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1 Introduction

This guide coves Part 3 of the Introduction to R for Libraries webinar, hosted by ALCTS,
Association for Library Collections & Technical Services. It is distributed under a
https://creativecommons.org/licenses/by/4.0/.

2 Cleaning up strings with stringr

There is no end to the number of problems you will run into when cleaning your data. It is a
truism that data cleanup and preparation generally takes 80% of the time in a data project,
leaving the remaining 20% for analysis and visualization.

Character strings are sequences of characters. For libraries, common strings include titles,
authors, subject headings, ISBNs (even though they are digits, they are treated as characters
because they are identifiers), publishers, vendors, and more. Strings can be one of the
most problematic parts of the data cleanup process, which makes stringr one of the most
useful packages in R. stringr contains a number of functions to manipulate characters,
trim whitespace from the beginning and ending of a string, and execute pattern matching
operations (for example, recognize all 13 digit numbers beginning with 978 as ISBNs).

Below we will explore one small example of a string cleanup issue in the ebooks.csv file,
included in the course documents.

2.1 Replace characters with str_replace()

First read the data in. Notice we have to use the colClasses argument on the ISBN fields,
otherwise they’re read in incorrectly as integers. Use View() to examine the data, and call
str() on it to see a glimpse of it in the console.
ebooks <- read.csv("./ebooks.csv"

, stringsAsFactors = F
, colClasses = c(ISBN.Print = "character"

, ISBN.Electronic = "character"))
View(ebooks)
str(ebooks)
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There are several fields here we can do some analysis with, including Pages.Viewed and
User.Sessions. Let’s say we want to see the mean number of user sessions:
mean(ebooks$User.Sessions)
## Warning message: In mean.default(ebooks$User.Sessions) : argument is
## not numeric or logical: returning NA

Calling class(ebooks$User.Sessions) we see that R read this variable in as character,
as it did with Total.Pages, Pages.Viewed, and Pages.Printed. You cannot take the mean of a
character, only a numeric or integer. The reason R read these variables in as characters is
because the vendor put a comma in numbers 1,000 and higher. R detected the comma, and
determined that these vectors are characters, not numeric.

Now, we could coerce it to integer by calling ebooks$User.Sessions <- as.integer(ebooks$User.Sessions)
however this would be a serious error. If we coerced this field to integer, it would replace any
value including a comma with NA, which means we would have no data for our highest usage
items!

So we need to do two things:

1. Remove the comma
2. Coerce the vectors from characters to integers using as.integer()

The str_replace function is similar to Find/Replace in Microsoft Excel. Call
help(str_replace) to see it has three arguments: string, pattern, and replacement.
Remember you cannot feed an entire data frame to this function. You must work with one
vector at a time.
vec <- c("800", "900", "1,000")

# Remember you have to load stringr first. When you load tidyverse,
# stringr is automatically loaded
library(tidyverse)

# scan through each item in vec and replace the pattern (a comma: ',')
# with nothing (an empty set of quotes '')
vec2 <- str_replace(vec, pattern = ",", replacement = "")
vec2
## [1] '800' '900' '1000'

# notice that this is still a character vector you can also tell by the
# quotation marks around the numbers.
class(vec2)
## [1] 'character'

# so we must coerce it to an integer
vec2 <- as.integer(vec2)
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# now we can perform mathematical operations on it
mean(vec2)
## [1] 900

We can do exactly the same thing on the ebooks data, except on multiple vectors at once using
the mutate() function from dplyr. Note that you do not have to include the pattern =
and replacement = in your argument. This will overwrite the existing variables Total.Pages,
Pages.Viewed, Pages.Printed, and User.Sessions and remove the commas in all these fields.

Of course, that means those vectors will still be in character class, which means we can’t do
mathematical operations on them. So in sum, the easiest way to handle this is to do it all at
once, by nesting the str_replace function within as.integer.
ebooks <- mutate(ebooks

, Total.Pages = as.integer(str_replace(ebooks$Total.Pages, ",", ""))
, Pages.Viewed = as.integer(str_replace(ebooks$Pages.Viewed, ",", ""))
, Pages.Printed = as.integer(str_replace(ebooks$Pages.Printed, ",", ""))
, User.Sessions = as.integer(str_replace(ebooks$User.Sessions, ",", "")))

2.2 Extract characters with str_sub()

Another data manipulation task we can do is to create a new variable LC.Class using
the str_sub() function. This function takes a vector, a starting character, and an ending
character, and grabs the characters in between those points (i.e. a substring). For example:
vec3 <- "Macbeth"

