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In this supplementary document, we provide (i) the proofs for Theorem 3.1,
Lemma 3.1 and Theorem 3.3 in §3, (ii) the verification of the special cases in §3.4, and
(iii) the details of the simulation settings in §4. To make the document self-contained

to a certain extent, these results and their conditions are re-stated in this document.

1 Technical proofs
1.1 Theorem 3.1 and its proof

Assume the following conditions:

Al maxXjese ’}/n(ja 57/6)| < gMaXjes- h/n(]a 57/6)|7 0< q < L.

A2 (Partial positive cone condition). If s~ # ¢, let

AS = {5 5 € 5_7 |7n(57$>/6)| = ry%%zih/n(]) 57/6)|}7



and X (A,) = [I — H(s)] X (A,). Then [X (A)X (A, "'1 > 0, where 1 is the

vector with all components 1.

A3 ﬂ)\min[%XT(So)X(So)] Helin|/6j| — 400, as n — 00, where A, denotes the
j€s0

Inpn

smallest eigenvalue.

Theorem 3.1 Let S.1, Sxa, -+ , Sxk, - - be the sequence generated by the SLasso pro-
cedure. Suppose that assumptions A1-A8 hold. Let Ilnp, = O(n"), where k < 1/2.
Then, there is a k* such that

Pr(sg- =sy) — 1, as n — oo,

where sq s the exact index set of the relevant features.

Proof. By the KKT condition, at the (k + 1)st step of the sequential Lasso, the
solution B satisfies
2X (- XB) = 28], (1.1)
where § = [I — H(s.)]y, X = [I — H(s.4)] X (s%,), and 8||8| is a sub gradient of
18|l: at B whose components are 1, —1 or a number with absolute value less than or
equal to 1 according as the components are positive, negative or zero.
For k = 0, s.¢ is taken as the empty set ¢. Obviously, s.o C so. It suffices to show

that, given s. C So, P(Ssxkt1 C So) — 1, uniformly for all k& such that |s.x| < |so.

Let

. 1 . 1
Ta(Js e B) = @[T — H(su)ly = 3(J; e, B) + @ [I — H(s.)]e.
Define
Ak = {] : |f}7n(]> S*k>/6)| = ?elgch |f}7n(]> S*k>/6)|}
*k

We are going to show that, with probability converging to 1, A, C so and that Ay

is the set of non-zero elements of the solution to equation (1.1). We first show that
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Ax C 8o, which is implied by [7,.(j, sk, B)| > maxiese [Vn(l, ser, B)] for j € s, with

probability converging to 1. The statement is established by showing

(i) La7[I — H(s.u)le = Op(n~"?Inp) uniformly for all j € s5;.

(ii) For j € s, max e, Y (4, $51, B)| > Con™21np for C,, — oo.

Notice that a7[I — H (s.x)]e ~ N(0,0?||&;]|3) where ||&]|3 < [|a;||3 = n. Hence

P —|ar; [T — H(s.;)]e] > on™?Inp)

= P(|x}[I — H(s.x)]e| > on'/*Inp)

(
(

< P(lzj[I — H(s.i)le| > o] 2;]l2Inp)
(

(Inp) )

2
= P|z|>lnp)<@exp{— 5

where z is a standard normal random variable. Thus, by Bonferroni inequality,

(Inp)?

2
P(max—|ar; [T — H(s.)]e| > on™Y?Inp) < — exp{—
JESS, Inp

+lnp} —0. (L2

Thus (i) is proved.
Let A(sw) = " [I — H (s4)]pe where p = X 3. We have the following inequalities

A(sa) = Y Bzf[I — H(sa)lp < 0llB(s5) |h max | y(j, o, B)]. (1.3)

JES. 1
jes*k

and
A(sik) =BT (52) X7 (s )T — H (5::)] X (5,4)8(s.4)
> Anin (X7 (s ) [ = H (5.)]1 X (s ) 18(s2.) 115 (1.4)
> Amin (X7 (50) X (50))1B(s2.) 13-

The second inequality above follows since s,,Us,, = so and (X7 (s_,)[I—H (s«)] X (s,)) "

is a sub-matrix of (X7 (s9)X (s0))~! by the formula of the inverse of blocked matrices.



