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In this supplementary document, we provide (i) the proofs for Theorem 3.1,

Lemma 3.1 and Theorem 3.3 in §3, (ii) the verification of the special cases in §3.4, and

(iii) the details of the simulation settings in §4. To make the document self-contained

to a certain extent, these results and their conditions are re-stated in this document.

1 Technical proofs

1.1 Theorem 3.1 and its proof

Assume the following conditions:

A1 maxj∈sc
0
|γn(j, s,β)| < qmaxj∈s− |γn(j, s,β)|, 0 < q < 1.

A2 (Partial positive cone condition). If s− 6= φ, let

As = {j̃ : j̃ ∈ s−, |γn(j̃, s,β)| = max
j∈sc

|γn(j, s,β)|},
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and X̃(As) = [I − H(s)]X(As). Then [X̃
τ
(As)X̃(As]

−11 > 0, where 1 is the

vector with all components 1.

A3
√

n
ln pn

λmin[
1
n
Xτ (s0)X(s0)] min

j∈s0

|βj| → +∞, as n → ∞, where λmin denotes the

smallest eigenvalue.

Theorem 3.1 Let s∗1, s∗2, · · · , s∗k, · · · be the sequence generated by the SLasso pro-

cedure. Suppose that assumptions A1-A3 hold. Let ln pn = O(nκ), where κ < 1/2.

Then, there is a k∗ such that

Pr(s∗k∗ = s0) → 1, as n→ ∞,

where s0 is the exact index set of the relevant features.

Proof. By the KKT condition, at the (k + 1)st step of the sequential Lasso, the

solution β̂ satisfies

2X̃
τ
(ỹ − X̃β̂) = λ∂‖β̂‖1, (1.1)

where ỹ = [I − H(s∗k)]y, X̃ = [I − H(s∗k)]X(sc
∗k), and ∂‖β̂‖1 is a sub gradient of

‖β‖1 at β̂ whose components are 1,−1 or a number with absolute value less than or

equal to 1 according as the components are positive, negative or zero.

For k = 0, s∗0 is taken as the empty set φ. Obviously, s∗0 ⊂ s0. It suffices to show

that, given s∗k ⊂ s0, P (s∗k+1 ⊂ s0) → 1, uniformly for all k such that |s∗k| < |s0|.
Let

γ̂n(j, s∗k,β) =
1

n
xτ

j [I − H(s∗k)]y = γn(j, s∗k,β) +
1

n
xτ

j [I − H(s∗k)]ε.

Define

Ak = {j : |γ̂n(j, s∗k,β)| = max
j∈sc

∗k

|γ̂n(j, s∗k,β)|}.

We are going to show that, with probability converging to 1, Ak ⊂ s0 and that Ak

is the set of non-zero elements of the solution to equation (1.1). We first show that
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Ak ⊂ s0, which is implied by |γ̂n(j, s∗k,β)| > maxl∈sc
0
|γ̂n(l, s∗k,β)| for j ∈ s−∗k with

probability converging to 1. The statement is established by showing

(i) 1
n
xτ

j [I − H(s∗k)]ε = Op(n
−1/2 ln p) uniformly for all j ∈ sc

∗k.

(ii) For j ∈ s−∗k, maxj∈s−
∗k
|γn(j, s∗k,β)| ≥ Cnn

−1/2 ln p for Cn → ∞.

Notice that xτ
j [I − H(s∗k)]ε ∼ N(0, σ2‖x̃j‖2

2) where ‖x̃j‖2
2 ≤ ‖xj‖2

2 = n. Hence

P (
1

n
|xτ

j [I −H(s∗k)]ε| > σn−1/2 ln p)

= P (|xτ
j [I − H(s∗k)]ε| > σn1/2 ln p)

≤ P (|xτ
j [I − H(s∗k)]ε| > σ‖x̃j‖2 ln p)

= P (|z| > ln p) ≤ 2

ln p
exp{−(ln p)2

2
},

where z is a standard normal random variable. Thus, by Bonferroni inequality,

P (max
j∈sc

∗k

1

n
|xτ

j [I −H(s∗k)]ε| > σn−1/2 ln p) ≤ 2

ln p
exp{−(ln p)2

2
+ ln p} → 0. (1.2)

Thus (i) is proved.

