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Isometric Fluctuation Relation in 
a symmetry broken fluctuating phase

Carlos Pérez-Espigares

University of Granada

London, July 2013

In collaboration with:  Pablo I. Hurtado & Pedro L. Garrido



The Isometric Fluctuation Relation (IFR)
● We consider systems with a locally conserved observable 
(energy, number of particles, charge...) described macroscopically by: 

(Continuity equation)

The probability of observing a time averaged current 

Current LDF:

E

0 1x

 IFR:



 |J |>|J c|          flat profile. Gaussian statistics.

 |J |<|J c|          Traveling wave profile (breaking translation invariance).
                       Non-Gaussian statistics.

The IFR holds in the time-dependent regime!!

x

E

y

Dynamical Phase Transition in 2D (WASEP): IFR still valid

Same phenomenon in 1D:



Some references: 

P.I. Hurtado, CPE, J. Del Pozo & Pedro L. Garrido, PNAS, 108, 7704 (2011)

CPE, Pedro L. Garrido & P.I. Hurtado, PRE, 87, 032115 (2013)

THANK YOU!!



Do non-typical trajectories 
have non-typical amorphous 

order?
Chris Fullerton

Department of Physics, University of Bath
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Pin fraction c of particles

Run dynamics

Generate new
configuration

Blue = Pinned
Red = Mobile

Measure overlap for configurations well separated in time - high 
overlap means system is in reference state, low overlap means 

system in new state.
Crossover at c* when system is as likely to be found in a new  

state as in state reference configuration is from
The lower c* is, the higher the degree of amorphous order in 

reference state
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The End!
Thanks to Rob Jack

Paper based on this work currently in preparation...
see arXiv 1306.5640 (R. L. Jack, C. J. Fullerton) for more on pinning

& J Chem Phys 138 224506 for more on TPS



Dynamical phases in the FCS
of the resonant-level model

Sam Genway, James Hickey, Juan Garrahan, Andrew Armour

Pt(q0, q) = Tr(PqUtPq0ρssPq0U
†
tPq)

Bernard & Doyon, JMP 2013

Thermodynamic formalism for events in time

dynamical partition function → Zt(s) =
∑

qq0
e−s(q0−q)Pt(q0, q) = etθ(s)

dynamical free energy → θ(s)

dynamical pressure → s

Imperial Workshop on Large Deviations Theory, July 2013 Sam Genway, University of Nottingham



Dynamical phase diagram

• Dynamical order parameter −θ′(s) = 〈∆q〉s /t = I (s)

• Fluctuations θ′′(s) =
(〈

∆q2
〉
s
− 〈∆q〉2s

)/
t = ∆I 2(s)

Imperial Workshop on Large Deviations Theory, July 2013 Sam Genway, University of Nottingham



Map FCS between different models

• Change dot-lead coupling τ

• FCS related by s-translations

• Tune s via physical parameters

Imperial Workshop on Large Deviations Theory, July 2013 Sam Genway, University of Nottingham



s-biased dot state

• State of quantum dot for rare
charge transport events?

nd(s) =
∑

qq0
e−s(q−q0)

×Tr(d†dPqUtPq0ρssPq0U
†
tPq)

• Dot state correlated with FCS

• See in ∆I 2(s) and nd(s)

arxiv:1212.5200
Sam.Genway@nottingham.ac.uk

Collaborators: James Hickey, Juan Garrahan, Andrew Armour

Imperial Workshop on Large Deviations Theory, July 2013 Sam Genway, University of Nottingham



  

FCS Singularities & Time-Integrated 
Observables in Quantum Systems

James Hickey

University of Nottingham

    Supervisor: Juan P. Garrahan  



  

1D Transverse Field Ising Model
● Extension of Thermodynamics of Trajectories to Closed 

Quantum Systems -  “s”-ensemble.

● Hamiltonian : 

● Phase transition at 

● Study cumulants of :

● Introduce Non-Hermitian Perturbation:

● Moment Generating Function (MGF) : 

● Look for critical features of Z(s,t)critical features of Z(s,t) away from s = 0, using  
following scaling :

● Define Dynamical Magnet. And Susceptibility :

H=−∑i
σ i

z σi+1
z −λ∑i

σ i
x

θ̃(s)≡limN ,t→∞

log Z (s , t )
Nt

K=∫
t

∑i
σ i

x
(t ')dt '=∫

t
k (t ')dt '

H (s)=H−
is
2

k

Z (s , t )=〈T t
†(s)T t (s)〉

κs≡−θ̃ ' (s),χs≡θ̃ ' ' (s)

λ=1



  

Results and Links to Other Areas

● Evaluated MGF using Ground StateGround State.

● Critical points form circlecircle ,c.f. Lee-Yang zeros.

●  Critical points effect cumulants at s = 0cumulants at s = 0.

●  Quenches to study critical points.



  

THANK YOU!THANK YOU!
Collaborators: S. Genway, I. Lesanovsky, J. P. Garrahan

Original Paper - PRB 87, 184303 (2013) 

Quench Dynamics - In Preparation.

