), x~N(0,1), zz ~ N(0,1), xx~N(0,1) and eps~sigma_epsilon_
ij*N(0,1) 
  #        Note:  trait-environment association only if b1 unequal to 0 
  #        Note:  confounding random effects if coefs[2:3] are none-zero 
  # 
  # dist ="negbin", "ZINBI" , "pois", "binomial" 
  # link =  link function "log", "logit" 
  # if center. = TRUE then the interaction is double centered 
  # the repeat loop is to ensure that the final number of  species and sites is wit
hin fct (0.8) of the number asked for in  argument 
 
  # The equi-tolerance versions of the Gaussian models 
  # of Peres-Neto, Dray & ter Braak (2016, Ecography http://dx.doi.org/10.1111/ecog
.02302) and 
  # ter Braak, Peres-Neres & Dray (2016, PeerJ) can be simulated 
  # by setting coefsE-coefsz and coef as follows: 
  # The environmentally structured, random trait case corresponds to 
  # coefsE=c(0,-0.5/tolerance^2, 0);  coefsx=c(0,0,0) 
  # coefsT=c(0,0, 0);  coefsz=c(0,-0.5/tolerance^2,0) 
  # The trait structured, random environment case corresponds to 
  # coefsE=c(0,0, 0);  coefsx=c(0,-0.5/tolerance^2,0) 
  # coefsT=c(0,-0.5/tolerance^2, 0);  coefsz=c(0,0,0) 
  # The both random case corresponds to 
  # coefsE=c(0,0, 0);  coefsx=c(0,-0.5/tolerance^2,0) 
  # coefsT=c(0,0, 0);  coefsz=c(0,-0.5/tolerance^2,0) 
 
  #  local functions: marginal effects 
  f_row <- function(E, coefsE){ 
    effects <- coefsE[1]*E + coefsE[2]*E*E + coefsE[3]*rnorm(length(E)) 
    effects 
  } 
  f_col <- function(T, coefsT){f_row(T,coefsE=coefsT)} 
  # end local functions 
  coefs =  model.coefs$coefs; 
  coefsE=  model.coefs$coefsE 
  coefsT=  model.coefs$coefsT 
  coefsx=  model.coefs$coefsx 
  coefsz=  model.coefs$coefsz 
  coefsx_star=  model.coefs$coefsx_star 
  coefsz_star=  model.coefs$coefsz_star 
  cor_x_xstar <- coefs[5] #coefs["cor_x_xstar"] 
  cor_z_zstar <- coefs[6] #coefs["cor_z_zstar"] 
  sigma_epsilon_ij  = model.coefs$sigma_epsilon_ij; mu0=model.coefs$mu0 
  distribution = model.coefs$distribution 
  E <- c(E); 
  T <- c(T) 
  n_communities <- length(E) 
  n_species <- length(T) 
  i.try <- 1 
  if (length(coefs)<6) coefs <- c(coefs,rep(0, 6-length(coefs))) 
  repeat { 
    i.try <- i.try + 1 
    x <-  rnorm(length(E)); z <-  rnorm(length(T)) 
    xx <-  rnorm(length(E)); zz <-  rnorm(length(T)) 
    zz <- cor_z_zstar * z + sqrt(1 - cor_z_zstar^2)*zz # correlation of cor_z_star 
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between z and zstar 
    xx <- cor_x_xstar * x + sqrt(1 - cor_x_xstar^2)*xx 
    mu.interaction <- 
      coefs[1] * outer(E,T,FUN = "*") + 
      coefs[2] * outer(E,z,FUN = "*") + 
      coefs[3] * outer(x,T,FUN = "*") + 
      coefs[4] * outer(xx,zz,FUN = "*") + 
      sigma_epsilon_ij * matrix(rnorm(n_communities*n_species), nrow =n_communities 
) 
    mu.marginal <- outer(rep(0,n_communities), f_col(T,coefsT), FUN="+") + 
      outer(f_row(E,coefsE), rep(0,n_species), FUN="+") + 
      outer(rep(0,n_communities), f_col(z,coefsz), FUN="+") + 
      outer(f_row(x,coefsx), rep(0,n_species), FUN="+") + 
      outer(rep(0,n_communities), f_col(z,coefsz_star), FUN="+") + 
      outer(f_row(x,coefsx_star), rep(0,n_species), FUN="+") 
    mu.lp <- mu.marginal + mu.interaction 
    # for numerical stability we needed to limit mu.lp 
    mu.lp <- ifelse(mu.lp > 10, matrix(10, nrow=nrow(mu.lp),ncol=ncol(mu.lp)), mu.l
p) 
    mu.lp <- ifelse(mu.lp < -10,matrix(-10, nrow=nrow(mu.lp),ncol=ncol(mu.lp)), mu.
lp) 
    if (mu0 > 0.9 && (distribution =="binomial"|| model.coefs$link.mu =="logit"))  
mu0 <- 0.5 # 
    mu <- switch(model.coefs$link.mu, 
                 log =  mu0 * exp(mu.lp) , 
                 logit = 1/(1 + exp(-( mu.lp + log(mu0/(1-m0)))) ) 
    ) 
    L <- switch( distribution, 
                 poisson = ZIpoisson(mu,nu=nu), 
                 binomial = matrix(rbinom(prod(dim(mu)),size = model.coefs$size, mu
),nrow = nrow(mu),ncol = ncol(mu)), 
                 negbin = ZInbinom(mu = mu, sigma= model.coefs$sigma, nu = 0), 
                 ZINBI =  ZInbinom(mu = mu, sigma= model.coefs$sigma, nu = model.co
efs$nu) 
    ) 
    nspecies_c <- sum(colSums(L)!=0) # _c for check 
    ncommunities_c <- sum(rowSums(L)!=0) 
    if ((nspecies_c >= fct * n_species) && (ncommunities_c >=fct *n_communities || 
i.try> max.try)){break} 
  } 
  rownames(L)<- paste("site", seq_len(nrow(L)), sep="") 
  colnames(L)<- paste("spec",seq_len(ncol(L)),sep="") 
  return(L) # L = Y in the paper 
} 
 