Let ∆(s∗k) = µτ [I−H(s∗k)]µ where µ = Xβ. We have the following inequalities

∆(s∗k) =
∑

j∈s−
∗k

βjx
τ
j [I − H(s∗k)]µ ≤ n‖β(s−∗k)‖1 max

j∈s−
∗k

|γn(j, s∗k,β)|, (1.3)

and

∆(s∗k) =βτ (s−∗k)X
τ(s−∗k)[I − H(s∗k)]X(s−∗k)β(s−∗k)

≥λmin(X
τ (s−∗k)[I − H(s∗k)]X(s−∗k))‖β(s−∗k)‖2

2

≥λmin(X
τ (s0)X(s0))‖β(s−∗k)‖2

2.

(1.4)

The second inequality above follows since s∗k∪s−∗k = s0 and (Xτ (s−∗k)[I−H(s∗k)]X(s−∗k))
−1

is a sub-matrix of (X τ(s0)X(s0))
−1 by the formula of the inverse of blocked matrices.
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Combining (1.3) and (1.4) yields

max
j∈s−

∗k

|γn(j, s∗k,β)| ≥ λmin(
1

n
Xτ(s0)X(s0))

‖β(s−∗k)‖2
2

‖β(s−∗k)‖1

≥ λmin(
1

n
Xτ(s0)X(s0))min

j∈s0

|βj|

≡ Cnn
−1/2 ln p, say,

with Cn = n1/2

ln p
λmin(

1
n
Xτ(s0)X(s0))minj∈s0

|βj|. The second inequality above holds

since |s−∗k|‖β(s−∗k)‖2
2 ≥ ‖β(s−∗k)‖2

1 ≥ |s−∗k|minj∈s0
|β0j|‖β(s−∗k)‖1. Cn → ∞ by A3. Thus

(ii) is proved.

By A1 and (ii),

|max
j∈s−

∗k

|γn(j, s∗k,β)| − max
j∈sc

0

|γn(j, s∗k,β)||

> (1 − q)max
j∈s−

∗k

|γn(j, s∗k,β)| ≥ (1 − q)Cnn
−1/2 ln p.

This fact and (i) then imply that γ̂n(j, s∗k,β) must attain the maximum within s−∗k.

Therefore, Ak ⊂ s−∗k ⊂ s0.

Without loss of generality, assume that γ̂n(j, s∗k,β) > 0 for all j ∈ Ak. Consider

γ̂n(j, s∗k, ξ) as a function of ξ. Since the function is continuous, for each j ∈ Ak,

there exist a neighborhood Nj = {ξ : ‖ξ − β‖2 ≤ δj} and a constant cj > 0 such

that, for all ξ ∈ Nj, γ̂n(j, s∗k, ξ) − maxl∈Ac
k
|γ̂n(l, s∗k, ξ))| > cj . Here Ac

k denotes the

complement of Ak in sc
∗k by an abuse of notation. Let N = {ξ : ‖ξ−β‖2 ≤ δ} where

δ = min δj. Then for all ξ ∈ N , minj∈Ak
γ̂n(j, s∗k, ξ) − maxl∈Ac

k
|γ̂n(l, s∗k, ξ))| > C,

where C = max cj.