Combining (1.3) and (1.4) yields

— 2
max [Yn(J, $sr, B)| = )\min(lXT(so)X(so))M
n 18(s..) 11

1 .
)\min(_XT(SO)X(SO)) min |ﬁj|
n JES0

v

ConY?np, say,

1/2

with C,, = %

Inp

since |5 [[18(s,) 15 = [18(s) 7 = [/ minjeq, [Bogl[1B(s,) 1. Cn — o0 by A3. Thus

Amin (=X 7 (50) X (s0)) minjes, |3;]. The second inequality above holds

(ii) is proved.
By Al and (ii),
|ma3( 1Y (Js Siks B)| — max 1V (7, 54, B)]|
JE€sT, JESsy

> (1 - q) maLX |7n(]7 Sxk, /6)| 2 (1 - Q)Cnn_1/2 lnp

JES,
This fact and (i) then imply that 7,,(j, S, 3) must attain the maximum within s_.
Therefore, A C s, C so.
Without loss of generality, assume that 7, (j, s, 3) > 0 for all j € A,. Consider
Y (J, Suk, &) as a function of €. Since the function is continuous, for each j € Ay,
there exist a neighborhood N; = {& : ||€ — B|2 < J;} and a constant ¢; > 0 such

that, for all & € N, n(J, Suk, &) — maxe A¢

Yull, $4k,&))| > ¢j. Here Ajf, denotes the

complement of Ay, in s¢, by an abuse of notation. Let N’ = {& : ||€ — 3|2 < 0} where
’Yn(la s*k>€))| > 07

6 = mind;. Then for all & € N, minjes, Yn(J, Sk, §) — maxeae
where C' = maxc;.

Now construct 3 as follows. Let B(Ay) = w[X (Ax) X (A)] ™1 and B(AS) = 0,
where w > 0. By A2, B(Ak) > 0. Take w small enough such that 3 — 3 € N. Thus
Vn(ly Suke, B — B))| On the other hand,

we have minje 4, Vo (J; $xc, 8 — B) > maxie 4



for any j € Ay,

~ . oS ~ . 1 <,T < ngling <
Tnld ssks B = B) = maxy,(j, suk, B) — wo X ; X (Ap)[X (A) X (Ar)] 1
= ma;;X’yAn(‘% S*ka) - g
SEN n

Let A = 2n[maxjese, Vu(J, Sk, B) — 2]. Then, we have

25(;(@ — XB) =\, for j€ A,
2X(§— XB) <\, for j& A

Let 9|3;| = 2X;(y — XB)/X for j & A, and 1 for j € Aj. Then 0||8]|; with these
components is a sub gradient of ||3|; at B3 and 3 solves equation (1.1). From the
construction of B, all the features corresponding to the non-zero components of B
belong to sg. Hence s,x11 C sp. Thus we have shown that, given s,x C S, S«xr1 C So
with probability converging to 1.

Since py = |so| diverges as n — 0o, we need to show that the above convergence is

uniform for all k& such that |s.x| < po. Note that, under the assumptions, s.x+1 C So

is equivalent to minjea, Vo (J, S«k, B) > maxie s [Yn(l, S4x, B))| which is implied by
P(maxjese +|af[I — H(su)]e| > on/?Inp) — 0. Therefore, when py is divergent,

the uniform convergence is established if

1
P ZxeT [T — . —-1/2 .
(Og}ﬁgo max n|wg [I — H(s.)]e] >on "?Inp) -0, asn — oo

It follows from (1.2) and the Bonferroni inequality that

1
P —|x7 | I — H " —1/21
(max max _lej] (ser)]e| > on™'Inp)

2 Inp)?
Po exp{—( np)

< = 1
— Inp 2 +Inp}
2 In p)?
< Iy exp{—( n2p) +2Inp} — 0,
since pg < p. The proof is completed. O



1.2 Lemma 3.1 and its proof

Assume that

al The off-diagonal elements of X are bounded by a constant less than 1; that is, the
correlation between any two features are bounded below from —1 and above

from 1.

