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Abstract

Linear, nonlinear, and nonparametric moderated latent variable models

have been developed to investigate possible interaction effects between a la-

tent variable and an external continuous moderator on the observed indicators

in the latent variable model. Most moderation models have focused on moder-

ators that vary across persons but not across the indicators (e.g., moderators

like age and SES). However, in many applications, the values of the modera-

tor may vary both across persons and across indicators (e.g., moderators like

response times and confidence ratings). Indicator-level moderation models are

available for categorical moderators and linear interaction effects. However

these approaches require, respectively categorization of the continuous mod-

erator and the assumption of linearity of the interaction effect. In this paper,

parametric nonlinear and nonparametric indicator-level moderation methods

are developed. In a simulation study we demonstrate the viability of these
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methods. In addition, the methods are applied to a real dataset pertaining to

arithmetic ability.

1 Introduction

Traditional latent variable models have been used to operationalize a psychological

construct in terms of its observed indicators. The general idea is that the indicators

are regressed on a latent variable, representing the construct, resulting in indicator-

specific intercept and slope parameters (and in the case of continuous indicators

the indicator-specific residual variance parameters). Well-established latent variable

models exist for dichotomous indicators (e.g., the 2-parameter normal ogive model;

2PNOM, Lord & Novick, 1968), ordinal indicators (e.g., the graded response model,

Samejima, 1969), and continuous indicators (e.g., the linear factor model, Spearman,

1904).

Moderated latent variable models

With these latent variable models in place, there us
::
is

:
growing interest in testing for

possible interaction effects between the latent variable and an external moderation

variable (e.g., gender or age) on the observed indicators. We see two reasons for the

development of these so-called moderated latent variable models:
:
.
:

First, tests on

moderation of the parameters in a latent variable model, like the 2PNOM or the

linear factor model, constitute the primary idea of tests on measurement invariance

(Meredith, 1964, 1993; Muthén, 1989). Measurement invariance (or, the absence of

differential item functioning, Mellenbergh, 1989) refers to the prerequisite that the
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parameters from a latent variable model should not be moderated by a background

variable, as this will hamper a
:::
the

:
comparison of subjects’ observed indicator scores

in terms of the underlying latent variable. Although the initial developments of the

statistical toolkit for establishing measurement invariance have not explicitly been

:::::
were

::::
not

::::::::::
explicitly

:
conducted in a moderated latent variable modeling framework,

recently, this correspondence was
:::
has

::::::
been made explicit by Bauer (2017) and Curran

et al. (2014).

Another reason for the development of moderated latent variable models is a

substantive one. That is, theories from various applied fields predict interactions

between observed and latent variables, a notion that can statistically be properly

tested using a moderated latent variable model. For instance, in the field of be-

havior genetics, it has been found using moderated latent variable models that the

heritability of intelligence, which is a latent variable, is moderated by socioeconomic

status (SES) in such a way that intelligence is more heritable for subjects of higher

SES (e.g., Turkheimer, Haley, Waldron, d’Onofrio, & Gottesman, 2003). In addition,

in the field of intelligence research, age differentiation (Garrett, 1946) refers to the

prediction that intelligence is a weaker source of individual difference for older ages.

This prediction has been tested by Facon (2006) using categorized ageas moderator,

and by Tucker-Drob (2009) using continuous age
::
as

::
a
::::::::::::
moderator. Another example

is from personality research were
::::::
where

:
it has been hypothesized that personality is

moderated by IQ with less personality variance for higher levels of IQ. In Murray,

Booth, and Molenaar (2016), this hypothesis was tested using a moderated latent

variable model, but no overall evidence for the personality-IQ interaction was found.
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Traditional moderation approaches

If we accept the importance of moderated latent variable models in tests on measure-

ment invariance and substantive hypotheses, question arises as to which moderation

approaches are readily available. See Table ?? for an overview. In the case of discrete

moderators like gender, tests on the interaction effect between the latent variable and

the moderator are straightforward using multi-group latent variable models for con-

tinuous data (e.g., Jöreskog, 1971), ordinal data (e.g., Lee, Poon, & Bentler, 1989),

or dichotomous data (e.g., Muthen & Christoffersson, 1981). In these models, differ-

ences in the intercept parameters between groups reflect a main effect of the moder-

ator on the observed indicators, and a difference
:::::::::::
differences

:
in the slope parameters

between groups reflect an interaction between the latent variable and the moderator

on the observed indicators. In the context of dichotomous data, various item response

theory based methods have been developed for testing whether the model parame-

ters differ between groups (e.g., Lord, 1980; Mellenbergh, 1989; Thissen, Steinberg,

& Gerrard, 1986) which is usually referred to as differential item functioning (DIF) or

item bias (see Millsap, 2011, for an overview of the existing approaches to test for DIF)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(see Millsap, 2011, for an overview of the existing approaches to testing DIF).

In the case of continuous moderators, an intuitive approach is to categorize the

continuous moderator variable and test for
:::
the

::
differences in the intercepts and

slope parameters using the multi-group methodsabove. However, several authors

have argued against categorization of continuous variables (see e.g., Cohen, 1983;

MacCallum, Zhang, Preacher, & Rucker, 2002; McClelland, Lynch, Irwin, Spiller,

& Fitzsimons, 2015) as it lowers the information concerning individual differences

affecting
:::
and

::::::::::
therefore

::::::::
affects the power to detect a possible effect of that variable.
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In addition, cut-off points are arbitrary, which may complicate the comparison of

results across studies (Royston, Altman, & Sauerbrei, 2006). Therefore, effort has

been devoted to develop models for continuous moderators which avoid the neces-

sity of categorization. Latent variable models have been proposed in which the

intercept and slope parameters are a linear function of the moderator, resulting

in a baseline parameter and a moderation parameter for both the intercept and the

slope parameter
:::::::::::
parameters

:
(Purcell, 2002; Rabe-Hesketh, Skrondal, & Pickles, 2004;

Mehta & Neale, 2005; Neale, Aggen, Maes, Kubarych, & Schmitt, 2006; Bauer &

Hussong, 2009; Molenaar, Dolan, Wicherts, & van der Maas, 2010). The modera-

tion parameter of the intercept reflects the main effect of the moderator, and the

moderation parameter of the slope parameter reflects the linear interaction effect.

In the linear
:::::::::
nonlinear

:
moderation model, the assumption of a linear dependence

of the intercept and slope parameters on the moderator variable can be relaxed. That

is, adding higher-order powers of the moderator as additional moderator variables

enables tests on quadratic or cubic interactions (see e.g., Purcell, 2002; Tucker-Drob,

2009). However, one is still tied to the parametric form of the interaction. To explore

the relation between the intercept and slope parameters on the one hand, and the

moderator on the other, research has focused on nonparametric approaches. Specif-

ically
:
,
:
Hildebrandt, Wilhelm, and Robitzsch (2009); Hülür, Wilhelm, and Robitzsch

(2011) and Hildebrandt, Lüdtke, Robitzsch, Sommer, and Wilhelm (2016) proposed

a latent variable model in which the dependence of the slope and intercept param-

eter on the moderator variable is estimated using methodology from nonparametric

regression analysis (Fox, 2015; Wu & Zhang, 2006). In an application of these meth-
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ods, Briley, Harden, Bates, and Tucker-Drob (2015) found the heritability by SES

interaction discussed above to be characterized by substantial nonlinear shifts, while

the interaction was commonly assumed to be strictly linear
::::::
before

:::::
that.

Indicator-level approaches

Interestingly, all moderation models above have focused on moderators that vary

across persons but not across the indicators (e.g., moderators like age and SES). How-

ever, in (potential) applications, the values of the moderator may vary both across

persons and across indicators. For instance, in intelligence research, Partchev and de

Boeck (2012) and DiTrapani, Jeon, De Boeck, and Partchev (2016) hypothesized that

the item-specific response times of a cognitive ability test interact with the latent

cognitive ability variable reflecting that respondents alternate between controlled

processes (the slower responses) and automated processes (the faster responses). As

respondents may respond relatively fast on one item (indicating an automated pro-

cess) and relatively slow on the next (indicating controlled process), a person specific

moderator (e.g., the mean response time of the full test) will not suffice in the analy-

sis. That is, the response times constitute indicator-specific moderators that account

for indicator-specific moderation effects. Other existing examples of indicator-level

moderators include measures of answer changes (Jeon, De Boeck, & van der Lin-

den, 2017) and confidence ratings (Gvozdenko, 2010). In addition, indicator-level

moderators can be constituted by, for instance, verbally reported response processes,

number of actions in interactive items, number of item clicks, number of eye fixa-

tions on the areas of interest, inspection times, response changes, certainty scores,
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or physiological measures.