● MGF          Survival Probability of an Associated Open 
Problem :          . 

● s-parameter      decay rate.

● Probe using digital simulation with 6 cold ions plus ancilla ion.6 cold ions plus ancilla ion. 
Apply gates at discrete times to simulate Associated Open 
System.

P0(t)
→

→



A Map for Finding 
Hidden Markov Models

Michael Hush
Andrew Armour, 

Igor Lesanovsk and 
Juan Garrahan

University of 
Nottingham
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Thank you
Paper coming soon...

Michael.Hush
@nottingham.ac.uk

µ-Maser
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Modulated two-level system: 
Exact work Statistics

Gatien Verley - Université du Luxembourg

lundi 8 juillet 13
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Master equation

⌧

Generating function
propagator over a period

Q = �|�ih�|+ �0|�0ih0�0|

� > �0If              and                  we haveW = nw

ṖW (t) = LPW (t)� (ḣ@hE) · @WPW (t)
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At the large deviation level

lundi 8 juillet 13



Gatien Verley1, Christian Van den Broeck2, Massimiliano Esposito1
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Fig. 3: (Left) Cumulant generating function φµ for the work per period versus the Laplace parameter µ. (Right) Large deviation
function Iw versus work per period for various characteristic time scales of the driving: τ = 100 (blue dashed line), τ = 1 (gray
dotted dashed line) and τ = 0.01 (orange solid line). Same symbols code as in Fig. 2. Here a = 0.5, h0 = 1 and α = 0.3.

tuation theorem which for the generating function reads
φ−1 = 1. Both the detailed and the integral fluctuation
theorem are satisfied on Figs. 2-3, where φµ and Iw are
plotted for various values of the protocol parameters, and
for Arrhenius, Fermi and Bose rates.

These plots reveal a number of other features, which can
be verified via analytical calculations (see Table 1). First,
due to the finite support of the large deviation function,
the generating function displays a linear asymptotic be-
haviour for µ → ±∞. The physical origin of this finite
support is the existence of an upper and lower bound for
the work per period, namely ±4a (±2a for every jump in
the field). Second, the work variance (i.e. the width of
the large deviation function) typically increases as the av-
erage number of jumps per period increases, see Fig. 4: we
observe, as the average number of jumps decreases from
Arrhenius over Bose to Fermi rates, a corresponding de-
crease in the variance. Third, in the limit of infinite pe-
riod, τ → ∞, the system has time to relax to the prevailing
equilibrium distribution after each jump in the field. In
this case, the work distribution becomes independent of
the types of rates ω(h) since they all lead to the same
equilibrium distribution, cf. (3). Since the field under-
goes jumps, we are however not in a close-to-equilibrium
regime. Fourth, the latter regime is reached in the limit of
small jumps a → 0 where the work distribution becomes
Gaussian

Iw =
(w − 〈w〉)2

4〈w〉
. (24)

The fact that the variance equals twice the average work
is the signature of the fluctuation theorem for Gaussian
processes. The general form of the average work is given

by

〈w〉 =
4a sinh(2a)

(

1− e−(1−α)τω+
)(

1− e−ατω−

)

(cosh(2h0) + cosh(2a))
(

1− e−ατω−−(1−α)τω+
) ,

(25)
and is plotted on Fig. 4. In the close to equilibrium regime,
it becomes a quadratic function in the perturbation ampli-
tude a. Fifth, a far from equilibrium regime is reached in
the limit of fast modulation τ → 0 or large field h0 → ∞.
In both cases, the number of spin flips per period become
small and the work distribution converges to a delta func-
tion corresponding to a vanishing work per period.

Conclusion. – The two-level system has played a cru-
cial role in statistical physics to reveal the properties of
both equilibrium and non-equilibrium systems. In the
present letter, we derived an exact analytic expression for
the (asymptotic) work distribution and work generating
function of a two-level system in contact with a single
thermal heat bath and subjected to a periodic piecewise
constant field. We also showed that the universal fluctu-
ation theorem for entropy production reduces to a corre-
sponding Crooks-like fluctuation theorem for work. Our
study could be easily extended to more complicated situa-
tions. The case of several heat bath is of obvious relevance
since it would allow to discuss the way in which the field
modifies the energy transfers between the various baths.
One could also increase the number of field states in the
piecewise driving to break the asymptotic time-reversal
symmetry P = P̃ of the present study.

Appendix. – We denote the propagator for the sys-
tem probabilities pσ(t) by

U(t, t0) =
−→exp

∫ t

t0

L(t′)dt′. (26)

p-4
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Modulated two-level system : Exact work statistics

where A, B and C are constants independent of µ

A =
(1 − z+)(1− z−)

cosh 2a+ cosh 2h0
, (18)

B =
(1 + z+z−) cosh 2h0 + (z+ + z−) cosh 2a

cosh 2a+ cosh 2h0
,

C = z+z−,

with

z− = exp(−ατω−), (19)

z+ = exp[−(1− α)τω+],

ωε = 2ω(h0 + εa) cosh(h0 + εa) with ε = 0,±.