a2 Opax = Maxi<jk<p 0(2j2k) < 00 where o(z;2;) denotes the standard deviation of

ZjZk-

a3 maxi<jr<p F exp(tzjz;) and max;<j<, Fexp(tzje) are finite for ¢ in a neighbor-

hood of zero.
Lemma 3.1 Under assumptions al - a3,
() P(maxicjpsy [+ 30, @@ — Si| > n~50mas) = 0.
(i) P(maxi<j<, ‘%Z:;l a:ijei‘ > n_%a) — 0.
(iii) Let Xy, = $j — $5,5,,' Sy and Sy, = @] [T — H(s)]z;/n. Then

Yo =S =0 (1).
(g max [Xs = Zius| = 0p(1)

Proof. : For any j, k € {1,2,--- ,p} it follows from [1] that
3

P g = n%al > Vo (520vn) < ClL= () exp[ﬁw—%

where C' is a constant, ®(-) is the cumulative distribution function of standard normal

) (15)

distribution, A(-) is the Cramer series for the distribution of z;z; which converges
in a neighborhood of zero under assumption a3, and 1, is a sequence satisfying

¥, = o(n'/?) and 1, — oo.



3
") is bounded and —% goes to

Nowtakewn—n65f0r0<5<——— Then)\( NG

/n
0 as n converges to co. Thus (1.7) leads to

n

2_
P(| Zl’wl’zk — ank| >ns3 éo'max)

i=1
< P(] meﬂm — nXjg| > n%_JU(ZjZk))
i=1
L_s
< Gi[l =®(ns™)]
< exp(—=n3~ ,
o nE“; p( 2 )
where () is a generic constant. Let p = exp(an”) where a > 0 and kK < % By

Bonferroni inequality,

n

E TijTik — NDjk

Hence (i) is proved. The proof of (ii) is similar and is omitted.

P( max > N30 g) = o(n" %) — 0.

1<5,k<p

Note that, for a;, 2 and X (s), ta7(I—X (s)[X7(s) X (s)] 7' X7 (s))a; is a continu-
ous function of the means % S T T, % > o T Tk, % Sor Ty, and % > TikTim,
k,m € s. Let X i, denote the vector consisting of these means and ., its expecta-
tion. The function depends on |s| but not on n. Let g5/(X jis) denote this function.
We then have gi,(p;5) = Xjijs-

By assumption al, the range of p;, for all j, [, s with fixed |s| is compact. Hence
gys| is also uniformly continuous for all (j,1, s) with fixed |s|. Thus for any 1 > 0 there
is a ¢ > 0 such that if || X j;s — Hislloo < € then |gy (X X j1s) — s/ (B15)| < m, where ¢
does not depend on (4,1, s). From the proof of (i), we can choose a ny such that when
n > ng,

P( max

— —:+6
(max > ) =o(n7e™).

LijLik — ik
ng: J )

Thus we have

L% _1
P(max |g. (X ) = gisi(p0.)| > 1) = oln 540y,



By Bonferroni inequality,

= _1
P(max max |g(Xjis) = gjsi(k5)| > 1) < 0(n™5)py — 0,

jvl S:|S|Sp0

for po = O(ns~?). (iii) is proved.

1.3 Theorem 3.3 and its proof

Theorem 3.3 Assume conditions A1 and A2. Suppose that Inp, = O(n*), k < 1/3,
po = O(n®), ¢ < 1/6, and there is a constant C' such that Apin (£ X (s0)” X (s0)) minjes, | 5;
> On~ Y6+ where § is an arbitrarily small positive number. Let s,1 C s40 C -+ C

S« C - -+ be the sets generated by the procedure of SLasso. Then

(i) Uniformly, for & such that |s.x| < po,

P(EBIC,(S4k+1) < EBIC,(84)) — 1, when vy > 0.

(ii) P(miny,<|s<k, EBIC,(s) > EBIC,(s9)) — 1, when v > 1 — ;?n"p, where ko > po

is an arbitrarily fixed integer.