The development of methods to test for interactions between such indicator-

level moderators and the latent variable has recently started to evolve across similar

lines as described above for the traditional moderation models. That is, approaches

::::::::::::
Approaches

:
have been proposed that require categorization of the indicator-level

moderators (Partchev & de Boeck, 2012; DiTrapani et al., 2016) and models have

been proposed by specifying linear functions between the intercept and slope pa-

rameter and the indicator-level moderator (Bolsinova, Tijmstra, & Molenaar, 2017;

Goldhammer, Steinwascher, Kroehne, & Naumann, 2017; Bolsinova, de Boeck, &

Tijmstra, 2017). That is, these
::::::
These

:
existing indicator-level approaches focus only

on categorical moderators, or continuous linear moderators. However, as with the

traditional moderation models, the assumption of linearity of indicator-level moder-

ation models might be violated in practice. In such cases, using linear models may

result in invalid conclusions about the relationship between the parameters of the

latent variable model and the indicator-specific moderator. For instance, one might

conclude that the intercept increases with the values of the moderator (e.g., that

slower responses on an intelligence test are more often correct), while it might be

that it increases only up to some value of the moderator and decreases after that

value, or that the increase is not linear. However, parametric nonlinear and nonpara-

metric approaches are not yet developed for indicator-specific moderation(Table ??).

Therefore, in this paper we propose modeling the relationship between the indicator-

specific moderator and the parameters of the latent variable model in a more flexible

way. That is, we propose a parametric nonlinear and nonparametric approach for
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indicator-level moderation.

Developing a parametric nonlinear
::::::::::
approach

:
and a nonparametric indicator-

level approach

The development of parametric indicator-level nonlinear models is relatively straight-

forward as the existing parametric indicator-level linear moderation approach can be

extended to include higher-order interactions. However, as these interactions are

indicator-specific, it is not obvious that the resulting model is identified and per-

forms satisfactorily in recovering the true relation between the moderator and the

indicatordata. In addition, development of the nonparametric indicator-level moder-

ation approach is not straightforward, as the traditional nonparametric moderation

approach cannot simply be extended to include one moderator for each indicator.

That is, the
::::
The nonparametric moderation is based on a binning procedure which is

feasible because there is only one moderator. In the case of indicator-specific moder-

ators however, such a binning procedure will result in a grid where the dimensions of

the grid grow exponentially with the number of indicators. Such a procedure is in-

feasible in practice. Taken together, we therefore think that studying the parametric

nonlinear extension and a feasible nonparametric approach to indicator-level moder-

ation is a worthwhile endeavor. The outline of this paper is as follows:
:
.
:
First, the

existing moderated latent variable models are formally presented. Next, the para-

metric nonlinear and nonparametric approach for indicator-level moderation will be

derived and estimation for these new moderation models will be discussed. Each of

these approaches will be applied to a dataset including both the responses and the
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response times to an arithmetic test. Then, these results will be used in a simulation

study to demonstrate the viability of the indicator-level moderation models. We end

with a general discussion.

2 Moderated Latent Variable Models: Existing

approaches

In the traditional (non-moderated) generalized linear latent variable model, the con-

ditional expectation of the i-th observed indicator, denoted by Yi, given the latent

variable, denoted by η, is specified via a link function g(·) and a linear function:

g[E(Yi | η)] = λiη + νi, (1)

where λi and νi are the indicator-specific slope (also referred to as the factor loading)

and intercept. The slope parameter indicates the strength of the relationship between

the observed indicator and the latent variable. The intercept parameter determines

the conditional expectation of the indicator when the latent variable is equal to

zero, which is usually chosen to be equal to the expected value of the latent variable

in the population. Various latent variable models are special cases of the general

model above, depending on the choice for the link function, g(.), and the shape of

the distribution for the residuals (see Mellenbergh, 1994). For instance, if the link

function is taken to be the identity link, the model above is equal to the linear factor

model for continuous indicators; in the case of a probit link, the two-parameter
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normal-ogive model for binary indicators arises, and in the case of a cumulative

probit link, the model simplifies to a graded response model for ordinal indicators.

Note, that in the case of
:::
For

:
ordinal indicators with C categories, there are C − 1

intercept parameters for each indicator.

Let y denote an N × K data matrix with the observed indicators
:::::
data

:
of N

persons to
:::
on

:
K indicators, and by ypi the value of the i-th indicator from the p-th

person (i.e., a realisation of the random variable Yi for person p). In latent variable

models, conditional independence of the observed indicators given the latent variables

is typically assumed. The marginal likelihood of the data matrix y can be computed

as follows

f(y |λ,ν) =
N∏
p=1

∫ K∏
i=1

f(ypi;λi, νi, η)u(η)dη, (2)

where f(ypi;λi, νi, η) is the conditional density of the observation ypi given the latent

variable and u(η) is the population distribution of the latent variable, which is often

assumed to be standard normal.1 In the case of the linear factor model the conditional

density is assumed to be normal:

f(ypi;λi, νi, η) =
1√

2πσ2
i

exp

{
−(ypi − (λiη + νi))

2

2σ2
i

}
, (3)

where σ2
i is the additional indicator-specific parameter which determines the condi-

tional variance of the indicator given the latent variable (i.e., the residual variance).

In the case of the graded response model for ordinal indicators, the conditional den-

1Note that the mean and the variance of the latent variable distribution are constrained for
identification purposes. Alternatively, the parameters of Yi can be constrained for some arbitrary
i, that is, λi = c1, νi = c2, where c1 > 0 and c2 are arbitrary values.
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sity is multinomial:

f(ypi;λi,νi, η) =
C∏
c=0

(

{
Φ(λiη + νic)− Φ(λiη + νi(c−1)))

}I(ypi=c)
(4)

where Φ(·) is the standard normal cumulative distribution function, the category-

specific intercept parameters are ordered within each indicator, νi0 = ∞ and νiC =

−∞. In the case of the 2PNOM for binary indicators, the conditional density is

Bernoulli:

f(ypi;λi, νi, η) = Φ(λiη + νi)
ypi(1− Φ(λiη + νi))

1−ypi . (5)

Moderation can be introduced in the generalized linear latent variable model

above by making the slope and intercept parameters above a function of the moder-

ator, Z, that is (see e.g., Hildebrandt et al., 2016):

g[E(Yi | η, Z)] = fλi(Z)η + fνi(Z). (6)

with

V AR(Yi |Z) = fln[σ2
i ]

(Z) (7)

in the case of continuous Yi. In the above, fλi(.), fνi(.), and fln[σi](.) model the func-

tional relationship between the
:::::::::::
moderator

:::::
and

::::
the

:
slope parameters, the intercept

parameters, and the log-residual varianceon the one hand and the moderator on the

other
:
,
:::::::::::::
respectively. Note that we model the log-residual variance to ensure that the

residual variance itself is strictly positive.

Equation 6 is a general form of a traditional moderation model, that is a model
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in which the value of the moderator varies across persons and the same moderator

applies to all indicator variables. In indicator-level moderation models, it is assumed

that there are as many moderators as there are indicator variables (K). Congruently

to the person-level approach above, in the indicator-level moderation model the slope

and the intercept parameters depend not on the value of the moderator Z, common

for all the indicators, but on the value of the moderator which is now indicator-

specific, denoted by Zi. To obtain the general form of an indicator-level moderation

model, one needs to substitute Z with Zi in Equation 6. Note, that
::::
The

:
indicator-

level moderation models assume that the parameters of each indicator only depend

on the corresponding moderator, that is
::::
and

:
independence is assumed between Zi

and Yk for all i 6= k.

2.1 Model interpretation

In the general moderation model in Equation 6, the main parameters of the latent

variable model are a function of a moderator. For the intercepts, this effect reflects

the main effect of the moderator on the observed indicators. In most applications,

this effect is not of primary interest. For instance, in the intelligence by age in-

teraction example discussed above (i.e., age differentiation; Tucker-Drob, 2009), the

intercepts in the latent variable model are commonly found to be moderated by age.

This simply reflects that there is a correlation between intelligence and age, which

is well known. However, if age moderates the slope parameters of the latent variable

model in such a way that the slopes are smaller for higher ages, this reflects that

the latent variable ’intelligence’ manifests itself differently across age with smaller
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intelligence variance for higher ages. Thus, commonly, the key interest in moderation

models is to establish moderation of the slope parameters to study the interaction

between the latent variable and the moderator. Moderation of the intercepts, al-

though not of key interest, should always be included in the model to validate the

test on the interaction effect. That is, an interaction effect cannot be interpreted
::
is

::::::::
difficult

:::
to

:::::::::
interpret

:
in the absence of its main effect (Nelder, 1994; Purcell, 2002).

[
:::::::
Figure

::
1
:::::::
about

::::::
here.]