set_interactions <- function(b_te = 0, b_ze =0.2, b_tx = 0.2, b_zx_star =0.2, cor_x
_xstar = 0,cor_z_zstar=0){ 
  return(c(b_te=b_te, b_ze= b_ze, b_tx= b_tx, b_zx_star= b_zx_star, cor_x_xstar = c
or_x_xstar,cor_z_zstar = cor_z_zstar)) 
} 
set_main <- function(linear= 0, quadratic= 0, noise= 0){ 
  return(c(linear = linear, quadratic = quadratic, noise = noise)) 
} 
#model.coefs.RC= 
setoptions4RC <- function( intercept = 30,  interactions = set_interactions(), 
                           main_E = set_main(linear = 0.05, quadratic= -0.1, noise 
= 0.1),# main effect models for E and x 
                           main_T = set_main(linear = 0.05, quadratic= -0.1, noise 
= 0.1),  # main effect models for T and z 
                           main_x = set_main(0,0,0), # main effect models for E and 
x 
                           main_z = set_main(0,0,0), # main effect models for T and 
z 
                           main_xstar = set_main(0,0,0), 
                           main_zstar = set_main(0,0,0), 
                           sigma_epsilon_ij = 0.2, 
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                           link= "log", 
                           size = 100, 
                           distribution = "negbin", 
                           dispersion = 1, 
                           p_zero_inf = 0, 
                           r_dist = rnorm # 
){ 
  # distribution ="negbin", "ZINBI" , "pois", "binomial" 
  #link =  link function "log", "logit" 
  # r_dist = distribution of T and E  (only in RC/loglin models) 
  return( 
    list(coefs=interactions, 
         coefsE=  main_E, 
         coefsT=  main_T, 
         coefsx=  main_x, 
         coefsz=  main_x, 
         coefsx_star=  main_xstar, 
         coefsz_star=  main_zstar, 
         sigma_epsilon_ij  = sigma_epsilon_ij, mu0=intercept, 
         distribution = distribution, size = size, 
         link.mu = link, sigma = dispersion, nu = p_zero_inf, r_dist = r_dist) 
  ) 
} 
setoptions4Gau <- function(tolerance = 2,  mu_max = 10, rho_T = c(1,0),  rho_E = c(
1,0), 
                           link = "log",  distribution = "negbin", dispersion = 1,  
p_zero_inf = 0, r_dist = rdist_norm ){ 
  return(list(tolerance = tolerance, mu_max = mu_max, rho_T = rho_T,  rho_E = rho_E
, distribution = distribution, link.mu = link, sigma = dispersion, nu = p_zero_inf, 
r_dist = r_dist)) 
} 
 