Now construct β̂ as follows. Let β̂(Ak) = ω[X̃
τ
(Ak)X̃(Ak)]

−11 and β̂(Ac
k) = 0,

where ω > 0. By A2, β̂(Ak) > 0. Take ω small enough such that β − β̂ ∈ N . Thus

we have minj∈Ak
γ̂n(j, s∗k,β − β̂) > maxl∈Ac

k
|γ̂n(l, s∗k,β − β̂))|. On the other hand,
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for any j ∈ Ak,

γ̂n(j, s∗k,β − β̂) = max
j∈sc

∗k

γ̂n(j, s∗k,β) − ω
1

n
X̃

τ

jX̃(Ak)[X̃
τ
(Ak)X̃(Ak)]

−11

= max
j∈sc

∗k

γ̂n(j, s∗k,β) − ω

n
.

Let λ = 2n[maxj∈sc
∗k
γ̂n(j, s∗k,β) − ω

n
]. Then, we have

2X̃
τ

j (ỹ − X̃β̂) = λ, for j ∈ Ak,

2X̃
τ

j (ỹ − X̃β̂) < λ, for j 6∈ Ak.

Let ∂|β̂j| = 2X̃
τ

j (ỹ − X̃β̂)/λ for j 6∈ Ak, and 1 for j ∈ Ak. Then ∂‖β̂‖1 with these

components is a sub gradient of ‖β‖1 at β̂ and β̂ solves equation (1.1). From the

construction of β̂, all the features corresponding to the non-zero components of β̂

belong to s0. Hence s∗k+1 ⊂ s0. Thus we have shown that, given s∗k ⊂ s0, s∗k+1 ⊂ s0

with probability converging to 1.

Since p0 = |s0| diverges as n→ ∞, we need to show that the above convergence is

uniform for all k such that |s∗k| < p0. Note that, under the assumptions, s∗k+1 ⊂ s0

is equivalent to minj∈Ak
γ̂n(j, s∗k,β) > maxl∈Ac

k
|γ̂n(l, s∗k,β))| which is implied by

P (maxj∈sc
∗k

1
n
|xτ

j [I − H(s∗k)]ε| > σn−1/2 ln p) → 0. Therefore, when p0 is divergent,

the uniform convergence is established if

P ( max
0≤k<p0

max
j∈sc

∗k

1

n
|xτ

j [I − H(s∗k)]ε| > σn−1/2 ln p) → 0, as n→ ∞.

It follows from (1.2) and the Bonferroni inequality that

P ( max
0≤k<p0

max
j∈sc

∗k

1

n
|xτ

j [I − H(s∗k)]ε| > σn−1/2 lnp)

≤ 2p0

ln p
exp{−(ln p)2

2
+ ln p}

≤ 2

ln p
exp{−(ln p)2

2
+ 2 ln p} → 0,

since p0 < p. The proof is completed. 2
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1.2 Lemma 3.1 and its proof

Assume that

a1 The off-diagonal elements of Σ are bounded by a constant less than 1; that is, the

correlation between any two features are bounded below from −1 and above

from 1.

a2 σmax ≡ max1≤j,k≤p σ(zjzk) < ∞ where σ(zjzk) denotes the standard deviation of

zjzk.

a3 max1≤j,k≤p E exp(tzjzk) and max1≤j≤p E exp(tzjε) are finite for t in a neighbor-

hood of zero.

Lemma 3.1 Under assumptions a1 - a3,

(i) P (max1≤j,k≤p

∣

∣

1
n

∑n
i=1 xijxik −Σjk

∣

∣ > n− 1

3σmax) → 0.

(ii) P (max1≤j≤p

∣

∣

1
n

∑n
i=1 xijεi

∣

∣ > n− 1

3σ) → 0.

(iii) Let Σjl|s = Σjl − ΣjsΣ
−1
ss Σsl and Σ̂jl|s = xτ

j [I − H(s)]xl/n. Then

max
1≤j,l≤pn

max
s:|s|≤p0

|Σ̂jl|s − Σjl|s| = op(1).

