
1

About Measure Metrics

F

1 WHY MCC?
Although the F-measure and AUC are widely used, we see
them as problematic due to bias particularly in the presence
of unbalanced data sets, which is of course precisely the
scenario we are interested in studying. Consequently, we
use MCC (Matthews correlation coefficient [4] (MCC) oth-
erwise known as φ - see [5]) as our measure of predictive
performance.

Actually Positive Actually Negative
Predict Positive TP FP

Predict Negative FN TN

TABLE 1: Confusion Matrix

The starting point for most classification performance
measures is the confusion matrix. This represents counts
of the four possible outcomes when using a dichotomous
classifier to make a prediction (see Table 1)1. For example,
F1 is the most commonly used derivative of the F-measure
family and is defined by Eqn. 1.

F1 =
2 · TP

2 · TP + FP + FN
(1)

However, it excludes True Negatives (TN) in its calcula-
tion which is potentially problematic. The reason is that
it originated from the information retrieval domain where
typically the number of true negatives, e.g., irrelevant web
pages that are correctly not returned is neither knowable
nor interesting. However, unlike recommendation tasks2,
this is not so for defect prediction because test managers
are definitely interested to know if components are truly
non-defective.

Let us compare F1 with MCC. MCC is the geometric
mean of the regression coefficients of the problem and its
dual [1] and is defined as:

MCC =
TP× TN− FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(2)

As a correlation coefficient it measures the relationship be-
tween the predicted class and actual class, MCC is on a scale
[-1,1] where 1 is a perfect positive correlation (also perfect
prediction), zero no association and -1 a perfect negative
correlation. In contrast, we illustrate the problematic nature
of F1 with a simple example and compare it with MCC.

1. Note: in the context of software defect prediction, the positive class
and negative class denote defective and non-defective respectively.

2. Examples of recommendation tasks include bug triage [6] or rec-
ommending code snippets [7].

Suppose our hypothetical defect classifier predicts as
Case 1 in Table 2.

Case 1 Case 2 Case 3 Case 4
TP 5 5 4 9
FP 45 45 9 54
FN 5 5 6 1
TN 45 0 81 36
F1 0.17 0.17 0.35 0.25

MCC 0.00 -0.67 0.27 0.19
G-mean 0.50 0.00 0.60 0.60

TABLE 2: Example Classification Cases

We can see the proportion of cases correctly classified is
0.5 i.e., TP+TN/n = 5+45/100. This yields an F1 of 0.17 on
a scale [0,1] which is somewhat difficult to interpret. Let
us compare F1 with MCC. In this case, MCC=0 which is
intuitively reasonable since there is no association between
predicted and actual3. Now suppose the True Negatives
are removed so n=55 as in Case 2 in Table 2. F1 remains
unchanged at 0.17 whilst MCC=-0.67 signifying substan-
tially worse than random performance. The proportion of
correctly classified cases is now 5/55 = 0.09, clearly a
great deal worse than guessing and so we have a perverse
classifier. However, F1 cannot differentiate between the two
situations. This means experimental analysis based upon F1

would be indifferent to the two outcomes.
This example illustrates not only a drawback with F1,

but also the weakness of all derivative measures from Recall
and Precision as they ignore TNs. Measures such as Accuracy
are also well-known to be biased as they are sensitive to data
distributions and the prevalence of the positive class [8].

One alternative measure that covers the whole confusion
matrix is the G-mean, defined as the geometric mean of the
accuracies of the two classes (see Eqn. 3) and was developed
specifically for assessing the performance under imbalanced
domains [3]. It assumes equal weight of the precision for
both classes.

G-mean =

√
TP

TP + FN
×

TN
TN + FP

(3)

However, there are disadvantages with G-mean. As ob-
served by López et al.[2], “due to this symmetric nature of
the geometric mean ... it is hard to contrast different models
according to their precision on each class”. For example, in
Table 2 we observe that Case 3 (TPrate = 0.4, TNrate = 0.9)

3. This is a typical random guess where the accuracy for both classes
is 50%.



2

and Case 4 (TPrate = 0.9, TNrate = 0.4) the G-mean is
the same 0.60. However, Case 3 is clearly preferred by MCC
and F1. An alternative version called the G-measure replaces
TNrate with precision, however, it ignores TN and suffers the
same drawback as the F-measure.