# function to generate one- and multi-trait data ----------------------------------
----- 
generate_Tdata <-function(n_species,n_traits, correlation = 0, b){ 
  # n_species = number of species; n_traits = number of traits; 
  # correlation = AR(1) autocorrelation between subsequent variables 
  # b = coefficient of the linear combination (c in the paper) 
  # generate n_traits correlated normally distibuted trait variables in Tdat 
  # a linear combination of these  Tdat%*%b  in T 
  # rescale b and T so that T ~ N(0,1), 
  # value: list with Tdat, T and coefficients (rescaled b) 
  ii <- 1:n_traits 
  Sigma <-  correlation^abs(outer(ii,ii,  '-')) 
  sdT <-  sqrt(b %*% Sigma %*%b) 
  coefs <- b/c(sdT) 
  Tdat<-MASS::mvrnorm(n_species,mu=rep(0,n_traits),Sigma) 
  T <- Tdat %*%coefs 
  rownames(T)<- rownames(Tdat)<- paste("spec", seq_len(nrow(Tdat)), sep="") 
  return(list(T = T, Tdat= Tdat, coefficients = coefs)) 
} 
 
generate_Edata <-function(n,p, correlation = 0, b, mixfactor = 0){ 
  # generate p correlated normally distibuted E variables in Edat 
  # a linear combination of these in E 
  # rescale b and E so that E ~N(0,1), 
  # value: list with Edat, E and coefficients (rescaled b) 
  ii <- 1:p 
  Sigma <-  correlation^abs(outer(ii,ii,  '-')) 
  sdE <-  sqrt(b %*% Sigma %*%b) 
  coefs <- b/c(sdE) 
  Edat<-MASS::mvrnorm(n,mu=rep(0,p),Sigma) + mixfactor * matrix(2*((runif(n*p) > 0.
5)-0.5),nrow = n,ncol =p) 
  E <- Edat %*%coefs 
  rownames(E)<- rownames(Edat)<- paste("site", seq_len(nrow(Edat)), sep="") 
  return(list(E = E, Edat= Edat, coefficients = coefs)) 
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} 
 
# function to generate (zero inflated ) negative binomial data ------------ 
ZInbinom <- function(mu,sigma = 1, nu= 0){ 
  L <- rnbinom(length(mu), size = 1/sigma, mu = mu) 
  # variance = mu + mu^2/size = mu + sigma * mu^2 
  L <- ifelse(runif(length(mu)) < nu,  0,L) 
  matrix(L,nrow = nrow(mu),ncol = ncol(mu)) 
} 
 
# function to generate (zero inflated ) poisson data ------------ 
ZIpoisson <- function(mu, nu= 0){ 
  L <- rpois(length(mu), lambda = mu) 
  L <- ifelse(runif(length(mu)) < nu,  0,L) 
  matrix(L,nrow = nrow(mu),ncol = ncol(mu)) 
} 
 