Proof. : For any j, k ∈ {1, 2, · · · , p} it follows from [1] that

P (|
n

∑

i=1

xijxik − nΣjk| >
√
nσ(zjzk)ψn) ≤ C [1− Φ(ψn)] exp[

ψ3
n√
n
λ(
ψn√
n

)] (1.5)

where C is a constant, Φ(·) is the cumulative distribution function of standard normal

distribution, λ(·) is the Cramer series for the distribution of zjzk which converges

in a neighborhood of zero under assumption a3, and ψn is a sequence satisfying

ψn = o(n1/2) and ψn → ∞.
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Now take ψn = n
1

6
−δ for 0 < δ < 1

6
− κ

2
. Then λ(

ψn√
n

) is bounded and
ψ3

n√
n

goes to

0 as n converges to ∞. Thus (1.7) leads to

P (|
n

∑

i=1

xijxik − nΣjk| > n
2

3
−δσmax)

≤ P (|
n

∑

i=1

xijxik − nΣjk| > n
2

3
−δσ(zjzk))

≤ C1[1 − Φ(n
1

6
−δ)]

≤ C1

n
1

6
−δ

exp(−1

2
n

1

3
−2δ),

where C1 is a generic constant. Let p = exp(anκ) where a > 0 and κ < 1
3
. By

Bonferroni inequality,

P ( max
1≤j,k≤p

∣

∣

∣

∣

∣

n
∑

i=1

xijxik − nΣjk

∣

∣

∣

∣

∣

> n
2

3
−δσmax) = o(n− 1

6
+δ) → 0.

Hence (i) is proved. The proof of (ii) is similar and is omitted.

Note that, for xj, xl and X(s), 1
n
xτ

j (I−X(s)[Xτ (s)X(s)]−1Xτ (s))xl is a continu-

ous function of the means 1
n

∑n
i=1 xijxil,

1
n

∑n
i=1 xijxik,

1
n

∑n
i=1 xilxik and 1

n

∑n
i=1 xikxim,

k,m ∈ s. Let X̄jls denote the vector consisting of these means and µjls its expecta-

tion. The function depends on |s| but not on n. Let g|s|(X̄jls) denote this function.

We then have g|s|(µjls) = Σjl|s.

By assumption a1, the range of µjls for all j, l, s with fixed |s| is compact. Hence

g|s| is also uniformly continuous for all (j, l, s) with fixed |s|. Thus for any η > 0 there

is a ζ > 0 such that if ‖X̄jls − µjls‖∞ ≤ ζ then |g|s|(X̄jls) − g|s|(µjls)| ≤ η, where ζ

does not depend on (j, l, s). From the proof of (i), we can choose a n0 such that when

n > n0,

P ( max
1≤j,k≤p

∣

∣

∣

∣

∣

1

n

n
∑

i=1

xijxik − Σjk

∣

∣

∣

∣

∣

> ζ) = o(n− 1

6
+δ).

Thus we have

P (max
j,l

|g|s|(X̄jls) − g|s|(µjls)| > η) = o(n− 1

6
+δ).
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By Bonferroni inequality,

P (max
j,l

max
s:|s|≤p0

|g|s|(X̄jls) − g|s|(µjls)| > η) ≤ o(n− 1

6
+δ)p0 → 0,

for p0 = O(n
1

6
−δ). (iii) is proved.

2

1.3 Theorem 3.3 and its proof

Theorem 3.3 Assume conditions A1 and A2. Suppose that ln pn = O(nκ), κ < 1/3,

p0 = O(nc), c < 1/6, and there is a constant C such that λmin(
1
n
X(s0)

τX(s0))minj∈s0
|βj|

≥ Cn−1/6+δ, where δ is an arbitrarily small positive number. Let s∗1 ⊂ s∗2 ⊂ · · · ⊂
s∗k ⊂ · · · be the sets generated by the procedure of SLasso. Then

(i) Uniformly, for k such that |s∗k| < p0,

P (EBICγ(s∗k+1) < EBICγ(s∗k)) → 1, when γ > 0.

