4) 4 4)
Towards an Exascale PDE Engine N » ADER DG
High Order ADER-DG Finite Volume Limiting
z i\
ExaHyPE Goal: L BT The computational domain Q ¢ R? with d = 2, 3 is discretised with a cartesian grid.
Astrophysics eenable medium-sized interdisciplinary research R 1. Insert the DG ansatz function uy(z, t") = >, ¢4(x)d} into equation (1) and multiply with
tgamls to reallfse extrer;]el—lscale " - ;1__;: L a test function ¢, from the space of piecewise polynomias of degree N
S|rr.1u. ations of grand cha .enges AUIeEy B L 2. integrate over a space-time control volume T} x [t", "]
o efficiently solve hyperbolic PDE systems on carte- T e T o
. . . : e for surface integrals introduce a classical Riemann solver as its used in Godunov-
sian grids using higher-order = voe EV schemes
ADER DG schemes with subcell limiting ﬁ QH PE yp | o
Ni e The non-conservative product on the element boundaries is discretized via a path-
The ExaHyPE Engine solves systems of first-order i‘% An Exascale Hyperbolic PDE Engine conservative jump term
hyperbolic PDEs of the form:
Finite Volume Limiting
d . .
0Q 0Q The new approach followed in ExaHyPE extends the successful a posteriori MOOD
PE +V-FQ)+ Z BZ(Q)a_Q;Z. =5(Q) + Z 0, p method of Loubére et al. also to the DG-FEM framework.
= - As very simple a posteriori detection criteria we use
with e material matrix P e conserved flux vector F ’ 4 e A relaxed discrete maximum principle (DMP) in the sense of polynomials, absence of
e state vector Q e non-conservative fluxes Code Generation Tree Structured AMR floating point errors (NaN)
e point sources) ' e algebraic source terms S e Positivity of the solution, i.e. physical constraints on the solution
N J - If one of these criteria is violated after a time step, the scheme goes back to the old
time step and recomputes the solution in the troubled cells, using a more robust high
4 N 4 resolution shock capturing FV scheme subcells
| ' ' e Limiter can be interpreted as element-local checkpointing and restarting of the solver
API Creatl ng an Appl ICatIOn with a more robust scheme on a fine subgrid.
_ void EulerFv: MyEalersolver e Method is by construction positivity preserving, if and only if the FV scheme is positive
How do you create code that is easy to use and extend T . i adjustPointSolution N Y,
without losing flexibility and efficiency? eano—Kernel-path comst - . /Peanc const doubles const x,
exahype-path const = ./ExaHyPE const double t,const double dt, - \
Using code generation to generate efficient programs tailored to the hardware and appli- output-directory const = ./Euler N doublex Q)
tion // Q@todo Please implement C d O t- 3 t- d G t.
ca " comPutat%onal—domain J | : | O e p Im Isa Ion an enera IOn
z To write an ExaHyPE code jj;iiism wonst _ i_o, 1.0 empty app fatlon class
e : 1. Start from a specification file defining orteer RSP oid BolerEviMuEaisrSoiver How to make a user friendly code fast?
| PDE terms (C/C++ or Fortran) ::>'~ the domaln, PDE SYStem and reqU|red end computational-domain . ::adjustPointSolution (
—— z . architecture const doublex const x, In ExaHyPE’s API the code generator lies between the toolkit and the kernels
g :if;ﬁfirt:ris_c,e&';s:ife(fp?f;23’:.’.{'): ; 2. From this the ExaHyPE toolkit creates SO\l,ZiaEiZ;ti;ZiumeS:MZiglfrjoévzrl Ziiiiedoéi’l? T eonst double dt e Automatically called by the toolkit if required by the specification file without changes
2 [Plotters for various file formats | ig glue COde, empty appllcatlon_specrflc patch—-size const = 10 Variables wvars (Q); I’eC]UIred by the user
o . . . maximum-mesh-size = 2e-— double ener = vars.kE(); . . .
= _ | 8 classes and optionally application and time_steppiig _ éloial getlnitialpfzfile(X,ene(lgy,t,dt),. e Generates kernels tailored to the hardware and application
rid management an eaps g.-l . . . B .
DrTtes oy ol i architecture tailored core routines Fype const ~ goduno vars.E0) = energyi The ExaHyPE code generator uses:
ared-memory parallelisation ux‘ erms cons = ux
3. Fill thg emptylappllcatlon classes with optimisation const = generic double density = vars.rho () e Jinja2 a python template engine
[] written by user <— steers domain specific code that sets up the language const - C getInitialProfile (x,density,t,dt); _ _ . ,
[toolkiprepared by tookit < generates PDE system being solved end solver vars.rho() = density; e and LIBXSMI\/I a library for small matrix-matrix products, see A. Heinecke, G. Henry,
end exahype-project } — - M. Hutchinson, H. Pabst, 2016
The ExaHyPE Engine comprises the following key features specitication file completed initial conditions | Hjm,j,k);zxaxstensor
J
 Dynamic mesh refinement on Cartesian grids in two and three dimensions —
¢ A simple API that allows users to quickly realise complex applications v N\
U p ided cod be writt iy Fyt C . @ yPe Al:1) : 263 matrix (slice k=1) ey matrix
e User-provided code can be written in Fortran or C++ S N . e l
e Automatically generated architecture and application optimised ADER-DG routines . L
o o _ Extracting matrix slices consisting of 1 space dimension and the dimension of
e Distributed memory parallelisation with MPI quantities from a (2+1)-dimensional tensor.
e Shared memory parallelisation through Intel’s Threading Building Blocks (TBB)
N / _ _ Y,
References:

Engine Design

This project has received funding from the European
Union’s Horizon 2020 research and innovation programme
under grant agreement No 671698, www.exahype.eu

] The ExaHyPE consortium. The ExaHyPE Guidebook. www.exahype.eu

M. Dumbser, F. Guercilena, S. Koppel, L. Rezzolla, O. Zanotti: A strongly hyper- bolic first-order CCZ4 formulation of the Einstein equations and its solution with discontinuous Galerkin schemes (2017) Physical Review D
D.E. Charrier and T. Weinzierl, Stop talking to me — a communication avoiding ADER-DG realisation.