Note that the additional conditions above imply condition A3. Result (ii) follows

from the selection consistency of EBIC, see [2]. We only need to prove (i).

Proof. By Theorem 3.1, s, C s¢ if || < po with probability converging to 1. Let
Dy, = EBIC,(s.x) — EBIC,(s.,41). Note that, under the assumption on p and py,
In (1;’) = jlnp(1+ o(1)), uniformly for all j < pg. Thus, we can replace In (1;’) by jlnp
in the definition of EBIC. Hence,

~ o (T = Hs))yll5 e . )
Demonl (H(I—H(s*kﬂ))yug) + (54| = |84ks1])(Inn + 2v1n p)

(I — H (s:x))yll3 — [I(1 — H (s:x11))y 13
(I — H (sw41))y13
= Ty — |Ag|(Inn + 2yInp), say,

= nln (1—|— ) — |Ag|(Inn + 2y1Inp)



where Ay, = suri1/8ak = {1 [l 41, B)| = maxjese (], ek, B)|}. Without loss of

generality, assume |Ag| = 1. It suffices to show that
P(Ty <Ilnn+2vylnp) — 0, uniformly for 1 <k < py,

which is implied by

i T,
w — 00, in probability. (1.6)
np

It remains to prove (1.6). For any given set s, vectors uw and v, let A(s,u) =

u”[I — H(s)|u and A(s,u,v) =u"[I — H(s)]v. Thus

1L = H(s.))yl3 = | (L = H(sor)yll
= A 1) = AlSasts 1)] + 2Dt 1€) = Al 1 €)] + [A(50s €) — Alspin, €]
I(I = H (so01))l3

= A(S*k-l-h lu) + 2A(S*k+1> 22 6) + A(S*k-l-h 6)‘

First we show that

I(I = H (s.))yllz = (L = H(sek41))yll3

> n(Amm[%X(So)TX(So)] min 18;1)*(1 + 0p(1)), (1.7)

uniformly for k. This inequality follows from

(a) maxy<pep[A(Sk, €) = Alsukr1, €)] = Op(Inpo);

(b) min[A(su, ) = A(Sars1, )] = n(Amin[2 X (50)7 X (50)] minjes, |5;])%;

(€) A(Suky pty €) — A(Suks1s ity €) = 0p(A(Suky pt) — A(Suk+1, 1)), uniformly for k.

The claims (a), (b) and (c) are proved in the following.



Note that A(s., €) — A(Ssk11, €) follows a x? distribution with degrees of freedom

| Ax|. Thus, by Bonferroni inequality, we have, for any a > 0,

P( max [A(su, €) — Ak, €)] 2 a)

C a
< poP(xi > a) =2po[l — ®(Va)] < —GXP(—§ + Inpo).

Va

Let a = 41npy, then the above probability converges to zero, and thus (a) is proved.

By the relationship between I — H (s.;) and I — H (S4+1), we have

AlSuks 1) = A8k, 1)
= p (I — H(s5:)) X (Ap) [ X (Ap)"(T — H (5.:) X (A)] 7 X (AR)" (I — H(s.1) )t
> | X (AT = H (s.0)) 112\ (X (AR) (T — H (5.:) X (Ar))

max

> APy (K, su, B) (0| AR]) ™ = ny (K, sk, B),

where the last inequality holds since, for j € A, 7 (I — H (s:x)) 0 = nyn (K", 54k, B) =

manesik

x (I — H(s.))p|. From (ii) in the proof of Theorem 3.1, for all &,

1 )
%(k*> Sxk, 5) > )\min[_X(SO)TX(SO)] min |ﬁj|-
n JESo

Thus (b) is proved.

