Supplementary Material I

Below are listed all the GAFF-IC force-field parameters. Partial charges are not provided, since they should be obtained from ab-initio calculations by using RESP method. A MOL2 file containing the specifications for an HDI molecule is provided at the end of this document, where RESP partial charges are reported.

Atom types and non-bonded parameters

LJ parameters for the atom types appearing in isocyanates. The source of the parameters is also reported: GAFF-IC is this work, GAFFlipid is from Dickson et al. (Ref. 33 in main text), default means the GAFF standard values.

Atom type	Mass [amu]	$\epsilon [\mathrm{Kcal/mol}]$	$\sigma \ [{ m \AA}]$	comment (source)
n2	14.010	1.795	0.155	N in isocyanate (GAFF-IC)
c1	12.010	1.874	0.155	C in isocyanate (GAFF-IC)
O	16.000	1.632	0.175	O in isocyanurate/isocyanate (GAFF-IC)
c3	12.010	2.010	0.055	sp3 carbon (GAFFlipid)
hc	1.008	1.340	0.024	hydrogen in -CH3- (GAFFlipid)
h1	1.008	1.340	0.024	hydrogen in -CH2- (GAFFlipid)
\mathbf{c}	12.010	1.908	0.086	sp2 C in isocyanurate (default)
n	14.010	1.824	0.175	sp2 N in isocyanurate (default)

Bond parameters

All bond equilibrium lengths were adjusted to match the B3LYP-6311++G(d,p) calculations. The bond energy term in the force field is:

$$E_{bond} = \frac{k_b}{2} \left(r_{ij} - b_0 \right)^2$$

Bond	$k_b \left[\text{Kcal/(mol · Å}^2) \right]$	$b_0 [\text{\AA}]$
c - n	478.20	1.379
c - o	648.00	1.200
n - c3	330.60	1.478
c3 - h1	335.90	1.095
c3 - c3	303.10	1.525
c3 - hc	337.30	1.096
c3 - n2	313.80	1.450
n2 - c1	769.80	1.199
c1 - o	777.00	1.171

Angle parameters

All equilibrium angle values were adjusted to match the B3LYP-6311++G(d,p) calculations. The angle energy term in the force field is:

$$E_{angle} = \frac{k_a}{2} \left(\theta_{ijk} - \theta_0 \right)^2$$

angle	$k_a [\mathrm{Kcal/(mol \cdot deg^2)}]$	θ_0 [deg]]
c - n - c	65.33	124.13
c - n - c3	63.92	118.02
n - c - o	75.83	122.03
n - c - n	74.80	115.80
n - c3 - h1	49.82	112.32
n - c3 - c3	65.85	112.13
n - cc - n2	74.78	122.59
c3 - c3 - hc	46.37	109.50
c3 - c3 - c3	63.21	112.69
h1 - c3 - h1	39.18	109.55
h1 - c3 - c3	46.36	110.20
hc - c3 - hc	39.43	106.25
c3 - c3 - n2	66.40	113.13
c3 - n2 - c1	58.67	138.85
h1 - c3 - n2	49.26	109.01
n2 - c1 - o	69.15	173.76

Dihedral parameters

All dihedral values were refitted as described in the main text. The dihedral energy term of the force field is:

$$V_{dihe}(\phi) = \sum_{i=1}^{4} V_i \left[1 + \cos\left(i\phi + \delta_i\right) \right]$$

Dihedral	i	V_i [Kcal/mol]	δ_i [degrees]
c -n -c -n	2	25.0000	180
c -n -c -o	2	25.0000	180
c - n - c3 - c3	4	-0.1439	0
c - n - c3 - c3	2	0.3789	0
n -c -n -c3	2	25.0000	180
n -c3-c3-hc	3	0.1353	0
n -c3-c3-c3	4	0.0106	180
n -c3-c3-c3	3	0.1393	0
n -c3-c3-c3	2	-0.0779	180
n -c3-c3-c3	1	-0.4949	0
o -c -n -c	2	25.0000	180
c3-c3-c3-hc	3	0.1392	0
h1-c3-c3-hc	3	0.1827	0
h1-c3-c3-c3	3	0.1827	0
hc-c3-c3-hc	3	0.1392	0
c3-c3-c3-c3	4	-0.0751	180
c3-c3-c3-c3	3	0.1392	0
c3-c3-c3-c3	2	-0.1686	180
c3-c3-c3-c3	1	0.3456	0
c3-c3-c3-n2	4	-0.0493	0
c3-c3-c3-n2	3	0.1827	0
c3-c3-c3-n2	2	-0.1918	180
c3-c3-c3-n2	1	-0.0956	0
c3- $c3$ - $n2$ - $c1$	3	0.0000	0
hc-c3-c3-n2	3	0.1827	0
c3-n2-c1-o	2	0.0000	0
h1-c3-n2-c1	3	0.0000	0