The example above focused on person-level moderation and whether a latent

variable manifests itself differently for different persons (i.e., persons that differ on

the person-level moderator). For indicator-level applications, parameter interpreta-

tion is similar, however, the key question is whether a latent variable manifests itself

differently for different persons-indicator combinations. That is in
::
In

:
indicator-level

moderation, a subject may be high on the moderator on one indicator but relatively

low on the moderator of the next indicator. For instance, in the intelligence exam-

plediscussed above, DiTrapani et al. (2016) found the slope and intercept parameters

of a matrix reasoning
:::::::::::::::::
matrix-reasoning

:
test to be moderated by the item-specific

response times. This indicates that the latent matrix reasoning
:::::::::::::::::
matrix-reasoning

::::::
latent

:
variable manifests itself differently in the observed indicators for faster re-

sponses than for slower responses. Thus, subjects may be high on the moderator

of one item (relatively slow response) and low on the moderator on the next item

(relatively fast response), see Figure 1 for a graphical representation of the differ-

ence between person-level moderation and indicator-level moderation.
::
As

::::
the

:::::::
figure

:::::::
shows,

::::
the

::::::::
crucial

:::::::::::
difference

:::::::::
between

::::
the

:::::
two

::::::::::
modeling

:::::::::::::
frameworks

::
is
::::::

that
:::
in

::::
the
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:::::::::::
traditional

::::::::::::
moderation

::::::::::::
framework

::::
for

:::::
each

::::::::
person

::
a
:::::::
single

::::::
value

:::
of

::::
the

::::::::::::
moderator

::
is

::::::::::::
considered,

::::::
while

:::
in

:::::::::::::::
indicator-level

:::::::::::::
moderation

::::
the

::::::::::::
moderator

::::::
varies

::::::
both

:::::::
across

::::::::
persons

::::
and

:::::::
across

::::::::::::
indicators.

:

In the case of continuous indicators, the residual variances are an additional

parameter
:::::::::::
additional

::::::::::::
parameters

:
in the latent variable model. Moderation of the

residual variances is generally not considered in tests on interactions, similarly as

in regression analysis and path analysis where it is assumed that the residual vari-

ances are constant over moderator variables (homoscedasticity). However, in testing

for strict measurement invariance, homoscedastic residual variances are a necessary

condition. If the residual variances are heteroscedastic, one speaks of weak mea-

surement invariance (Meredith, 1993). Thus, moderation of the residual variances is

not strictly necessary in testing for interactions, but it should ideally be considered

when establishing strict measurement invariance (see e.g., Bauer, 2017, for a possible

approach).

2.2 Moderation by a step function

As discussed above
::
in

::::
the

:::::::::
previous

::::::::
section, an intuitive approach to model the depen-

dence of λi and νi on Z is to categorize the continuous moderator Z and to fit the

latent variable model above to the data of each group that arises using a multi-group

approach (e.g., Jöreskog, 1971). That is, the function fλi(Z) above is given by the

following step function
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fλi(Z) =



λ0i Z ≤ τ1

λ1i τ1 < Z ≤ τ2

. . . . . .

λ(C−1)i Z > τC−1

(8)

in which τc are the thresholds for c = 1, 2, ..., C−1 at which the continuous moderator

is categorized into C categories. The resulting parameters, λ0i, λ1i, . . . , λ(C−1)i

reflect the slope parameters in the different subgroups. A similar step function can

be specified for fνi(Z), resulting in parameters ν0i, ν1i, . . . , ν(C−1)i, and for fln[σi](Z)

resulting in parameters ln[σ2
0i], ln[σ2

1i], . . . , ln[σ2
(C−1)i].

Similarly as in the multi-group approach to traditional moderation, indicator-

level moderation models have been specified by assuming categorized moderators

(see Partchev & de Boeck, 2012, and DiTrapani et al., 2016, for a possible approach

in the case of dichotomous indicators and dichotomous moderators). The functional

relationship between the parameters of the latent variable model and the indicator-

specific moderator in this model can be represented similarly as in Equation 8, but
::
by

replacing the moderator common for all indicators by the indicator-level moderator,

Zi, and replacing the thresholds by the indicator-specific thresholds, τci.

2.3 Moderation by a linear function

A linear moderation model retains the continuous nature of the moderator. Such a

model is specified by (see Purcell, 2002; Rabe-Hesketh et al., 2004; Mehta & Neale,
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2005; Neale et al., 2006; Bauer & Hussong, 2009; Molenaar et al., 2010):

fλi(Z) = λ0i + λ1iZ, (9)

fνi(Z) = ν0i + ν1iZ, (10)

where ν0i is the intercept parameter of the moderation model and ν1i accounts for

the main effect of the moderator in the observed indicators, Yi. In addition, λ0i is the

slope parameter in the moderation model, and λ1i is a moderation parameter which

account
::::::::
accounts

:
for the interaction effect between η and Z on Yi. As discussed byfor

instance
:
,
:::
for

::::::::::
instance,

:
Purcell (2002) and Tucker-Drob (2009), it is straightforward

to extend the model above to include higher-order powers of the moderator resulting

in
::::
with

:
additional parameters λ2i, λ3i, . . . , and ν2i, ν3i, . . . , depending on the powers

of Z that are added (Z2, Z3, . . . ). In addition, in the case of continuous indicators,

it is straightforward to introduce a dependency of ln(σ2
i ) on Z as follows:

fln[σ2
i ]

(Z) = β0i + β1iZ. (11)

.

Similarly to the traditional linear moderation models, an indicator-level modera-

tion model has been specified by assuming linear functions between the latent vari-

able model parameters and the indicator-level moderators (see Bolsinova, Tijmstra,

& Molenaar, 2017; Goldhammer, 2015, for an approach in the case of dichotomous

indicators). That is, in Equations 9 and 10 a common moderator Z is replaced with

indicator-specific moderator Zi. Alternatively, a linear model for the log of the slope
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parameter has also been used (see Bolsinova, de Boeck, & Tijmstra, 2017).

2.4 Moderation by a nonlinear function: parametric and

nonparametric approaches

In the above, it was mentioned that linear moderation approaches
:::::::
Linear

::::::::::::
moderation

:::::::::::
approaches

::::::::::
discussed

:::
in

::::
the

:::::::::
previous

::::::::
section

:
do not suffer from the problem of infor-

mation loss due to categorization, but that they restrict the relationship between the

moderator (or its transformation) and the parameters (or their transformations) to

be linear. To go beyond these restrictions, the linear moderation model in Equations

9 and 10 have
:::
has

:
been extended to include higher-order powers of the moderator

resulting in additional parameters λ2i, λ3i, . . . , and ν2i, ν3i, . . . , depending on the

powers of Z that are added (see e.g., Purcell, 2002; Tucker-Drob, 2009; Bauer & Hus-

song, 2009). However, this has only been done for traditional moderation models,

but not for indicator-specific moderators.

Nonlinear parametric models are still rather restrictive since they specify the re-

lationship between the moderator and the parameters of the latent variable model to

be a polynomial function. Alternatively, one may want to approach the relationship

between the moderator and the parameters from a more flexible and exploratory

perspective, which is done in
::::
can

:::
be

::::::
done

:::
in

::
a
:
local structural equation modeling

approach (Hildebrandt et al., 2009; Hülür et al., 2011; Hildebrandt et al., 2016). The

idea of local structural equation models is to estimate separate models for different

values of the moderator, called focal points. If a moderator is categorical and there

are only a few categories, then it boils down to estimating a multi-group model. How-
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ever, if a moderator is continuous there will not be enough observations at each focal

point to estimate separate models. Instead, observations can be weighted around

the focal points and the model parameters can be estimated separately for each focal

point on the basis of the weighted sample of the observations. Hence, local structural

equation modeling allows exploration of the relationship between the moderator and

the parameter of the latent variable model in a very flexible way.

3 A Parametric Nonlinear
::::::::::::::::
Approach

::
and

::
a

::
Non-

parametric Approach to Indicator-Level Mod-

eration

As appears from the existing approaches discussed above
:::::::::::
previously

::::::::::
discussed, the

parametric nonlinear and nonparametric moderation approaches are established for

moderators that vary across persons but not across indicators. However, in the case

of indicator-level moderation, only linear or categorization approaches are available.

In this section, we derive a nonlinear parametric approach and a nonparametric

approach to indicator-level moderation.
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3.1 Parametric nonlinear indicator-level moderation

The assumption of linearity of the moderation effect of the indicator-level moderator

can be relaxed by including higher-order effects as follows:

fλi(Zi) = λi0 +
R∑
r=1

λirZ
∗
ir, (12)

with the analogous expression for fνi(Zi) and fln[σ2
i ]

(Zi), where Z∗i1, Z
∗
i2, . . . , Z

∗
iR are

the standardized (i.e., having standard deviation of 1) orthogonal polynomials of

degree R over the set of values of the moderator Zi. We use orthogonal polynomials

instead of {Zi, Z2
i , . . . , Z

R
i } to facilitate parameter estimation and interpretation. If

R = 1 the model reduces to an indicator-level linear moderation model, if R = 2

the model reduces to a curvilinear indicator-level moderation model, etc. It may

be noted that the model in Equation 12 can in principle be seen as a generalized

linear model, but we follow Bauer and Hussong (2009) and refer to it as a nonlinear

moderation model because it allows for nonlinear relationship between the indicator-

specific moderator and the indicator and for nonlinear moderation effects.