 
# function to generate data according to the Gaussian response model Eqn A1.1 and y
~NegBin----------------------------------------------- 
generate_community_Gaussian_response <- function(E,T, model.coefs,  n_species = len
gth(T),n_communities = length(E), fct = 0.8, max.try = 5, equi.tol=FALSE){ 
  # using outer instead of a for loop 
  # tolerance sets the maximum width of the random sigma_j in the paper (set to 2 i
n the paper) 
  # with checks on empty rows and columns 
  # the repeat loop is to ensure that the final number of  species and sites is wit
hin fct (0.8) of the number asked for in  argument 
    i.try <- 0 
    distribution = model.coefs$distribution 
    tolerance =    model.coefs$tolerance 
    mu_max = model.coefs$mu_max 
   # sigma = 1, nu= 0 
  repeat { 
    i.try <- i.try + 1 
    # one trait, one environmental variable 
    E <- c(E) 
    T <- c(T) 
    if (equi.tol){ 
      h<-  rep(0.7, n_species) 
      sigma<- rep(tolerance,n_species) 
    } else{ 
      h<-  runif(n_species,min=0.3,max=1) 
      sigma<- runif(n_species)*tolerance 
    } 
    mu <- outer(rep(mu_max,n_communities),h) * exp(outer(c(E),c(T),FUN = "-")^2 / o
uter(rep(1,n_communities),-2*sigma^2))+1.e-10 
    L <- switch( distribution, 
                 poisson = ZIpoisson(mu,nu=nu), 
                 binomial = matrix(rbinom(prod(dim(mu)),1, mu),nrow = nrow(mu),ncol 
= ncol(mu)), 
                 negbin = ZInbinom(mu = mu, sigma= model.coefs$sigma, nu = 0), 
                 ZINBI =  ZInbinom(mu = mu, sigma= model.coefs$sigma, nu = model.co
efs$nu) 
    ) 
    n_species_c<-sum(colSums(L)!=0) # _c for check 
    n_communities_c<-sum(rowSums(L)!=0) 
    if ((n_species_c >= fct * n_species) && (n_communities_c >=fct *n_communities |
| i.try > max.try)){break} 
  } 
  rownames(L)<- paste("site", seq_len(nrow(L)), sep="") 
  colnames(L)<- paste("spec",seq_len(ncol(L)),sep="") 
  return(L)  # L = Y in the paper 
} 
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generate_community_Gaussian_response_2d <- function(E,T, x,z, model.coefs,  n_speci
es = length(T),n_communities = length(E), fct = 0.8, max.try = 5, equi.tol=FALSE){ 
  # using outer instead of a for loop 
  # tolerance sets the maximum width of the random sigma_j in the paper (set to 2 i
n the paper) 
  # with checks on empty rows and columns 
  # the repeat loop is to ensure that the final number of  species and sites is wit
hin fct (0.8) of the number asked for in  argument 
  i.try <- 0 
  distribution = model.coefs$distribution 
  tolerance =    model.coefs$tolerance[1] 
  if (length(model.coefs$tolerance)==1) tolerance2 = model.coefs$tolerance[1] else 
tolerance2 =    model.coefs$tolerance[2] 
  mu_max = model.coefs$mu_max 
  # sigma = 1, nu= 0 
  repeat { 
    i.try <- i.try + 1 
    # one trait, one environmental variable 
    E <- c(E) 
    T <- c(T) 
    # x <-  rnorm(length(E)); z <-  rnorm(length(T)) 
    # xx <-  rnorm(length(E)); zz <-  rnorm(length(T)) 
    if (equi.tol){ 
      h<-  rep(0.7, n_species) 
      sigma<- rep(tolerance,n_species) 
      sigma2<- rep(tolerance2,n_species) 
 
    } else{ 
      h<-  runif(n_species,min=0.3,max=1) 
      sigma<- runif(n_species)*tolerance 
      sigma2<- runif(n_species)*tolerance2 
    } 
    mu <- outer(rep(mu_max,n_communities),h) * 
      exp(outer(c(E),c(T),FUN = "-")^2 / outer(rep(1,n_communities),-2*sigma^2) + 
            outer(c(x),c(z),FUN = "-")^2 / outer(rep(1,n_communities),-2*sigma2^2) 
      )+1.e-10 
    L <- switch( distribution, 
                 poisson = ZIpoisson(mu,nu=nu), 
                 binomial = matrix(rbinom(prod(dim(mu)),1, mu),nrow = nrow(mu),ncol 
= ncol(mu)), 
                 negbin = ZInbinom(mu = mu, sigma= model.coefs$sigma, nu = 0), 
                 ZINBI =  ZInbinom(mu = mu, sigma= model.coefs$sigma, nu = model.co
efs$nu) 
    ) 
    n_species_c<-sum(colSums(L)!=0) # _c for check 
    n_communities_c<-sum(rowSums(L)!=0) 
    if ((n_species_c >= fct * n_species) && (n_communities_c >=fct *n_communities |
| i.try > max.try)){break} 
  } 
  rownames(L)<- paste("site", seq_len(nrow(L)), sep="") 
  colnames(L)<- paste("spec",seq_len(ncol(L)),sep="") 
  return(L)  # L = Y in the paper 
} 
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