Thus, we seek a single measure that:

1) Covers the entire confusion matrix;
2) Evaluates a specific classifier4;
3) Properly takes into account the underlying frequen-

cies of true and negative cases;
4) can be easily interpreted

The third requirement needs further discussion in that
AUC — another commonly used measure for evaluating
classifiers — is also problematic. AUC calculates the area un-
der an ROC curve which depicts relative trade-offs between
TPR (true positive rate which is TP/(TP+FN)) and FPR (false
positive rate which is FP(FP+TN)) of classification for every
possible threshold. One classifier can only be preferred to
another if it strictly dominates i.e., every point on the ROC
curve of this classifier is above the other curve. Otherwise,
we cannot definitively determine which classifier is to be
preferred since it will depend upon the relative costs of FPs
and FNs.

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

FPR

T
P

R

Fig. 1: ROC curves of Classifier
A (the solid curve) and Classifier
B (the dotdash curve)

FPR TPR(A) TPR(B)
0.05 0.1 0.15
0.1 0.22 0.35
0.2 0.41 0.58
0.3 0.58 0.66
0.4 0.72 0.72
0.5 0.89 0.76
0.6 0.97 0.8
0.8 0.99 0.89

AUC A B
0.725 0.704

TABLE 3: Points on the A and B
ROC curves

Consider the example in Fig. 1 that shows ROC curves
for two classifiers (Classifier Family A and Classifier Family
B) derived from the values of some points on these curves
(Table 3). We can observe that B is better than A when FPR
is less than 0.4, but this reverses when FPR is greater than
0.4. Without knowing the relative costs of FP and FN we
cannot determine which classifier is to be preferred. As a
compromise, the area under the curve can be calculated to
quantify the overall performance of classifier families, i.e.
the AUC of A is 0.725 which is greater than the AUC of B
(0.704). The AUC values indicate A is better than B, but this
still doesn’t help us determine which specific classifier we
should actually choose.

Moreover, AUC is incoherent in that it is calculated
on different misclassification cost distributions for different
classifiers [10], since various thresholds relate to varying

4. As opposed to a family of classifiers such as is the case for the Area
Under the Curve (AUC) measure [9]

misclassification costs. Hence we conclude AUC is unsuit-
able for our purposes. Consequently, we select MCC as our
performance measure. For a fuller discussion of the merits
and demerits of various classification performance metrics
see [1], [11], [3].

REFERENCES

[1] D. Powers, “Evaluation: from precision, recall and F-measure
to ROC, informedness, markedness and correlation,” Journal of
Machine Learning Technologies, vol. 2, no. 1, pp. 37–63, 2011.

[2] V. López, A. Fernández, S. Garcı́a, V. Palade, and F. Herrera,
“An insight into classification with imbalanced data: Empirical
results and current trends on using data intrinsic characteristics,”
Information Sciences, vol. 250, pp. 113–141, 2013.

[3] P. Branco, L. Torgo, and R. P. Ribeiro, “A survey of predictive mod-
eling on imbalanced domains,” ACM Computing Surveys (CSUR),
vol. 49, no. 2:31, 2016.

[4] P. Baldi, S. Brunak, Y. Chauvin, C. Andersen, and H. Nielsen,
“Assessing the accuracy of prediction algorithms for classification:
an overview,” Bioinformatics, vol. 16, no. 5, pp. 412–424, 2000.

[5] M. Warrens, “On association coefficients for 2 × 2 tables and
properties that do not depend on the marginal distributions,”
Psychometrika, vol. 73, no. 4, pp. 777–789, 2008.

[6] J. Xuan, H. Jiang, Y. Hu, Z. Ren, W. Zou, Z. Luo, and X. Wu,
“Towards effective bug triage with software data reduction tech-
niques,” IEEE transactions on knowledge and data engineering, vol. 27,
no. 1, pp. 264–280, 2015.

[7] H. Jiang, L. Nie, Z. Sun, Z. Ren, W. Kong, T. Zhang, and X. Luo,
“Rosf: Leveraging information retrieval and supervised learning
for recommending code snippets,” IEEE Transactions on Services
Computing, 2016.

[8] F. Provost, T. Fawcett, and R. Kohavi, “The case against accuracy
estimation for comparing induction algorithms.” in ICML, vol. 98,
1998, pp. 445–453.

[9] T. Fawcett, “An introduction to ROC analysis,” Pattern Recognition
Letters, vol. 27, no. 8, pp. 861–874, 2006.

[10] D. Hand, “Measuring classifier performance: a coherent alterna-
tive to the area under the ROC curve,” Machine Learning, vol. 77,
no. 1, pp. 103–123, 2009.

[11] P. Flach and M. Kull, “Precision-recall-gain curves: PR analysis
done right,” in Advances in Neural Information Processing Systems,
2015, pp. 838–846.


	Why MCC?
	References