3.2 Nonparametric indicator-level moderation

The goal of indicator-level moderation, is for each observed indicator i to explore the

relationship between the moderator Zi and the indicator-specific slope and intercept.

Extending the idea of local structural equation modeling, for each observed indicator

we define the focal points Fi1, . . . , FiJ of the moderator and obtain the estimates of

λij and νij at each of these focal points by weighting the observations ypi using the
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distance between the value of the observed moderator zpi of person p and the value of

the moderator at the j-th focal point. While in traditional nonparametric moderation

each person receives a single weight for each focal point, in indicator-level moderation,

weights are assigned to each combination of a person and an indicator separately.

Different weighting functions can be used, among which the Gaussian kernel function

is rather convenient and intuitive (Gasser, Gervini, Molinari, Hauspie, & Cameron,

2004). The idea behind using the Gaussian kernel is that the observations that are

close to each other are more similar than the observations that are further apart. The

closer to the focal point, the higher the weight that the observation receives. In this

way the estimates of the latent variable model parameters are more influenced by

the observations near the focal point and less influenced by the observations further

away from it. The relationship between the latent variable model parameters and

the indicator-level moderator is approximated by estimating the parameters at each

focal point.

For each indicator i and each focal point j a vector of weights wij is defined with

each element computed as follows:

wpij = exp

{
− (zpi − Fij)2

2(hSDZi
N−

1
5 )2

}
, (13)

where wpji is the weight of the observation of person p on indicator i when obtaining

the estimates of parameters of i-th indicator at the focal point Fij, zpi is the reali-

sation of the i-th indicator-level moderator for person p, h is the bandwidth factor,

and SDZi
is the standard deviation of the i-th moderator.

The bandwidth factor determines the standard deviation of the normal density
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function used to weigh the observations, that is, it .
:::
It

:
determines how far from the

focal points the observation has to be to have a relatively large weight and therefore,

a relatively large impact on the estimated model parameters. The bandwidth factor

serves as a smoothing parameter: the larger it is, the smoother the relationship

between the moderator and the latent variable model parameters is estimated to be.

When h is large, the noise in the estimates is reduced, but so is the ability of the

method to pick up on the meaninful
::::::::::::
meaningful but nuanced trends in the data

:
,
::::
and

:::
the

:::::::::
strength

:::
of

::::
the

::::::::::::
moderation

::::::
effect

:::::::
might

:::
be

::::::::::::::::
underestimated. If h→ +∞, then the

model parameters will be estimated to be the same at each focal point, that is,
::::
and

there will be no effect of the moderator. The smaller h is, the noisier the estimated

relationship between the moderator and the model parameters is. Here
::::::
Hence, the

estimates more closely match the local subsets of data, but the chance of picking up

on statistical noise is also increased. It must be noted that this trade-off is not specific

for nonparametric moderation, but is inherent in kernel regression methodology in

general (see e.g., Hart, 2013; Li & Racine, 2007). The factor h = 1.1 has been

proposed in the nonparametric density estimation literature (see e.g., Silverman,

1986). Alternatively, the value of h = 2 has been used in local structural equation

modeling (Hildebrandt et al., 2009; Briley et al., 2015). In this paper we use both

values and compare the results.

Similar to the traditional nonparametric moderation approach (Hildebrandt et

al., 2016) the significance of the moderation effect can be tested using a permutation

test (Good, 2005). To perform the permutation test, one needs to estimate the non-

parametric relationship between the moderator and the indicator-specific parameters
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repeatedly on permuted data sets, that is, on data sets in which the data y are kept

intact, while for each indicator the values of the corresponding moderator are reas-

signed to different persons in the sample. To make inferences about the significance

of the moderation effect on, for example, the slope of the i-th indicator, one needs to

compare the standard deviation among the estimates of λi1, . . . , λiJ obtained in the

observed data with the standard deviations of the estimates of the slope parameters

in the permuted data sets. The proportion of data sets in which the standard devi-

ation is larger for the permutation data than for the observed data can be used as

the p-value for testing the hypothesis of the absence of the moderation effect. Note ,

that although compared to traditional moderation we have more moderators, we do

not estimate more effects than in traditional moderation models and do not perform

more permutation tests than Hildebrandt et al. (2016). In addition to the permu-

tation test, one can also use bootstrapping (see e.g., Efron, 1979) to investigate the

uncertainty about the estimated relationships between the indicator-level moderator

and the model parameters.

4 Estimation

In this section, we describe how the parametric nonlinear and nonparametric rela-

tionships between the indicator-specific moderator and the parameters of the latent

variable model can be estimated. We take a pragmatic approach when choosing the

estimation method: the parametric moderation model is estimated using a Bayesian

procedure since it is a model with a large number of parameters which complicates
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the use of frequentist methods, and for estimating the nonparametric relationship

between the moderator and the model parameters we use maximum likelihood esti-

mation because in this case it is computationally more efficient. We will focus on

binary indicator variables as the resulting models are arguably the most challenging

models as they are computationally more demanding than the latent variable models

for continuous indicators.

4.1 Parametric moderation

To estimate the indicator-level R-degree polynomial moderation 2PNOM we propose

using Gibbs sampling (see e.g., Casella & George, 1992; Geman & Geman, 1984).

Gibbs sampling allows one to obtain samples from the joint posterior distribution

of the model parameters and use these samples to approximate the posterior means

of the parameters which can be used as their point estimates and credible intervals

which can be used as measures of uncertainty about the parameters.

The joint posterior distribution of the model parameters is proportional to the

product of the likelihood and the prior distribution:

f(λ,ν |y, z) ∝ f(λ,ν)
N∏
p=1

∫ K∏
i=1

f(ypi |λi·,νi·, η, zpi)N (η; 0, 1)dη, (14)

where λ and ν are the K × (R + 1) matrices containing the baseline slopes and

intercepts, respectively, in the first column and the effects of the moderator on the

slopes and the intercepts in the remaining columns, respectively. Here, ypi s are
::
is

binary and the conditional probability of ypi = 1 given η is specified by the 2PNOM.
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As a prior distribution for the indicator-specific sets of parameters we use a

hierarchical multivariate normal prior:

f(λ,ν) =

∫ ∫ K∏
i=1

N2R+2([λi·,νi·]
T ;µ,Σ)f(µ)f(Σ)dµdΣ, (15)

where µ and Σ are the hyper-mean and hyper-covariance matrix. Using a hierar-

chical prior allows one to investigate the relationship between the different model

parameters since the hyper-parameters can be also estimated. For example, using

the posterior distribution of the covariance between λ·0 and λ·1 one can make infer-

ences about the relationship between the baseline slope and the linear moderation

effect. For the the hyper-mean and the hyper-covariance we use a vague multivariate

normal and a vague inverse-Wishart prior, respectively.

In the Gibbs sampler after setting initial values for the model parameters, they

are consecutively sampled from their full conditional posterior distributions given the

current values of all other parameters. The conditional posteriors for the distribution

in Equation 14 do not have a closed form. To simplify the conditional posteriors

data augmentation (Tanner & Wong, 1987) is implemented. First, for each binary

data point ypi an augmented continuous variable xpi ∼ N ((λTi·z
∗
p)ηp + νTi·z

∗
p), 1) is

introduced (Albert, 1992), defined in such a way that ypi = I(xpi ≥ 0). Second,

parameters ηp of each person are sampled. Third, the hyper-parameters µ and Σ are

also sampled. Hence, in the data augmented Gibbs Sampler samples are obtained

from the following joint posterior distribution:

p(λ,ν,η,µ,Σ,x, |y, z). (16)
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All full conditional posteriors of this joint posterior have a closed form: truncated

normal for xpis, normal for ηps, multivariate normals for [λi·,νi·]
T and µ, and Inverse-

Wishart for Σ. The exact specification of initial values and the steps of the Gibbs

Sampler can be found in the Appendix. R and C code for estimating the R-degree

polynomial indicator-level moderation model can be found in the supplementary

materials.

4.2 Nonparametric moderation

While in traditional nonparametric moderation the model is estimated once for each

focal point, when the moderator is indicator-specific the procedure needs to be it-

eratively repeated for each indicator. To start the procedure one needs to initialize

the values of the parameters for each combination of a person and an indicator, that

is, define the N × K matrices of person-by-indicator-specific slopes and intercepts,

denoted by λ∗ and ν∗, respectively. The initial values can be set as follows: estimate

the model without the moderation effects and set each λ∗pi and ν∗pi to be equal to the

estimates of the slope and the intercept of the i-th indicator in the model without

the moderation effects.