# Start at character 1 and end at character 3
str_sub(vec3, 1, 3)
## [1] "Mac"

With our LC class, since we only want the first character, our starting point and ending
point are both 1. We can put this into mutate() from the dplyr package to create the new
variable all at once.
ebooks <- mutate(ebooks

, LC.Class = str_sub(LC.Call
, start = 1
, end = 1))

2.3 Remove whitespace with str_trim()

Sometimes blank spaces can end up before or after a string. You can remove these automati-
cally with the str_trim() function. The opposite of str_trim() is str_pad(), which will
add white space.
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vec4 <- c(" a", "b ", " c ")

str_trim(vec4)
## [1] "a" "b" "c"

2.4 Detect patterns with str_detect()

The str_detect() function takes a character vector and a pattern, and looks for that
pattern in each element in the vector. If the pattern is found, a TRUE value is returned.
Use str_detect() in combination with the filter() function from dplyr to creat custom
subsets
titles <- c("Macbeth", "Dracula", "1984")

str_detect(titles, "Dracula")
## [1] FALSE TRUE FALSE

# use in combination with which()
which(str_detect(titles, "Dracula"))
## [1] 2

# or use in combination with filter to create a subset
# this will scan through the Title column in the ebooks dataset
# and return all values that contain the word "Chemistry"
ebooksScience <- filter(ebooks

, str_detect(Title, "Chemistry"))

head(ebooksScience$Title)
## [1] "Specialist Periodical Reports, Volume 29 : Organometallic Chemistry"
## [2] "Advanced Organic Chemistry, Part A: Structure and Mechanisms (4th Edition)"
## [3] "Advanced Organic Chemistry, Part B : Reactions and Synthesis (4th Edition)"
## [4] "Guide to Chalogen-Nitrogen Chemistry"
## [5] "Bioanalytical Chemistry"
## [6] "Environmental Laboratory Exercises for Instrumental Analysis and Environmental Chemistry"

# the ignore_case argument will get the word regardless of upper or lower case
ebooksScience <- filter(ebooks

, str_detect(Title, fixed("Chemistry", ignore_case = T)))
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# Perhaps it will be more effective to also get books where the word chemistry
# appears in the Sub.Category as well.
# Here I use the | symbol to represent a Boolean OR
ebooksScience2 <- ebooks %>%

filter(str_detect(Title, fixed("Chemistry", ignore_case = T))
| str_detect(Sub.Category, fixed("Chemistry", ignore_case = T)))

2.5 Help with stringr

• Read the chapter on strings in R for Data Science
• Visit http://stringr.tidyverse.org/ to read uses of stingr
• Run vignette("stringr") in your console
• You can leverage stringr by learning Regular Expressions (aka regex). Take a

regex tutorial at https://regexone.com/ and test your own regular expressions at
https://regexr.com/.

TRY IT YOURSELF

1. Execute the following operations and see what happens
titles <- c("Dracula", "Macbeth", "1984", "Jane Eyre", "The Great Gatsby",

"The Iliad", "Moby Dick")
str_detect(titles, "The")
titles[str_detect(titles, "The")]
str_subset(titles, "The")
str_to_lower(titles)
str_to_upper(titles)
str_c(titles, collapse = ", ")
str_length(titles)
which(str_length(titles) >= 9)
titles[str_length(titles) >= 9]
titles[str_length(titles) < 9]

x <- c("a ", " b", " c ")
str_trim(x)

2. Click on the Packages tab in the navigation pane in R Studio, then click on stringr.
Read some of the help pages for these functions.

3. With the ebooks data, use str_detect() with filter() to get all books with the
word “Britain” in the title. Write another expression to get all books with Britain in
the title or in the sub category.
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3 Group and summarize data

Last session we reviewed several dplyr functions including filter(), select(), mutate()
and arrange().

group_by() and summarize() are two more powerful dplyr functions. Use group_by() to
cluster the dataset together in the variables you specify. For example, if you group by LC
Call number class, then you can sum up the total number of ebook user sessions per call
number class using summarize(). summarize() will collapse many values down into a single
summary statistics.