(ii) P (minp0<|s|≤k0
EBICγ(s) > EBICγ(s0)) → 1, when γ > 1 − lnn

2 ln p
, where k0 > p0

is an arbitrarily fixed integer.

Note that the additional conditions above imply condition A3. Result (ii) follows

from the selection consistency of EBIC, see [2]. We only need to prove (i).

Proof. By Theorem 3.1, s∗k ⊂ s0 if |s∗k| ≤ p0 with probability converging to 1. Let

Dk = EBICγ(s∗k) − EBICγ(s∗k+1). Note that, under the assumption on p and p0,

ln
(

p
j

)

= j ln p(1 + o(1)), uniformly for all j ≤ p0. Thus, we can replace ln
(

p
j

)

by j ln p

in the definition of EBIC. Hence,

Dk = n ln

( ‖(I − H(s∗k))y‖2
2

‖(I − H(s∗k+1))y‖2
2

)

+ (|s∗k| − |s∗k+1|)(lnn + 2γ ln p)

= n ln

(

1 +
‖(I − H(s∗k))y‖2

2 − ‖(I − H(s∗k+1))y‖2
2

‖(I − H(s∗k+1))y‖2
2

)

− |Ak|(lnn+ 2γ ln p)

= Tk − |Ak|(lnn+ 2γ ln p), say,

8



where Ak = s∗k+1/s∗k = {l : |γ̂n(l, s∗k,β)| = maxj∈sc
∗k
|γ̂n(j, s∗k,β)|}. Without loss of

generality, assume |Ak| = 1. It suffices to show that

P (Tk ≤ lnn+ 2γ ln p) → 0, uniformly for 1 ≤ k < p0,

which is implied by
min1≤k≤p0

Tk

ln p
→ ∞, in probability. (1.6)

It remains to prove (1.6). For any given set s, vectors u and v, let ∆(s,u) =

uτ [I − H(s)]u and ∆(s,u,v) = uτ [I − H(s)]v. Thus

‖(I − H(s∗k))y‖2
2 − ‖(I − H(s∗k+1))y‖2

2

= [∆(s∗k, µ) − ∆(s∗k+1, µ)] + 2[∆(s∗k, µ, ε) − ∆(s∗k+1, µ, ε)] + [∆(s∗k, ε) − ∆(s∗k+1, ε)].

‖(I − H(s∗k+1))y‖2
2

= ∆(s∗k+1, µ) + 2∆(s∗k+1, µ, ε) + ∆(s∗k+1, ε).

First we show that

‖(I − H(s∗k))y‖2
2 − ‖(I − H(s∗k+1))y‖2

2

≥ n(λmin[
1

n
X(s0)

τX(s0)] min
j∈s0

|βj|)2(1 + op(1)), (1.7)

uniformly for k. This inequality follows from

(a) max1≤k<p0
[∆(s∗k, ε) − ∆(s∗k+1, ε)] = Op(ln p0);

(b) min[∆(s∗k, µ) − ∆(s∗k+1, µ)] ≥ n(λmin[
1
n
X(s0)

τX(s0)] minj∈s0
|βj|)2;

(c) ∆(s∗k, µ, ε) −∆(s∗k+1, µ, ε) = op(∆(s∗k, µ) − ∆(s∗k+1, µ)), uniformly for k.

The claims (a), (b) and (c) are proved in the following.
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Note that ∆(s∗k, ε)−∆(s∗k+1, ε) follows a χ2 distribution with degrees of freedom

|Ak|. Thus, by Bonferroni inequality, we have, for any a > 0,

P ( max
1≤k<p0

[∆(s∗k, ε) −∆(s∗k+1, ε)] ≥ a)

≤ p0P (χ2
1 ≥ a) = 2p0[1 − Φ(

√
a)] ≤ C√

a
exp(−a

2
+ ln p0).

Let a = 4 ln p0, then the above probability converges to zero, and thus (a) is proved.