After initialisation, one first repeatedly obtains the estimates of λji and νji for

i ∈ [1 : K] and for j ∈ [1 : J ] by maximizing the log-likelihood:

lnL(λij, νij ; y,λ∗,ν∗,wij)=

N∑
p=1

ln

∫
f(ypi;λij, νij, η)wpij

K∏
k 6=i,k=1

f(ypk;λ
∗
pk, ν

∗
pk, η)N (η; 0, 1)dη (17)
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where the observations of indicator i are weighed by wij, while for the indicators k 6= i

the current values of the person-by-indicator-specific slope and intercept parameters

for the k-th indicator, λ∗·k and ν∗·k, are used. In this study we used numerical inte-

gration to approximate the integral in Equation 17 (Gauss-Hermite quadrature with

six nodes) and general-purpose optimisation R-function ‘optim’ to find the values of

λij and νij that maximize the log-likelihood.

Next, one updates the values of λ∗·i and ν∗·i as follows:

λ∗pi =


λi1 if zpi < Fi1,

λij + (zpi − Fij)
λi(j+1)−λij
Fi(j+1)−Fij

if Fij ≤ zpi ≤ Fi(j+1),∀j ∈ [1, J − 1],

λiJ if zpi > FiJ ;

(18)

with a similar specification for ν∗pi. That is, if
::
If

:
zpi is outside of the range of the

focal points, then λ∗pi and ν∗pi are set to be equal to the parameters at the nearest

focal point, and if zpi is between Fij and Fi(j+1), then λ∗pi and ν∗pi are computed using

piece-wise linear regression. The values outside the range of the focal points are set

to be equal to the parameters at Fi1 and FiJ because if one uses the regression-based

values, extremely low (→ −∞) or extremely high (→ +∞) values may be obtained

which may be unrealistic in practical applications. Given the results of the simulation

studies, piece-wise linear approximation was considered accurate enough, however
:
.

:::::::::
However alternatively one may consider fitting a higher degree polynomial regression

and use the values on the smooth curve connecting the estimates at the focal points

for λ∗pi and ν∗pi.
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The procedure needs to be repeated more than once to get rid of the effect of

the starting values. However, our simulations have shown that the estimates of

λi1, . . . , λiJ and νi1, . . . , νiJ are already stable after the second repetition. R and C

code for the indicator-level nonparametric moderation can be found in the supple-

mentary materials.

5 Illustrative example
::::::::::::::
Example

5.1 Data and method

To illustrate the differences between the moderation methods we used the data from a

computerized arithmetic test which was part of the central exams in the Netherlands

at the end of secondary education. The same data were used by Bolsinova and Maris

(2016). From the data of a test version with 60 items administered to 10,367 persons

we removed the last 10 items which many respondents did not reach (this was done

since the response behavior under strong time pressure might be different from the

rest of the test) and removed all persons with missing values on the remaining 50

items.

The resulting data set consisted of responses from 9,697 persons to 50 arithmetic

items. Here, ypi is the binary response accuracy (1 - correct, 0 - incorrect) of person

p to item i. In addition to the response accuracy, the data set included item-level

response times which were used as a moderator for illustrating the moderation meth-

ods (i.e., here, zpi is response time of person p on item i). The 2PNOM with the

standard normal distribution for the latent variable (i.e., arithmetic ability) was used
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in this application.

The 2PNOM without moderation effects, the linear moderation model, the para-

metric nonlinear models (quadratic and cubic) and the model for the dichotomized

moderator (split at the item-level median) were fit to the data using Gibbs Samplers

with 10,000 iterations each (including 5,000 of burnin). Modified AIC and BIC2

(mAIC abnd mBIC) were used for model comparison.

Furthermore, the nonparametric moderation method for investigating the rela-

tionship between response time and the slope and intercept parameters were
::::
was

applied to the data. For each item in the nonparametric method, we used 20 equally

spaced percentiles (from the 2.5th to the 97.5th percentile) of the distribution of the

response times as focal points. Additionally, we performed the permutation test with

100 replications to evaluate the significance of the moderation effects. Moreover, we

used 100 bootstrap samples (each time 9,697 persons were sampled with replace-

ment from the available sample) to graphically evaluate the uncertainty about the

estimated relationships. The above described procedure was performed twice: with

h = 1.1 and h = 2.

5.2 Results

[
:::::::
Figure

::
2
:::::::
about

::::::
here.]

Convergence of the models was evaluated using visual inspection of the trace

2The information criteria are referred to as modified since instead of the maximum likelihood
estimates of the parameters, the posterior means of the parameters were used. The utility of
these criteria for model selection of linear indicator-level moderation models was demonstrated by
Bolsinova et al. (2017).
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plots and the running mean plots, which did not provide evidence for the absence

of convergence. As an example, Figure 2 shows for the most complex model (cubic

moderation) the plots for the parameters of item 10. The black lines show the values

of each parameter throughout the iterations and the red lines show the running

means. It can be seen that the running means stabilize after the burn-in and the

sampled parameter values fluctuate around these means covering the range of the

posterior distribution.

In Table
:::
To

::::::::
further

:::::::
assess

:::::::::::::
convergence

::::
we

::::
ran

:::::
five

:::::::::::
additional

:::::::
chains

::::::
with

::::::
more

::::::::::
iterations

::::::::
(20,000

:::::
each

::::::::::
including

::::::
5,000

:::::::::
burn-in)

::::
for

:::::
each

:::::::
model

:::::
with

::::::::
varying

:::::::::
starting

::::::
values

:::::
and

::::::::
assessed

:::::::::::::
convergence

::::::
using

::::
the

:::::::::::::::
Gelman-Rubin

:::::::::::
diagnostic

:::::::::::::::::::::::::::
(Gelman & Rubin, 1992).

:::
For

::::
the

:::::::
model

:::::::::
without

::
a

::::::::::::
moderation

:::::::
effect,

::::
for

::::
the

::::::
linear

::::::::::::
moderation

::::::::
model,

::::
and

::::
for

:::
the

:::::::
model

:::::
with

::::
the

::::::::::::::
dichotomized

::::::::::::
moderator,

:::
all

::::::::::::
parameters

::::::::
showed

:::::
good

:::::::::::::
convergence.

::
In

::::
the

::::::::::
quadratic

:::::
and

::::
the

::::::
cubic

:::::::
models

::::
the

:::::::::::::
convergence

::::::::::::
diagnostics

::::::::::
indicated

:::::
that

::::
the

:::::
item

::::::::::::
parameters

::
of

:::
47

:::::
and

:::
48

:::::::
items,

:::::::::::::
respectively,

::::::::
showed

::::::
good

::::::::::::::
convergence.

::::
For

::::
the

::::::::::
remaining

::::::
three

:::::
and

:::::
two

::::::
items

:::::
the

::::::::::::
diagnostics

::::::::::
indicated

::::::
some

::::::::::::::
convergence

:::::::
issues,

::::::
which

::::::
upon

:::::::::::
inspection

:::::::::
showed

:::::
that

::::
for

:::::
both

::::::::
models

:::::
two

:::::::::
different

:::::
sets

:::
of

::::::::::
solutions

:::::
were

::::::
found

::::::::
across

:::::::
chains

::::::
with

::::::
three

::::
out

:::
of

:::::
five

:::::::
chains

::::::
stuck

:::
in

::
a
::::::

local
::::::::::::
maximum.

::::::
When

:::::::::::::
convergence

::::
was

:::::::::::
evaluated

:::
for

::::
the

::::
two

:::::::
chains

:::::::
which

:::::
were

::::
not

::::::
stuck

:::
in

::::
the

:::::
local

::::::::::
maximum

::::
all

:::::
item

::::::::::::
parameters

::::
did

:::::
not

::::::
show

::::
lack

:::
of

::::::::::::::
convergence.

:::::
For

:::::
both

:::::::::
models,

:::
the

::::::::
results

::::::
found

::::
for

::::::
their

::::::::
original

:::::::
chain

:::::::::
matched

::::
the

::::::::
results

:::
of

::::
the

:::::::::::
respective

:::::
best

:::::::
chains.

:::::::
Thus,

::::::
there

:::
do

::::
not

:::::::
appear

:::
to

:::
be

::::
any

:::::::::::::
convergence

::::::
issues

:::
in

::::
the

::::::::
original

::::::::
results,

::::
and

::::::
hence

::::
for

:::::
each

:::::::
model

:::
we

:::::::::::
proceeded

:::::
with

::::
the

:::::::::
analysis

::
of

::::
the

:::::::
results

:::
of

::::
the

::::::::
original

::::::
chain.

:
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[
::::::
Table

::
1

::::::
about

::::::
here.]

[
:::::::
Figure

::
3
:::::::
about

::::::
here.]