Here is an example using the LC.Class variable created in Section 1.2 above.
# Make sure you have created the LC.Class variable
ebooks <- mutate(ebooks

, LC.Class = str_sub(LC.Call
, start = 1
, end = 1))

# First, create the grouped variable
byLC <- group_by(ebooks, LC.Class)

# Then, summarize by User.Sessions
UserSessions_byLC <- summarize(byLC, totalSessions = sum(User.Sessions))
View(UserSessions_byLC)

# Arrange it
UserSessions_byLC <- arrange(UserSessions_byLC, desc(totalSessions))
View(UserSessions_byLC)

We can use the %>% operator to do both these operations at the same time. Doing it this
way means we do not have to create an intermediate byLC data frame, but can instead operate
directly on ebooks.
UserSessions_byLC <- ebooks %>%

group_by(LC.Class) %>%
summarize(totalSessions = sum(User.Sessions)) %>%
arrange(desc(totalSessions))
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The top 5 are H, Q, B, T, and L. If we were ambitious, we could use the recode() function
to assign each call number class with its classification name:
recode(UserSessions_byLC$LC.Class

, H = "Social Sciences"
, Q = "Science"
, B = "Philosophy"
, T = "Technology"
, L = "Education")

We may also want to see the total number of books in each call number class, and also
calculate the mean user sessions per class:

• use n() to sum up the total number of ebooks per call number class. Add it as a column
called count.

• use sum(User.Sessions) to add up the cumulative total user sessions per call number
class. Add it as a column called totalSessions.

• use mean(User.Sessions) to calculate the mean user sessions per call number class.
Add it as a column called avgSessions.

byLCSummary <- byLC %>%
summarize(

count = n()
, totalSessions = sum(User.Sessions)
, avgSessions = mean(User.Sessions)) %>%

arrange(desc(avgSessions))

Additional summary statistics include:

• median()
• sd() : standard deviation
• IQR() : interquartile range
• min() and max() : minimum and maximum
• quantile()
• distinct_n() : dplyr function for number of unique values
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So we can construct an extensive summary data frame. Notice that we are sorting by
avgSessions in descending order.
byLCSummary <- ebooks %>%

group_by(LC.Class) %>%
summarize(

count = n()
, totalSessions = sum(User.Sessions)
, avgSessions = mean(User.Sessions)
, medianSessions = median(User.Sessions)
, sdSessions = sd(User.Sessions)
, highestSession = max(User.Sessions)
, lowestSession = min(User.Sessions)
, varianceSessions = var(User.Sessions)) %>%

arrange(desc(avgSessions))

Calling View(byLCSummary) to have a look at this, a few items of interest jump out; for
example:

• Call # Q has a very high standard deviation, max value, and variance.
• Call # P has a relatively low average, standard deviation, and highest session, but a

high count and high number of total sessions.

There is, as we will see in a below visualization, an extreme outlier in the Q category.
What you do with outliers is dependent on the parameters of your own analysis. We can
call filter() if we want to get rid of it, but we have to go back to the raw data, since
byLCSummary is already summarized.
byLCSummary2 <- ebooks %>%

filter(User.Sessions < 1123) %>%
group_by(LC.Class) %>%
summarize(

count = n()
, totalSessions = sum(User.Sessions)
, avgSessions = mean(User.Sessions)
, medianSessions = median(User.Sessions)
, sdSessions = sd(User.Sessions)
, highestSession = max(User.Sessions)
, lowestSession = min(User.Sessions)
, varianceSessions = var(User.Sessions)) %>%

arrange(desc(avgSessions))

Now we see that Q drops down to 6th highest, and its standard deviation goes from over
1100 to 107.

In sum, group_by() and summary() can produce insightful information into patterns on a
variable level. See Section 5.6 of R For Data Science for more information on this.
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TRY IT YOURSELF

1. Using the pipe %>% operator, group_by the Category variable and summarize by the
Pages.Viewed variable. Create columns for count, totalPagesViewed, avgPagesViewed,
medianPagesViewed, sdPagesViewed, maxPagesViewed, minPagesViewed, and varian-
cePagesViewed. arrange by avgPagesViewed. You can assign it to CategorySummary.
Which categories are at the top and bottom?

2. Looking in the count variable, we can see that some of these categories don’t have very
many ebooks. Use filter() on CategorySummary where count is more than 20.
You can assign it over CategorySummary or create a new object.

3. arrange by totalPagesViewed. Do you notice any differences?

10



4 Visualizing data with ggplot2

Base R contains a number of functions for quick data visualization such as plot(), barplot(),
hist(), and boxplot(). However, just as data manipulation is easier with dplyr than Base
R, so data visualization is easier with ggplot2 than Base R. ggplot2 is a “grammar” for data
visualization also created by Hadley Wickham, as an implementation of Leland Wilkinson’s
[Grammar of Graphics](http://www.worldcat.org/oclc/934513040.