To show (c), note that 2zt €€ _ 7 follows a standard normal distri-
\/A(s*kvﬂ)_A(s*IvFlnu)

bution. By the same argument as in the proof of (a), we have maxy, | Zy.| = O,(Inpo)?.
Thus (c) follows from (b).
Next we show that, for all k,

(I — H(su11))yll5 < Cnp, (1.8)
for some constant C'. We have

(T — H (s5.041))yl2

= A(S*k+1, IU“) + A(S*k-l-h 6) + 2A(S*k+1> s 6)

< A(Ser1, 1) + A(sekt1,€) + 20/ Ak i1, 1) A(Suk11, €). (1.9)

10



Note that
A(Siri1,€) ~ Xopor = (n =k = 1)[1 4+ 0,(1)] < n[l+ 0p(1)]. (1.10)
If £k =po—1, A(Sskt1, ) = 0, otherwise,
Alsrrr, ) = B(4q1)" X (55540) T — H (8ur41)] X (5,411)8(5541)

5(5*_k+1)TX(5;k+1)TX(5;k+1)5(5;k+1)

< C Y @jm < (po—k—1)°Cn < piCn, (1.11)

JlES pyq

IN

where C is the upper bound of |3;]?. Thus (1.8) follows from (1.9), (1.10) and (1.11).
Combining (1.7) and (1.8), we have

minicioep Te o 1) PP (X (50) "X (s0)) mines, [55[*(1 + 0,(1))
Inp ~ Inp C’npg
n 1
> —— D (=X (s0)"X in |3;]%(1 1
> iy P X ()X (s0)) min 51201+ 0,(1)
— OO’

by the assumptions additional to A1 and A2. The last inequality holds since In(1+ z) >

5 if 0 <z < 1. In fact,

Pmin (5 X (s0)7 X (s0)) minjes, |3;]?
Cps

<L

2 Special cases

Special case I. Let the correlation matrix of z be given by
Y= (1—-p)+pll",

where [ is the identity matrix of dimension p, 1 is a p-vector of all elements 1, and

0 < p < po < 1. Note that p is allowed to depend on n. But for the ease of notation

11



we don’t make this dependence explicit. In this case, the assumptions A1-A3" are
satisfied with minjeg, |3;| = Cn~Y/2* for some constant C and an arbitrarily small
positive . The claim is verified in the following.

For any s C .S, the sub correlation matrix Y, has eigenvalues 1 — p and 1+ (|s| —
1)p with multiplicities |s| — 1 and 1 respectively. The eigenvector corresponding to
1+ (|s| = 1)p is 1 with dimension |s|. The smallest eigenvalue is 1 — p. Thus A3’
follows immediately.

Now suppose s C sg. For any j, k € s¢, we have

2
SN v, - N, Py tiey, - Pl
gk JjsHss sk ik — P ss gk 1+ (|$| — 1)p
1-— 1
L=+
_ 1JE1(|S|31)9
plL—p e
——— =, if 7 # k.
L+ ([s|=1p
Therefore,
7”(]7 37/6) = Z ﬁk(zjk - stZS_SIZSk)
kes~
_ (@=0)B; + b ey B =03 ey B+ (1 —p)B;, forje€s™,
b res— Bk for j € s§.

Thus

; _ |bZk€s* ﬁk| + (1 - p) maX;es- ﬁj if Zkes* Br. > 0,
max (3,5, A) { b s Bl + (1= p)l mingey Bl if e e < 0.

Yn (4, 5, B)| and hence A1’ is satisfied. Fi-

Obviously, maxjcs- |70 (4, 5, 8)] > maX;ese

nally, we have

-1
YideAs — BiAas Vg isA,

= (1 —p)+pl1" — p*11"8 117

(1 - p)I + p117 sl gy
1+ (|s| = 1)p
p(1—p)|
= (1—p I+ q97
1+ ([s| = 1)p

12



Let v be the number of elements in A;. The eigenvalue of the above matrix corre-

sponding to the eigenvector 1 is

vp(l — p)
l—p+——"F—=a+(v—1)b
L+ (s =1)p
Hence
1

» S II0 D) DT Il [ — Y

( -AS-AS -AS SS -AS) a ‘I— (I/ _ 1)b b
i.e., A2" holds.

Note that, in the above argument, we only need p = p, < po < 1. But, for the

wrrepresentability condition to hold, the following restriction must be in place:

1

n < T
IS T s

for some constant ¢, see [5]. If |sg| — oo, p, must go to zero, i.e., eventually, all the

features must be statistically uncorrelated.