::
In

::::::
Table 1 the models with and without the moderation effects are compared

in terms of the information criteria. All models with moderation effects performed

better than the model without the moderation effects which indicates that in this

application, response accuracy is not independent of response time. The linear model

performed better than the model with a dichotomized moderator. However, the

assumption of linearity of all moderation effects can be rejected since the models

with higher-order effects have smaller mAIC and mBIC than the linear model.
::::
The

:::::::::::::
model-based

:::::::::::::
uncertainty

:::::::
about

::::
the

:::::::::::
estimated

:::::::::::
functional

:::::::::::::
relationship

::::::::::
between

::::
the

:::::::::::
moderator

::::
and

::::
the

::::::::
model

::::::::::::
parameters

::::
can

::::
be

::::::::::
evaluated

::::
by

:::::::::::
inspecting

::::
the

::::::::::
posterior

:::::::::::::
distributions

:::
of

::::
the

:::::::::::::
moderation

::::::::
effects.

::::::::
Figure

::
3
:::::::

shows
:::::::::::

examples
::::
for

::::::
some

:::
of

::::
the

:::::::::::
parameters

::::::::
(slopes

:::
of

::::::
items

:::
5

::::
and

:::
7,

:::::
and

:::::::::::
intercepts

::
of

:::::::
items

::
3

::::
and

:::::
27).

:::::::
Each

:::::
grey

::::
line

::
is

::::::
based

::::
on

::::
one

:::::::
sample

::::::
from

::::
the

::::::::::
posterior

::::::::::::
distribution

:::
of

:::::::
model

:::::::::::::
parameters,

::::
and

:::
the

::::::
black

:::::
line

::
is

:::::::
based

:::
on

::::
the

::::::::::
posterior

::::::::
means.

:

[
:::::::
Figure

::
4
:::::::
about

::::::
here.]

[
:::::::
Figure

::
5
:::::::
about

::::::
here.]

The conclusion of the presence of the moderation effects also follows from the

permutation tests performed with the nonparametric moderation method. Among

the p-values of the permutation tests
:
, 48 and 49

::
of

:::::
them

:
were significant for the effect

on the intercept parameter for h = 1.1 and h = 2, respectively, indicating a significant
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main effect of Zi on Yi. In addition, 33 and 35 tests were significant for the effect

on the slope parameter for h = 1.1 and h = 2, respectively, indicating a significant

interaction effect between Zi and η. As an illustration ofddd
::
of the permutation test,

Figure 4 shows the relationship between response time and the parameters of the

latent variable model for some of the items. The effect was significant, for example,

for the slope parameter of item 5 and the intercept parameter of item 3. On the

contrary, the effect on the slope parameter of item 7 and the effect on the intercept

parameter of item 27 were not significant. For these items, Figure 5 also shows the

estimated relationships in the bootstrap samples. The estimated relationship for λ7

and ν27 in the bootstrap samples fluctuates around a horizontal line. One can also

see that the uncertainty about the estimated relationship is larger when h = 1.1,

compared to h = 2, and that the estimated effect is stronger with h = 1.1.

[
:::::::
Figure

::
6
:::::::
about

::::::
here.]

[
:::::::
Figure

::
7
:::::::
about

::::::
here.]

Figures 6 and 7 show examples of the estimated relationship between the response

time and the slope and the intercept parameters as obtained from the different meth-

ods. For some items there are no large differences between the linear model and the

nonlinear models (see the slope parameter of item 45 and the intercept parameter of

item 5). However, for other items there is a large discrepancy between the linear and

nonlinear models (see the slope parameter of item 34 and the intercept parameter of

item 48). The slope of item 34 first increases with response time and then decreases.

The quadratic and the cubic model
:::::::
models

:
accommodate this change of the direc-

tion of the effect, but they do not closely match the relationship estimated with the
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nonparametric method. The intercept parameter of item 48 first increases steeply

but there seems to be hardly any difference in the intercept parameters given the

response times above 200 seconds. For this effect the parametric nonlinear models

give a rather good approximation. Furthermore, one can see from the figures that

the assumption of the stability of the parameters within the categories of the mod-

erator does not seem to hold. If we compare the results for the two different values

of h, we see that the general patterns of the estimated relationships are very close to

each other, but with h = 2 the effect is weakened and small differences between the

neighboring focal points are ignored
::::::::::
smoothed

::::
out.

6 Simulation study
::::::::::
Study

6.1 Methods

In this simulation study the viability of the parametric nonlinear and nonparametric

methods is investigated. In order to obtain simulated data under a realistic relation-

ship between the latent variable model parameters and the continuous moderator, we

used the moderator values and estimates of the person-by-indicator-specific slopes

and intercepts from the illustrative example. In the simulation study we again used

the latent variable model for binary indicators, specifically the 2PNOM to illustrate

the viability of nonlinear moderation.

From the empirical data set with 50 indicators we selected 24 indicators with

different patterns for the relationship between the indicator-specific moderator and

the slope and intercept parameters. Additionally, we considered an indicator with
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no moderator effect on the parameters of the latent variable model, that is, with

a constant slope parameter of .58 (i.e., matching a slope of 1 in the two-parameter

logistic model) and a constant intercept equal to 0 for which we used the values of

the moderator of one of the remaining 26 indicators in the arithmetic test.

Two scenarios were considered: 1) the data were generated using the cubic mod-

eration model; 2) the data follow a latent variable model with person-by-indicator-

specific slope and intercept parameters, λ∗ and ν∗3. In both scenarios, the true

parameter values were equal to the parameter estimates of the selected 24 indicator

variables in the real data illustration (as discussed above) in the cubic moderation

model and the nonparametric moderation method respectively.

In each replication, N persons were drawn from the available data set of 9657

persons and their response times were used in the simulation as the values of the

indicator-specific moderator. In the first scenario, for each combination of a per-

son and an indicator, we computed the slope and the intercept parameters using

the corresponding value of the moderator and the estimates of the parameters of

the cubic moderation model. In the second scenario, the estimates of the person-

by-indicator-specific slope and intercept parameters, λ∗pi and ν∗pi, of the selected N

persons obtained with the nonparametric method were used to generate the data of

the indicator variables. For each person, a value for the latent variable was drawn

from the standard normal distribution. The values of the indicators were generated

according to the 2PNOM.

Three conditions with different N were considered: 1000, 2000, and 4000 persons.

3We used the results with the bandwidth h = 1.1

33



In each generated
::::::::::
condition

::::
100

::::::
data

:::::
sets

:::::
were

::::::::::::
generated.

:::
In

::::::
each

:::::::::::
generated data

set we estimated a cubic moderation model (a Gibbs Sampler with 10,000 iterations

and 5,000 burn-in was used, see Appendix for details) and the relationship between

the parameters of the latent variable model and the indicator-specific moderator was

investigated using the nonparametric method, both with h = 1.1 and h = 2. As

focal points we used the 20 equally spaced percentiles (from the 2.5th to the 97.5th)

of the distribution of the indicator-specific moderator in the full data set.

The goal of the simulation study was to investigate the recovery of the true rela-

tionship between the indicator-specific moderator and the parameters of the latent

variable model. The estimates of the focal point-specific slope and intercept parame-

ters were compared to their true values. For each indicator we computed the weighted

absolute bias, variance and mean squared error of the indicator-specific parameters

at the 20 focal points, separately for the slope and for the intercept parameters. The

weights for each focal point were determined by the kernel density estimates at that

point.

6.2 Results

[
::::::
Table

::
2

::::::
about

::::::
here.]

[
:::::::
Figure

::
8
:::::::
about

::::::
here.]

[
:::::::
Figure

::
9
:::::::
about

::::::
here.]

[
:::::::
Figure

:::
10

::::::
about

::::::
here.]

[
:::::::
Figure

:::
11

::::::
about

::::::
here.]
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Table 2 shows the results for recovery of the indicator-specific parameters aver-

aged across the indicators. Additionally, Figures 8, 9, 10, and 11 show examples of

how the estimates differ across the estimation methods and the sample sizes. One

can see that generally the estimated curves follow the patterns of the true relation-

ship. Furthermore, increasing sample size helped reduce variability of the estimated

curves.

When the data were generated under the cubic model, the parametric method

performed better than the nonparametric method. The bias was small and can

probably be at least partly explained by the shrinkage effect, since the hierarchical

prior was used for the indicator-specific parameters. The variance was also smaller

than that under the nonparametric method, which is not surprising, since the cubic

model specifies the parametric shape of the relationship between the parameters of

the latent variable model and the moderator and therefore restricts the range of

possible functions. With the nonparametric method the variance was larger, since

it allows for more flexibility in the shape of the moderation effect. Furthermore,

bias was larger with the nonparametric method. When estimating λij and νij at

a particular focal point, observations removed from the focal point also influence

the results, therefore there was less variation in the estimated focal point-specific

parameters than in the true ones, this
:
.
::::::
This effect is more pronounced for h = 2

than for h = 1.1.
:::::
With

::::::
h = 2

:::::::
strong

:::::::
effects

::::
are

::::::::
heavily

:::::::::::::::::
underestimated.