MOL2 file for the HDI molecule

#This is the MOL2 file for the HDI molecule.
#Last column of the ATOM section contains the RESP partial charged,
#already scaled by the 1/sqrt(2) factor.

```
@<TRIPOS>MOLECULE
HDI
24
      23
              1
                    0
                           0
{\tt SMALL}
resp
@<TRIPOS>ATOM
1 C1
              -1.6810
                         -0.6270
                                    -0.1450 c3
                                                       1 HDI
                                                                   0.090994
2 H1
              -1.4040
                         -1.6860
                                    -0.0740 h1
                                                       1 HDI
                                                                    0.0424462
3 H2
              -1.1910
                         -0.2320
                                    -1.0390 h1
                                                       1 HDI
                                                                   0.0424462
4 C2
                                                       1 HDI
              -1.2070
                          0.1280
                                     1.0920 c3
                                                                   0.0224422
              -1.5170
5 H3
                          1.1770
                                     1.0100 hc
                                                       1 HDI
                                                                   0.0176105
6 H4
              -1.7120
                         -0.2790
                                     1.9770 hc
                                                       1 HDI
                                                                   0.0176105
7 C3
                          0.0410
                                     1.2700 c3
                                                       1 HDI
               0.3040
                                                                  -0.00190212
8 H5
               0.8040
                          0.4430
                                     0.3780 hc
                                                       1 HDI
                                                                  -0.00738785
9 H6
               0.6080
                         -1.0120
                                     1.3400 hc
                                                       1 HDI
                                                                  -0.00738785
10 C4
                0.7960
                           0.7900
                                      2.5050 c3
                                                        1 HDI
                                                                    -0.00190212
11 H7
                0.2960
                                      3.3970 hc
                                                        1 HDI
                                                                   -0.00738785
                           0.3890
12 H8
                0.4920
                           1.8430
                                      2.4350 hc
                                                        1 HDI
                                                                    -0.00738785
13 C5
                2.3070
                           0.7030
                                      2.6830 c3
                                                        1 HDI
                                                                    0.0224422
14 H9
                2.8120
                                      1.7980 hc
                                                        1 HDI
                                                                    0.0176105
                           1.1100
15 H10
                                                        1 HDI
                2.6170
                          -0.3460
                                      2.7650 hc
                                                                    0.0176105
16 C6
                2.7810
                           1.4580
                                      3.9200 c3
                                                        1 HDI
                                                                    0.090994
17 H11
                                      4.8140 h1
                                                        1 HDI
                                                                    0.0424462
                2.2910
                           1.0630
18 H12
                2.5040
                           2.5170
                                      3.8490 h1
                                                        1 HDI
                                                                    0.0424462
19 N1
                4.2020
                           1.3630
                                      4.1300 n2
                                                        1 HDI
                                                                   -0.40123678
20 N2
               -3.1020
                          -0.5330
                                     -0.3550 n2
                                                        1 HDI
                                                                    -0.40123678
21 C7
                          -0.6080
                                      0.2810 c1
                                                        1 HDI
                                                                    0.513372
               -4.1150
                                      3.4950 c1
22 C8
                                                        1 HDI
                5.2160
                           1.4440
                                                                    0.513372
                                      0.7930 o
23 01
               -5.1680
                          -0.6570
                                                        1 HDI
                                                                   -0.329007
24 02
                6.2680
                           1.4980
                                      2.9840 o
                                                        1 HDI
                                                                   -0.329007
@<TRIPOS>BOND
          2 1
1
     1
2
          3 1
     1
3
     1
          4 1
4
          20 1
     1
5
     4
          5 1
          6 1
6
     4
```

```
7
  4 7 1
8
  7 8 1
9
  7 9 1
  7 10 1
10
  10 11 1
11
12
  10
      12 1
13 10
      13 1
14 13
      14 1
15 13
      15 1
16 13
      16 1
17 16 17 1
18
  16 18 1
      19 1
19
   16
20 19 22 2
21 20 21 2
22 21 23 2
23 22 24 2
@<TRIPOS>SUBSTRUCTURE
                       0 **** **** O ROOT
1 HDI 1 TEMP
```