By the relationship between I − H(s∗k) and I −H(s∗k+1), we have

∆(s∗k, µ) −∆(s∗k+1, µ)

= µτ (I − H(s∗k))X(Ak)[X(Ak)
τ(I − H(s∗k)X(Ak)]

−1X(Ak)
τ (I − H(s∗k))µ

≥ ‖X(Ak)
τ(I − H(s∗k))µ‖2

2λ
−1
max(X(Ak)

τ(I −H(s∗k)X(Ak))

≥ |Ak|n2γ2
n(k∗, s∗k,β)(n|Ak|)−1 = nγ2

n(k∗, s∗k,β),

where the last inequality holds since, for j ∈ Ak, xτ
j (I−H(s∗k))µ = nγn(k∗, s∗k,β) =

maxj∈sc
∗k
|xτ

j (I − H(s∗k))µ|. From (ii) in the proof of Theorem 3.1, for all k,

γn(k∗, s∗k,β) ≥ λmin[
1

n
X(s0)

τX(s0)] min
j∈s0

|βj|.

Thus (b) is proved.

To show (c), note that ∆(s∗k,µ,ε)−∆(s∗k+1,µ,ε)√
∆(s∗k,µ)−∆(s∗k+1,µ)

= Zk follows a standard normal distri-

bution. By the same argument as in the proof of (a), we have maxk |Zk| = Op(ln p0)
2.

Thus (c) follows from (b).

Next we show that, for all k,

‖(I − H(s∗k+1))y‖2
2 ≤ Cnp2

0, (1.8)

for some constant C . We have

‖(I − H(s∗k+1))y‖2
2

= ∆(s∗k+1, µ) + ∆(s∗k+1, ε) + 2∆(s∗k+1, µ, ε)

≤ ∆(s∗k+1, µ) + ∆(s∗k+1, ε) + 2
√

∆(s∗k+1, µ)∆(s∗k+1, ε). (1.9)
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Note that

∆(s∗k+1, ε) ∼ χ2
n−k−1 = (n− k − 1)[1 + op(1)] ≤ n[1 + op(1)]. (1.10)

If k = p0 − 1, ∆(s∗k+1, µ) = 0, otherwise,

∆(s∗k+1, µ) = β(s−∗k+1)
τX(s−∗k+1)

τ [I − H(s∗k+1)]X(s−∗k+1)β(s−∗k+1)

≤ β(s−∗k+1)
τX(s−∗k+1)

τX(s−∗k+1)β(s−∗k+1)

≤ C
∑

j,l∈s−
∗k+1

xτ
jxl ≤ (p0 − k − 1)2Cn ≤ p2

0Cn, (1.11)

where C is the upper bound of |βj|2. Thus (1.8) follows from (1.9), (1.10) and (1.11).

Combining (1.7) and (1.8), we have

min1≤k<p0
Tk

ln p
≥ n

ln p
ln

(

1 +
n[λmin(

1
n
X(s0)

τX(s0))minj∈s0
|βj|]2(1 + op(1))

Cnp2
0

)

≥ n

2Cp2
0 ln p

[λmin(
1

n
X(s0)

τX(s0))min
j∈s0

|βj|]2(1 + op(1))

→ ∞,

by the assumptions additional to A1 and A2. The last inequality holds since ln(1+ x) ≥
x
2

if 0 ≤ x ≤ 1. In fact,

[λmin(
1
n
X(s0)

τX(s0))minj∈s0
|βj|]2

Cp2
0

≤ 1.

2

2 Special cases

Special case I: Let the correlation matrix of z be given by

Σ = (1 − ρ)I + ρ11τ ,

where I is the identity matrix of dimension p, 1 is a p-vector of all elements 1, and

0 < ρ ≤ ρ0 < 1. Note that ρ is allowed to depend on n. But for the ease of notation
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we don’t make this dependence explicit. In this case, the assumptions A1
′

-A3
′

are

satisfied with minj∈s0
|βj| = Cn−1/2+δ for some constant C and an arbitrarily small

positive δ. The claim is verified in the following.