:
For example,

in Figure 8 in the bottom row , which represents
::
of

:
the results of the nonparametric

method,
:

one can see that at the lowest and the highest focal points, the intercepts

were overestimated, while in the middle they were underestimated. Overall, the
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effect of the moderator is therefore slightly underestimated since the decrease of the

intercept when moving away from the median of the moderator is estimated to be less

strong
::::::
Thus,

::::
the

:::::::::
strength

:::
of

::::
the

::::::::::::
moderation

::::::
effect

:::
is

::::::::::::::::
underestimated

:::
by

:::::
this

:::::::::
method.

::::
The

::::::::::
difference

::::::::::
between

:::
the

::::::::
results

:::::
with

::::::::
h = 1.1

:::::
and

::::::
h = 2

:::::::::
depends

::::
on

::::
the

::::::::::
curvature

::
of

::::
the

::::::::::::
moderation

::::::::::
function.

:::::
For

::::::::::
example,

::
in

:::::::
Table

::
2

::::
one

:::::
can

:::
see

:::::
that

::::
the

:::::::::::
difference

::::::::
between

::::
the

:::::
bias

::::::
with

::::::::
h = 1.1

:::::
and

::::::
h = 2

:::::
was

::::::
larger

::::
for

::::
the

::::::::::::
intercepts,

:::::
than

::::
for

::::
the

:::::::
slopes,

::::::
since

::::
the

::::::::::::
moderation

::::::
effect

::::::
were

::::::::::
generally

:::::::::
stronger

:::
for

::::
the

:::::::::::
intercepts.

When the data were generated using the person-by-indicator-specific slopes and

intercepts estimated with the nonparametric method, the benefits of the cubic model

become less prominent. The variance of the estimates was smaller under the cubic

model, however, for those indicators for which a cubic regression was not a good

approximation of the underlying relationship between the moderator and the param-

eters of the latent variable model, the bias under the parametric model was larger

than the bias under the nonparametric method. Figures 10 and 11 show that while

the parametric model forces a particular shape on the relationship between the mod-

erator and the parameters of the latent variable model and, hence, cannot recover

the true shape of the relationship, the relationship estimated with the nonparametric

method very closely matches the true relationship for h = 1.1. With larger sample

size the difference in the variance of the estimates under the parametric and the non-

parametric methods becomes smallerand the .
:::::::
Since

::::
the

:::::::::::::::
nonparametric

:::::::::
method

::::
has

:::::::
smaller

::::::
bias,

::::
the overall quality of the estimates , in terms of

::
as

:::::::::
captures

:::
by

::::
the

:
mean

squared error , points in the direction of better performance of the nonparametric

method
:
is

:::::::
better

::::
for

::::
this

:::::::::
method

:::::::::::
compared

::
to

:::::
the

:::::::::::
parametric

:::::::::
method

::::::
when

::::::::
sample
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::::
size

::
is

::::::
large. In conclusion, when the true relationship deviates from the cubic model

and the sample size is large, it is more beneficial to use a more flexible nonparametric

approach, which has larger variance, but also smaller bias.

7 Discussion

The methods presented in this paper allow researchers to move beyond the assump-

tions of linearity of the moderation effects and homogeneity of the indicator-specific

parameters of the latent variable model within artificially created categories of the

moderator. As our illustrative example shows, it is not uncommon for the relation-

ship between the indicator-specific moderator and the parameters to be nonlinear.

Furthermore, while sometimes a quadratic or a cubic model can give a good approx-

imation of the moderation effect, in other cases the patterns of the relationship may

not be accurately represented by these parametric models. Therefore, having an

exploratory nonparametric tool for studying the relationship between the indicator-

specific moderator and the parameters of the latent variable model is very useful.

The estimated nonparametric relationship might be less strong than the true rela-

tionship, but the bias of the nonparametric method would be smaller than the bias in

the parametric model when the shape of the true relationship is far from the specified

parametric shape.

The nonparametric approach allows one to investigate the relationship between

the moderators and the parameters of the latent variable model in an exploratory

way and use what has been learned in this explanatory step in further research. The
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results of the nonparametric method can be used to inform the parametric model in

further confirmatory studies about what degree polynomial is needed to approximate

the relationship between the indicator-specific moderator and the parameters of the

model.

When specifying the weights for the nonparametric estimation of the relationship

between the indicator-specific moderator and the parameters, in this study a normal

density kernel was used, which assumes that observations, for example, one unit

below and one unit above the focal point are equally similar to the observations at

the focal point. Alternatively, one might assume that observations with values, for

example, twice as large or twice as small as the value of the focal point are equally

similar to the observations at the focal point. In that case, it would be better to use

a log-transformation for the indicator-specific moderator. Choosing the method for

specifying the weights depends on the application at hand.

When choosing the value for the bandwidth factor we followed recommendations

from the nonparametric regression literature and from local structural equation mod-

eling. Both h = 1.1 and h = 2 were used in the empirical data analysis. The results

show that although the results are smoother with h = 2, the general trends of the

relationship are similar regardless
::
of

:
the exact value of h. Furthermore, the re-

sults of the permutation tests are also very similar.
:::
As

::
a

::::::::
general

::::::::::::::::::
recommendation

:::
for

::::::
users

:::
of

::::
the

:::::::::
method

:::
we

:::::::::
suggest

:::::::::
different

:::::::
values

:::
of

::
h
:::::
and

::::::::::
checking

:::::::::
whether

::::
the

:::::
same

::::::::::::
conclusions

:::::::
would

:::
be

:::::::
made

::::::
about

::::::::
general

::::::::::
patterns

::
of

:::::::::::::
relationship

:::::::::
between

::::
the

::::::::::::::
indicator-level

::::::::::::
moderator

:::::
and

::::
the

::::::::::::
parameters

:::
of

::::
the

:::::::
latent

:::::::::
variable

::::::::
models

::::
are

::::
the

::::::
same.

:::::::
While

::::
the

::::::
exact

:::::::
values

::
of

::::
νij ::::

and
::::
λij ::::

are
:::::::::
sensitive

:::
to

::::
the

::::::
exact

:::::::
choice

::
of

::
h
:::::
(see
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:::
for

::::
the

:::::::::
example

::::
the

:::::::
results

:::
of

::::
the

:::::::::::
simulation

:::::::
study,

::::::
where

::::
the

::::::
MSE

::
of

::::::::::::::::
nonparametric

::::::::
method

::::
was

::::::::::
different

:::::
with

::::::::::
different

:::
h),

::::
the

:::::::::
general

::::::::
pattern

:::
of

:::::::::::::
relationship

:::::::
which

::
is

::
of

:::::::::
primary

:::::::::
interest

::
is

::::::
often

::::::::
similar

::::
for

::::::::
h = 1.1

:::::
and

:::::::
h = 2.

::
An alternative to using

fixed values of h would be adapting one of the data-driven methods for bandwidth

selection from nonparametric regression and kernel density estimation literature (see

e.g., Bowman, 1984; Chiu, 1991, 1992; Hall, Sheather, Jones, & Marron, 1991; Hall,

Marron, & Park, 1992; Park & Marron, 1990; Rice, 1984; Rudemo, 1982; Scott &

Terrell, 1987; Sheather & Jones, 1991). However, in the case of indicator-level mod-

eration it is computationally very expensive to compute the exact predicted value

of the latent variable model parameters for each combination of the person with the

indicator which complicates the application of these methods.
::::::::
Further

:::::::::
research

:::
is

:::::::
needed

:::
to

::::::::
develop

:::::::::::::
data-driven

:::::::::
methods

:::
for

:::::::::
optimal

:::::::::
selection

:::
of

::::
the

:::::::::::
bandwidth

:::::::
factor

:
h
::::::
that

:::::::
would

:::
be

:::::::::
suitable

::::
for

::::::::::
nonlinear

::::::::::::
moderated

:::::::
latent

:::::::::
variable

::::::::
models,

:::::
not

:::::
only

:::
for

::::
the

::::::::::::::::
indicator-level

::::::::::::
moderation

:::::::::::
discussed

:::
in

::::
this

::::::::
paper,

::::
but

:::::
also

::::
for

::::::::::::
traditional

::::::::::::::::
nonparameteric

::::::::::::
moderation

::::::::::::::::::::::::::::::::::::::::::::::::
(Hildebrandt et al., 2009; Briley et al., 2015).

:

In this paper we used the latent variable model for binary indicators in the il-

lustrative example and the simulation study. However, our methods can be also be

adapted to be used in the context of continuous indicators or ordinal indicators. Fur-

thermore, while in this study we considered a unidimensional latent variable model

in which the conditional expectation of the observed indicator is modeled with an

intercept and a single slope parameter, the methods described here can be readily

extended to more complex multidimensional latent variable models and structural

equation models.
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Appendix: Gibbs Sampler for the indicator-level

R-degree polynomial moderation 2PNOM.

