Species-Wide Genetic Atlas of Antimicrobial Resistance in Clostridioides difficile

Korakrit Imwattana¹, César Rodríguez², Thomas V Riley^{1,3,4,5} and Daniel R Knight^{1,3}

¹ School of Biomedical Sciences, The University of Western Australia, Western Australia ² Facultad de Microbiología & Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, Costa Rica ³ School of Veterinary and Life Sciences, Murdoch University, Western Australia ⁴ School of Medical and Health Sciences, Edith Cowan University, Western Australia ⁵ Department of Microbiology, PathWest Laboratory Medicine, Queen Elizabeth II Medical Centre, Western Australia

Background and Objectives

Antimicrobial resistance (AMR) plays an important role in the spread and pathogenesis of Clostridioides difficile infection (CDI). An association between AMR and CDI outbreaks has been identified^{1,2,3}, however, such studies have been limited to a few strains in limited geographical regions.

This study aimed to investigate the prevalence of AMR genotypes in the global population of *C. difficile*.

Methods

- 1. All publicly available read files were downloaded.
- 2. All non-redundant illumina read files were screen for quality and contamination using kraken2⁴.
- 3. Read files of epidemic strains (sequence types (STs) 1, 2, 11 and 37) were screened for clonality (nucleotide identity > 99.98%) using SRST2⁵ and Sketch⁶, respectively.
- 4. All remaining read files were interrogated against several AMR databases.[#]

Results

1. Population structure of C. difficile

Conclusion

There was a higher prevalence of AMR among epidemic C. difficile lineages. Despite its intrinsic resistance, some *C. difficile* strains carried aminoglycoside resistance genes, suggesting its role as a reservoir of AMR genes.

References

Dingle KE, *et al.* (2019). **MBio**;10(2):e02790-18. He M, et al. (2013). Nat Gen; 45(1):109-13. Imwattana K, et al. (2020). Expert Rev Anti Infect Ther;1:17-25. Wood DE, et al. (2019). Genome Biol;20(1):257 Inouye M, et al. (2014). Genome Med;6(11):90. BBtools package [available at https://sourceforge.net/projects/bbmap/] PubMLST database [available at https://pubmlst.org/cdifficile/] Gubta SK, et al. (2014). Antimicrob Agents Chemother;58(1):212-20. Zankari E, et al. (2012). J Antimicrob Chemother; 67(11):2640-4.

Re-Defining *Clostridioides difficile* Using Global Phylogenomic Analyses

Korakrit Imwattana¹, César Rodríguez², Thomas V Riley^{1,3,4,5} and Daniel R Knight^{1,3}

- ¹ School of Biomedical Sciences, The University of Western Australia, Western Australia
- ² Facultad de Microbiología & Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, Costa Rica
- ³ Medical, Molecular and Forensic Sciences, Murdoch University, Western Australia
- ⁴ School of Medical and Health Sciences, Edith Cowan University, Western Australia
- ⁵ Department of Microbiology, PathWest Laboratory Medicine, Western Australia

Background and Objectives

Clostridioides difficile species problem: A diverse population classified into a single species based on 16s rRNA Study Objective: Use ANI to re-evaluate the species definition of *C. difficile*

1. ANI analysis reveals major

discontinuity in *C. difficile* taxonomy

Total gene repertoire 17,470 genes

Core gene 2,232 genes (12.8%)

Potential specific phenotypes

- C-I Fructosamine utilisation
- C-II EDTA resistance
- C-III Ethanolamine catabolism
 - Fructosamine utilisation
 - Polyamine biosynthesis

3. Pan-genome analysis identifies clade specific genes and traits

2. Bayesian evolutionary analysis reveals cryptic clades are ancient species

Conclusions

There was a clear species boundary separating *C. difficile* from the 3 novel genomospecies. Several potential phenotypic differences were identified. Difference in toxin gene architecture and its divergence may complicate the diagnosis of *C. difficile* infection.

Large toxin genes
Binary toxin genes
Excisionase genes

<u>4. Cryptic clades harbor novel and highly</u> <u>divergent toxin gene architecture identifies</u></u>

References

- . Konstantinidis KT, et al. (2006) Philos Trans R Soc Lond B Biol Sci;361:1929-1940.
- Wayne LG, *et al.* (1987) Int J Syst Evol Microbiol;37:463-464.
- 3. Stackebrandt E, *et al.* (1994) **Int J Syst Evol Microbiol**;44:846-849
- 4. Jain C, *et al.* (2018) **Nat Commun**;9:5114.
- 5. Pritchard L, et al. (2016) Anal Methods;8:12-24.
- 6. Didelot X, *et al.* (2018) Nucleic Acids Res;46:e134-e134
- 7. Drummond AJ, et al. (2007) BMC Evol Biol;7:214.
- 8. Tonkin-Hill G, et al. (2020) Genome Biol;21:180.
- 9. Brynildsrud O, *et al.* (2016) Genome Biol;17:238.