For any s ⊂ S, the sub correlation matrix Σss has eigenvalues 1− ρ and 1+ (|s| −
1)ρ with multiplicities |s| − 1 and 1 respectively. The eigenvector corresponding to

1 + (|s| − 1)ρ is 1 with dimension |s|. The smallest eigenvalue is 1 − ρ. Thus A3
′

follows immediately.

Now suppose s ⊂ s0. For any j, k ∈ sc, we have

Σjk − ΣjsΣ
−1
ss Σsk = Σjk − ρ21τΣ−1

ss 1 = Σjk −
ρ2|s|

1 + (|s| − 1)ρ

=















(1 − ρ)(ρ|s|+ 1)

1 + (|s| − 1)ρ
≡ a, if j = k

ρ(1 − ρ)

1 + (|s| − 1)ρ
≡ b, if j 6= k.

Therefore,

γn(j, s,β) =
∑

k∈s−

βk(Σjk −ΣjsΣ
−1
ss Σsk)

=

{

(a− b)βj + b
∑

k∈s− βk = b
∑

k∈s− βk + (1 − ρ)βj, for j ∈ s−,
b
∑

k∈s− βk, for j ∈ sc
0.

Thus

max
j∈s−

|γn(j, s,β)| =

{

|b∑

k∈s− βk| + (1 − ρ)maxj∈s− βj if
∑

k∈s− βk > 0,
|b∑

k∈s− βk| + (1 − ρ)|minj∈s− βj| if
∑

k∈s− βk < 0.

Obviously, maxj∈s− |γn(j, s,β)| > maxj∈sc
0
|γn(j, s,β)| and hence A1

′

is satisfied. Fi-

nally, we have

ΣAsAs − ΣAssΣ
−1
ss ΣsAs

= (1 − ρ)I + ρ11τ − ρ211τΣ−1
ss 11τ

= (1 − ρ)I + ρ11τ − ρ2|s|
1 + (|s| − 1)ρ

11τ

= (1 − ρ)I +
ρ(1 − ρ)|

1 + (|s| − 1)ρ
11τ .
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Let ν be the number of elements in As. The eigenvalue of the above matrix corre-

sponding to the eigenvector 1 is

1 − ρ +
νρ(1 − ρ)

1 + (|s| − 1)ρ
= a+ (ν − 1)b.

Hence

(ΣAsAs − ΣAssΣ
−1
ss ΣsAs)

−11 =
1

a+ (ν − 1)b
1 > 0,

i.e., A2
′

holds.

Note that, in the above argument, we only need ρ = ρn ≤ ρ0 < 1. But, for the

irrepresentability condition to hold, the following restriction must be in place:

ρn <
1

1 + c|s0|

for some constant c, see [5]. If |s0| → ∞, ρn must go to zero, i.e., eventually, all the

features must be statistically uncorrelated.

Special case II. Without loss of generality, let s0 = {1, . . . , p0}. Assume that

(i) |β1| > |β2| > · · · > |βp0
| = Cn−1/2+δ for some constant C and an arbitrarily small

positive δ;

(ii) The correlation matrix Σ has the following structure:

Σs0s0
= I, Σjs0

=
1

p0
signβ(s0)

τ , for j ∈ sc
0.

Obviously,

Σjs0
Σ−1

s0s0
signβ(s0) = 1,

i.e., the irrepresentability condition does not hold. In the following, we show that

conditions A1
′

-A3
′

hold. Let s∗0 = φ. Suppose s∗k = {1, . . . , k} for k < p0. For any

13



j ∈ sc
0,

Γ(j, s∗k,β) = [(Σjs∗k
,Σjs−

∗k
,Σjsc

0
) − Σjs∗k

Σ−1
s∗ks∗k

(Σs∗ks∗k
,Σs∗ks−

∗k
,Σs∗ksc

0
)]





β(s∗k)
β(s−∗k)
β(sc

0)





= Σjs−
∗k

β(s−∗k) =
∑

j∈s−
∗k

|βj|/p0 < |βk+1| = Γ(k + 1, s∗k,β)

= max
j∈s−

∗k

|Γ(j, s∗k,β).