As starting values we use maximum likelihood estimates of the slopes and intercepts

in the non-moderated model for λ·0 and ν ·0, respectively, EAP-estimates of the

person parameters for ηps, 0 for all the effect parameters (e.g., λ·1) and for µ, and

an identity matrix for Σ. Initial values do not have to be specified for xpis since they

are sampled in the first step.

After initialisation, the parameters (and the augmented data) are consecutively

sampled from their full conditional posterior distributions which are specified in the

steps below:

Step 1. For each combination of person p with indicator i sample the augmented

variable xpi from its full conditional posterior which is a truncated normal distribu-

tion where the truncation depends on the value of ypi (below zero for correct and

above zero for incorrect):

f(xpi |λ,ν,η,µ,Σ,y, z) = f(xpi |λi·,νi·, ηp, ypi, zpi) =

N (xpi; (λTi·z
∗
pi)ηp + νTi·z

∗
pi), 1)(ypiI(xpi ≥ 0) + (1− ypi)I(xpi < 0)). (19)

Note that given the matrix of augmented data x the model parameters are indepen-

dent of the data y.

Step 2. For each person p sample ηp from its full conditional posterior which is a
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normal distribution:

f(ηp |λ,ν,η,µ,Σ,y,x, z) = f(ηp |λ,ν,yp·, zp·)

= N

(
ηp;

∑K
i=1 λ

T
i·z
∗
pi(xpi − νTi·z

∗
pi)∑K

i=1 λ
T
i z∗pi + 1

, 1

)
(20)

Step 3. For each indicator i sample the parameters [λi·,νi·, ]
T from a multivariate

normal distribution with posterior covariance matrix

Ωi =
(
vTv + Σ−1

)−1
, (21)

where v =

[
η η ◦ z∗·i1 η ◦ z∗·i2 η ◦ z∗·i3 1 z∗·i1 z∗·i2 z∗·i3

]
, and posterior mean

vector

ζi = Ωi

(
vTx·i + Σ−1µ

)
. (22)

Step 4. Sample the covariance matrix of the vector of parameters:

Σ ∼ IW

(
K + 2R + 4, I2R+2 +

K∑
i=1

([
λi· νi·

]T
− µ

)([
λi· νi·

]
− µT

))
.

(23)

Step 5. Sample the mean vector of the parameters:

µ ∼ N8

((
KΣ−1 +

I8
100

)−1(
Σ−11T

[
λi· νi·

])
,

(
KΣ−1 +

I8
100

)−1)
. (24)
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Table 1: Information criteria for the fitted models: modified AIC (mAIC) and mod-
ified BIC (mBIC)

Model # parameters mAIC mBIC
No moderation 100 517569.2 518287.2

Dichotomised moderator 200 509162.2 510598.1
Linear moderation 200 510277.4 511713.3

Quadratic moderation 300 504072.8 506226.7
Cubic moderation 400 500613.8 503485.6
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Table 2: Parameter recovery

Scenario Method N Slope Intercept
Bias Var MSE Bias Var MSE

1 Parametric 1000 0.015 0.008 0.008 0.010 0.006 0.006
2000 0.008 0.004 0.004 0.006 0.003 0.003
4000 0.005 0.002 0.002 0.003 0.002 0.002

Non-parameteric 1000 0.033 0.012 0.014 0.033 0.008 0.011
h = 1.1 2000 0.026 0.007 0.008 0.029 0.004 0.007

4000 0.025 0.004 0.005 0.027 0.002 0.004
Non-parameteric 1000 0.041 0.007 0.010 0.065 0.005 0.017

h = 2 2000 0.033 0.004 0.006 0.057 0.002 0.012
4000 0.031 0.002 0.004 0.050 0.001 0.009

2 Parametric 1000 0.049 0.008 0.013 0.054 0.006 0.011
2000 0.050 0.004 0.009 0.055 0.003 0.009
4000 0.052 0.002 0.007 0.054 0.001 0.007

Non-parameteric 1000 0.041 0.013 0.016 0.036 0.008 0.012
h = 1.1 2000 0.036 0.007 0.010 0.033 0.004 0.007

4000 0.031 0.004 0.006 0.030 0.002 0.005
Non-parameteric 1000 0.054 0.008 0.014 0.071 0.005 0.020

h = 2 2000 0.048 0.004 0.009 0.062 0.002 0.014
4000 0.044 0.002 0.007 0.054 0.001 0.010
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Figure 1: Indicator-level moderation modeling (on the right) as opposed to tradi-
tional moderation modeling (on the left): ;

:
Traditional moderation modeling uses

a single moderator which varies across persons, indicator-level moderation modeling
uses indicator-specific moderators.
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Figure 2: Example of the convergence plots (traceplots in black and running mean
plots in red): parameters for item 10 in the cubic moderation model.
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Figure 3:
:::::::::
Example

:::
of

:::::
the

::::::::::::
evaluation

:::
of

:::::
the

::::::::::::::
model-based

::::::::::::::
uncertainty

:::
of

:::::
the

::::::::::
functional

:::::::::::::
relationship

::::::::::
between

::::
the

::::::::::::
moderator

:::::
and

:::::
the

:::::::
model

::::::::::::
parameters

::::
in

::::
the

:::::
cubic

:::::::::::::
moderation

::::::::
model.

:::::::::::
Response

::::::
time

::
is

::::
on

::::
the

::::::::
x-axis,

:::::
and

::::
the

:::::::
latent

:::::::::
variable

::::::
model

::::::::::::
parameters

::::
are

:::
on

::::
the

::::::::
y-axis:

:::::::
slopes

:::
of

::::::
items

::
5

::::
and

:::
7,

::::
and

:::::::::::
intercepts

:::
of

::::::
items

:
3
:::::
and

::::
27.

::::::
Each

:::::
grey

::::
line

:::
is

::::::
based

:::
on

::
a
::::::::
sample

::::::
from

::::
the

::::::::::
posterior

::::::::::::
distribution

:::
of

::::
the

::::::
model

:::::::::::::
parameters,

::::
and

::::
the

::::::
black

::::::
lines

:::
are

:::::::
based

:::
on

::::
the

::::::::::
posterior

:::::::
means

::
of

::::
the

:::::::
model

::::::::::::
parameters.
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Figure 4: Example of permutation tests for the effects of the response time (on the
x-axis) on the latent variable model parameters (on the y-axis): slopes of items 5 and
7, and intercepts of items 3 and 27; black lines represent the relationship estimated
in the observed data, and each grey line presents the relationship estimated in each
of the permuted data sets. The results are shown for the two values of the bandwidth
factor (h = 1.1 on the left and h = 2 on the right)
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Figure 5: Example of bootstrapping for the effects of the response time (on the x-
axis) on the latent variable model parameters (on the y-axis): slopes of items 5 and
7, and intercepts of items 3 and 27; black lines represent the relationship estimated
in the observed data, and each grey line presents the relationship estimated in each
of the bootstrap samples. The results are shown for the two values of the bandwidth
factor (h = 1.1 on the left and h = 2 on the right)
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Figure 6: Example of the relationship between the moderator (zpi; response time
in seconds) and the slope parameter of items 34 and 45. Different lines represent
different moderation methods.
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Figure 7: Example of the relationship between the moderator (zpi; response time
in seconds) and the intercept of items 5 and 48. Different lines represent different
models.
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Figure 8: Recovery of the relationship between the moderator (on the x-axis) and
the intercept of item 11 (on the y-axis): each black line represents the estimated
relationship from one replication, the red line represents the true relationship (data
were generated under the cubic model); each row represents a separate moderation
method (parametric, nonparametric with the bandwidth of h = 1.1, and nonpara-
metric with h = 2), and column represents different sample size (N).
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Figure 9: Recovery of the relationship between the moderator (on the x-axis) and the
slope of item 15 (on the y-axis): each black line represents the estimated relationship
from one replication, the red line represents the true relationship (data were gener-
ated under the cubic model); each row represents a separate moderation method
(parametric, nonparametric with the bandwidth of h = 1.1, and nonparametric with
h = 2), and column represents different sample size (N).
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Figure 10: Recovery of the relationship between the indicator-specific moderator (on
the x-axis) on the intercept of item 19 (on the y-axis): each black line represent the
estimated relationship from one replication, the red dots represent the true parame-
ters at the focal points (data were generated using the response-specific parameters
obtained from the empirical data); each row represents a separate moderation method
(parametric, nonparametric with the bandwidth of h = 1.1, and nonparametric with
h = 2), and column represents different sample size (N).
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Figure 11: Recovery of the relationship between the indicator-specific moderator (on
the x-axis) on the slope of item 17 (on the y-axis): each black line represent the esti-
mated relationship from one replication, the red dots represent the true parameters
at the focal points (data were generated using the response-specific parameters ob-
tained from the empirical data); each row represents a separate moderation method
(parametric, nonparametric with the bandwidth of h = 1.1, and nonparametric with
h = 2), and column represents different sample size (N).
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