When you run the ggplot function, it plots directly to the Plots tab in the Navigation Pane
(lower right). Alternatively, you can assign a plot to an R object, then call print() to view
the plot in the Navigation Pane.

The ggplot() function creates the initial coordinate system, which you can consider a “blank
canvas”.
# first load the package
library(ggplot2)

# print a blank canvas
ggplot(data = ebooks)

Not very interesting. We need to add layers to it. We start with geoms.

4.1 Display data with geoms

Data is visualized in the canvas with “geometric shapes” such as bars and lines; what are called
geoms. In your console, type geom_ and press the tab key to see the geoms included–there
are over 30. For example, bar plots use bar geoms (geom_bar()), line plots use geom_line(),
scatter plots use geom_point().

11

http://www.worldcat.org/oclc/934513040


Add layers to your plot by adding a geom with the plus symbol +. Below, we use geom_bar()
to add a bar plot to the canvas:
ggplot(data = ebooks) +

geom_bar(mapping = aes(x = LC.Class))

As we will see, if you add different geoms to ggplot() your visualization will change
accordingle.

4.2 Map aesthetics with aes()

Each geoms takes a mapping argument within the aes() call. This is called the aesthetic
mapping argument. In other words, inside the geom function is an aes function, and
inside aes is a mapping argument specifying how to map the variables inside the visualization.
ggplot then looks for that variable inside the data argument, and plots it accordingly.

For example, in the above expression, the LC.Class variable is being mapped to the x axis
in the geometric shape of a bar. In this example, the y axis (count) is not a variable in the
original dataset, but is the result of geom_bar() binning your data inside each LC.Class
and plotting the bin counts (the number of items falling into each bin).
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4.2.1 Univariate geoms

“Univariate” refers to a single variable. A histogram is a univariate plot: it shows the frequency
counts of each value inside a single variable. Let’s say we want to visualize a frequency
distibution of User Sessions in the ebooks data. In other words, how many items have 1
session? How many have 2 sessions? And so on. Note that this data has no items with
zero user sessions.
# Note that we can omit the "data =" argument in ggplot()
# and the "mapping = " argument in aes()
ggplot(ebooks) +

geom_histogram(aes(x = User.Sessions))
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
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The problem here is that the overwhelming majority of books have a small amount of usage,
so the plot is heavily skewed. I thought about using a different dataset for this reason, but
chose not to because this is a very common problem in usage analysis. It can be addressed
either by adding a binwidth argument to aes(), and changing the scales of the x and y axes
by adding more arguments to ggplot:
# I am also changing the binwidth. Read ?geom_histogram for more information
# Map a histogram of User.Sessions to the y axis
ggplot(data = ebooks) +

geom_histogram(aes(x = User.Sessions)
, binwidth = .5) +

scale_x_log10() +
scale_y_log10()

Notice the scale on both the y and x axes go from 0-10, 10-100, and 100-1000. This is called
“logarithmic scale” and is based on orders of magnitude. We can therefore see that over 1,000
ebooks (on the y axis) have between 0-10 user sessions (on the x axis), and fewer than 10
ebooks (on the y axis) have over 1,000 user sessions (on the y axis). ggplot has thus given us
an easy way to visualize the distribution of user sessions. I think you will find if you test this
on your own print and ebook usage data, you will find something similar.

4.2.1.1 Changing the geom

This same exact data can be visualized in a couple different ways by replacing the
geom_histogram() function with either geom_density() or geom_freqpoly():
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ggplot(data = ebooks) +
geom_density(aes(x = User.Sessions)

, binwidth = .5) +
scale_x_log10() +
scale_y_log10()

ggplot(data = ebooks) +
geom_freqpoly(aes(x = User.Sessions)

, binwidth = .5) +
scale_x_log10() +
scale_y_log10()

4.2.2 Bivariate geoms

Bivariate plots visualize two variables. I want to take a look at some higher usage items, but
first eliminate the extreme outliers with high usage, which I will do with filter() from the
dplyr package. I will then visualize user sessions by call number with a scatter plot. There
is still so much skew that I retain the logarithmic scale on the y axis with scale_y_log10().
# first create a new variable ebooksPlot with filter()
ebooksPlot <- filter(ebooks

, User.Sessions < 500 & User.Sessions > 10)