Special case II. Without loss of generality, let so = {1,...,po}. Assume that

(i) |51] > |B2] > -+ > |Bp,| = On~ /2% for some constant C and an arbitrarily small

positive 0;
(ii) The correlation matrix ¥ has the following structure:

1
Zs()so = I) st() = ;Sign/ﬁ(so)q—, fOl"j € S(c].
0

Obviously,
sto Zs_olso Signﬁ(SO) =1,

i.e., the irrepresentability condition does not hold. In the following, we show that

conditions A1-A3" hold. Let s,o = ¢. Suppose s, = {1,...,k} for k < py. For any

13



J € s,

/B(S*k)
F(]> Sxk, /6) = [(Ejs*ka st:k’ Z]SS) - st*kzs_is*k(xs*ks*k’ Zs*ks:k’ Zs*ks(c))] /B(S*_k)
B(s§)
- st:kﬁ(sgk) = Z 1Bil/po < |Br+1| =T(k + 1, su, B)
JES
= maLX |F(]> Skl /6)

jes*k
Thus A1’ is satisfied. The validity of A2" is obvious since A, contains only one

element for each k < py. A3’ reduces to % mine,, |3;] — oo which holds obviously.

3 Covariance structure of the design matrix in the
simulation studies

The covariance structures of the design matrix X for the settings in group A (GA)

and group B (GB) are given as follows:

GA1. All the p features are generated as i.i.d. standard normal random variables.

GA2. The features have a power decay correlation structure, i.e., p;; = 0.5171, for
i,j=1,....p. so={1,...,po}

GA3. The features Xj, ..., X, are determined as follows. Let Z;, ..., Z, and Wy, ..., W),

be i.i.d. standard normal random variables. Then

Z + W, Zi 4+ e Z
mj:%, fOI'jES(]; ;= J\/lz:%epg kaI'j%SO.

GA4. The relevant features have a constant pairwise correlation, i.e., p;; = 0.5, for
i,J € so. For j & 50, x; is generated as:

‘l’ ZkG S0 Xk
Po

ijEj 5

14



where €;’s are i.i.d. with distribution N (0, 0.08). The variance 0.08 is chosen
such that the second term, which is correlated with relevant features, dominates

the variance of ;.

GAS5. The set sq is taken as {1,2,...,po}. The features in sy has the power decay
correlation p;; = 0.5/"77I. The irrelevant features are generated in the same way

as in GAA4.

GB1. The setting is taken from [3]. All the features have constant pair-wise corre-
lation p;; = 0.5. (n,p,po) = (100,200,15). o = 1.5. The coeflicients of the
relevant features are specified as |3;] = 2.5 for 1 < j < 5,1.5 for 6 < j <
10; 0.5 for 11 < 7 < 15. The signs of the coefficients are determined as (—1)"
where the u;’s are i.i.d. Bernoulli random variables with probability of success

p = 0.5.

GB2. The setting is also taken from [3]. It is the same as in GB1 that (n,p,py) =
(100,200, 15) and o = 1.5. But the covariance structure of the features is speci-
fied such that the partially orthogonality condition in [3] is satisfied. Specifically,
while sq is taken as {1,...,5,11,...,15,21,...,25}, the correlations are speci-
fied as p;; = 0.5°=91 if either both 7 and j are less than or equal to 25 or both
¢ and j are bigger than or equal to 25, p;; = 0 otherwise. The coefficients are
specified as |B,] = 2.5 for 1 < j < 5,1.5 for 10 < j < 15; 0.5 for 21 < j < 25.

The signs of the coefficients are determined in the same way as in GB1.

GB3. The setting is taken from [4]. (n,p,po) = (100, 1000, 10) and o = 1. The rele-
vant features are generated as i.i.d. standard normal variables with coefficients

(3,3.75,4.5,5.25,6,6.75,7.5,8.25,9,9.75). The irrelevant features are generated

15



as

z;=0.25Z; + V0.75 > X, j & so,

keso

where Z;’s are i.i.d. standard normal and independent from the relevant fea-
tures. In this setting, the condition for the selection consistency of SLasso is

not satisfied.
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