Thus A1
′

is satisfied. The validity of A2
′

is obvious since As∗k
contains only one

element for each k < p0. A3
′

reduces to
√

n
ln p

minj∈s0
|βj| → ∞ which holds obviously.

3 Covariance structure of the design matrix in the

simulation studies

The covariance structures of the design matrix X for the settings in group A (GA)

and group B (GB) are given as follows:

GA1. All the p features are generated as i.i.d. standard normal random variables.

GA2. The features have a power decay correlation structure, i.e., ρij = 0.5|i−j|, for

i, j = 1, . . . , p. s0 = {1, . . . , p0}.

GA3. The featuresX1, . . . , Xp are determined as follows. LetZ1, . . . , Zp andW1, . . . ,Wp0

be i.i.d. standard normal random variables. Then

xj =
Zj +Wj√

2
, for j ∈ s0; xj =

Zj +
∑

k∈s0
Zk√

1 + p0
for j /∈ s0.

GA4. The relevant features have a constant pairwise correlation, i.e., ρij = 0.5, for

i, j ∈ s0. For j 6∈ s0, xj is generated as:

xj = εj +

∑

k∈s0
Xk

p0

,
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where εj’s are i.i.d. with distribution N(0, 0.08). The variance 0.08 is chosen

such that the second term, which is correlated with relevant features, dominates

the variance of xj .

GA5. The set s0 is taken as {1, 2, . . . , p0}. The features in s0 has the power decay

correlation ρij = 0.5|i−j|. The irrelevant features are generated in the same way

as in GA4.

GB1. The setting is taken from [3]. All the features have constant pair-wise corre-

lation ρij = 0.5. (n, p, p0) = (100, 200, 15). σ = 1.5. The coefficients of the

relevant features are specified as |βj| = 2.5 for 1 ≤ j ≤ 5, 1.5 for 6 ≤ j ≤
10; 0.5 for 11 ≤ j ≤ 15. The signs of the coefficients are determined as (−1)ui

where the ui’s are i.i.d. Bernoulli random variables with probability of success

p = 0.5.

GB2. The setting is also taken from [3]. It is the same as in GB1 that (n, p, p0) =

(100, 200, 15) and σ = 1.5. But the covariance structure of the features is speci-

fied such that the partially orthogonality condition in [3] is satisfied. Specifically,

while s0 is taken as {1, . . . , 5, 11, . . . , 15, 21, . . . , 25}, the correlations are speci-

fied as ρij = 0.5|i−j| if either both i and j are less than or equal to 25 or both

i and j are bigger than or equal to 25, ρij = 0 otherwise. The coefficients are

specified as |βj| = 2.5 for 1 ≤ j ≤ 5, 1.5 for 10 ≤ j ≤ 15; 0.5 for 21 ≤ j ≤ 25.

The signs of the coefficients are determined in the same way as in GB1.

GB3. The setting is taken from [4]. (n, p, p0) = (100, 1000, 10) and σ = 1. The rele-

vant features are generated as i.i.d. standard normal variables with coefficients

(3, 3.75, 4.5, 5.25, 6, 6.75, 7.5, 8.25, 9, 9.75). The irrelevant features are generated
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as

xj = 0.25Zj +
√

0.75
∑

k∈s0

Xk, j 6∈ s0,

where Zj’s are i.i.d. standard normal and independent from the relevant fea-

tures. In this setting, the condition for the selection consistency of SLasso is

not satisfied.
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