# map the User.Sessions variable to the y axis,
# and the LC.Class category to the x axis,
# and plot it on a logarithmic scale
ggplot(data = ebooksPlot) +

geom_point(aes(x = LC.Class, y = User.Sessions)) +
scale_y_log10()
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Again, notice the scale on the y axis. We can obseve a few items of interest here: The P
Class has no items with over 10 user sessions, and the G Class has very few items, but three
of them have over 100 user sessions. You can then dig into these higher usage items using
filter():
ebooks %>%

filter(LC.Class == "G" & User.Sessions > 100) %>%
select(Title)

## Title
## 1 Around the Tuscan Table : Food, Family, and Gender in Twentieth Century Florence
## 2 Fundamentals of Environmental Sampling and Analysis
## 3 Life and Words : Exploring Violence and the Descent into the Ordinary

Just as with univariate plots, we can use different geoms to view various aspects of the data,
which in turn reveal different patterns:
ggplot(data = ebooksPlot) +

geom_boxplot(aes(x = LC.Class, y = User.Sessions)) +
scale_y_log10()

ggplot(data = ebooksPlot) +
geom_violin(aes(x = LC.Class, y = User.Sessions)) +
scale_y_log10()
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4.3 Add a third variable

You can convey even more information in your visualization by adding a third variable, in
addition to the first two on the x and y scales.
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4.3.1 Add a third variable with aes()

We can use arguments in aes() to map a visual aesthetic in the plot to a variable in the
dataset. Specifically, we will map color to the Collection variable. In other words, associate
the name of the aesthetic (color) to the name of the variable (Collection) inside aes()
ggplot(data = ebooksPlot) +

geom_point(aes(x = LC.Class
, y = User.Sessions
, color = Collection)) +

scale_y_log10()

ggplot() automatically assigns a unique level of the aesthetic to each unique value of the
variable (this is called scaling). Most of the items in this dataset are either librarian-
purchased or part of our subscription, but there are some DDA (“demand driven acquisition”)
items in there.
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Use fill() with geom_bar() to create a stacked bar plot:
ggplot(data = ebooks) +

geom_bar(aes(x = LC.Class
, fill = Collection))

4.3.2 Add a third variable with facets

Another way to add a third variable is to use facet functions. These create subplots of subsets
of the data. Below I use facet_wrap() to break up the main plot by LC.Class. Read more
at help(facet_wrap) and help(facet_grid).
ggplot(data = ebooksPlot) +

geom_point(aes(x = User.Sessions
, y = Pages.Viewed)) +

facet_wrap(~ LC.Class) +
geom_smooth(aes(x = User.Sessions

, y = Pages.Viewed)) +
scale_x_log10()
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4.4 Putting it all together with %>%

We saw at the end of Session 2 that multiple dplyr functions can be added to each other
with the pipe symbols %>%. This symbol also works with ggplot2 functions. Below, I use
filter() to create a subset of ebooks where LC.Class is equal to either Q or P, then, using
a frequency polgon (freqpoly), I map the x axis to Pages.Viewed (i.e. how many books
have 1 page viewed, how many books have 2 pages viewed, and so on), and I map the color
aesthetic to LC.Class, changing the size (thickness) of the line to 1.5.
filter(ebooks

, LC.Class == "Q" | LC.Class == "P") %>%
ggplot() +
geom_freqpoly(aes(x = Pages.Viewed

, color = LC.Class
, binwidth = .5)

, size = 1.5) +
scale_x_log10()

We see on the whole that more pages per item tend to be viewed in items with call number
Q.
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4.5 Theme your plot

Of course we want to add titles, change axis coordinate displays, background color, tick marks,
and other matters of style. There are some preexisting themes, which you can read about on
the tidyverse ggtheme page. Call help(theme) to read about all the different components
you can change manually to create your own custom theme.

4.6 Save your plot

Call ggsave() to save an image of your plot. As you can see if you read help(ggsave),
arguments include the filename, path, size, file type (device), dimensions, and dpi. For
example:
myPlot <- ggplot(data = ebooks) +

geom_histogram(aes(x = User.Sessions)
, binwidth = .5) +

scale_x_log10() +
scale_y_log10()

ggsave(filename = "myPlot.png"
, plot = myPlot
, path = "./doc/images/"
, device = "png"
, height = 4
, width = 4
, units = "in")

4.7 Help with ggplot2

• R For Data Science Chapter 3: http://r4ds.had.co.nz/data-visualisation.html
• Data Visualization with ggplot2 interactive course by Rick Scavetta
• The R Graphics Cookbook by Winston Change
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