The crucial point to note is that the dependence on µ
via the expression cosh{2a(2µ + 1)} is relatively simple.
This feature can be exploited when performing the Leg-
endre transform Iw = maxµ {µw − φµ} and leads to (see
appendix for details)

Iw = −
w

2
+ ln







2
(

xw +
√

(xw)2 − 1
)|w|/4a

Axw +B +
√

(Axw +B)2 − 4C






, (20)

with

xw = −
Bw2

A(w2 − 16a2)

−

√

B2w4 − (w2 − 16a2) [w2(B2 − 4C) + 16A2a2]

A(w2 − 16a2)
.

(21)

The explicit expressions for the asymptotic work gener-
ating function, (11) with (16) and (17), and for the large
deviation function, (20), are the main results of this paper.

Discussion. – In its traditional formulation the
Crooks fluctuation theorem applies to systems initially at
equilibrium and is valid for any time. It connects the work
fluctuations arising when applying an arbitrary protocol
to those of a different experiment where the time-reversed
protocol is considered. This result is a special case of the
universal detailed fluctuation theorem for entropy produc-
tion [38–42]. Indeed, when a system is in contact with a
single reservoir, entropy production is given by the work
minus the change in nonequilibrium free energy of the sys-
tem. This latter reduces to the difference of equilibrium
free energy in the traditional Crooks formulation. For a
periodic driving, the change in nonequilibrium free energy
over a period becomes zero when initial transients are gone
and thus plays no role in the long time limit. Furthermore,
for our piecewise constant modulation, the time-reversed
driving is identical to the forward driving up to a time-
shift which again plays no role in the long time limit. As
a result, the detailed fluctuation theorem for entropy pro-
duction becomes a Crooks-like work fluctuation theorem
for long times of the form PW /P−W = exp{W}. More
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Fig. 2: (Top) Cumulant generating function φµ of work per
period as a function of the Laplace parameter µ. (Bottom)
Large deviation function Iw versus work per period. Various
values of the field are plotted: high field h0 = 5 and a = 0.5
(blue dashed line), intermediate field h0 = 1 and a = 0.5 (grey
dotted dashed line), and low amplitude of the driving h0 = 1
and a = 0.1 (orange solid line). Symbols encode the types of
rates: Arrhenius (squares), Bose (triangles) and Fermi (circle).
The other parameters are τ = 1, and α = 0.3.

precisely, the large deviation function and the work gener-
ating function satisfy the fluctuation theorem symmetry

Iw − I−w = −w, (22)

φµ = φ−1−µ. (23)

These relations are easily verified. The second term in the
large deviation function (20) is even in w, and the first
term immediately reproduces (22). For the work generat-
ing function, the µ dependency of φ appears only through
the function cosh[2a(1 + 2µ)] in (16) which is indeed in-
variant under the exchange of µ with −1−µ. The detailed
fluctuation theorem implies a Jarzynski-like integral fluc-

p-3

Modulated two-level system : Exact work statistics
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ating function, (11) with (16) and (17), and for the large
deviation function, (20), are the main results of this paper.
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Crooks fluctuation theorem applies to systems initially at
equilibrium and is valid for any time. It connects the work
fluctuations arising when applying an arbitrary protocol
to those of a different experiment where the time-reversed
protocol is considered. This result is a special case of the
universal detailed fluctuation theorem for entropy produc-
tion [38–42]. Indeed, when a system is in contact with a
single reservoir, entropy production is given by the work
minus the change in nonequilibrium free energy of the sys-
tem. This latter reduces to the difference of equilibrium
free energy in the traditional Crooks formulation. For a
periodic driving, the change in nonequilibrium free energy
over a period becomes zero when initial transients are gone
and thus plays no role in the long time limit. Furthermore,
for our piecewise constant modulation, the time-reversed
driving is identical to the forward driving up to a time-
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a result, the detailed fluctuation theorem for entropy pro-
duction becomes a Crooks-like work fluctuation theorem
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Fig. 2: (Top) Cumulant generating function φµ of work per
period as a function of the Laplace parameter µ. (Bottom)
Large deviation function Iw versus work per period. Various
values of the field are plotted: high field h0 = 5 and a = 0.5
(blue dashed line), intermediate field h0 = 1 and a = 0.5 (grey
dotted dashed line), and low amplitude of the driving h0 = 1
and a = 0.1 (orange solid line). Symbols encode the types of
rates: Arrhenius (squares), Bose (triangles) and Fermi (circle).
The other parameters are τ = 1, and α = 0.3.

precisely, the large deviation function and the work gener-
ating function satisfy the fluctuation theorem symmetry

Iw − I−w = −w, (22)

φµ = φ−1−µ. (23)

These relations are easily verified. The second term in the
large deviation function (20) is even in w, and the first
term immediately reproduces (22). For the work generat-
ing function, the µ dependency of φ appears only through
the function cosh[2a(1 + 2µ)] in (16) which is indeed in-
variant under the exchange of µ with −1−µ. The detailed
fluctuation theorem implies a Jarzynski-like integral fluc-

p-3

Iw = max

µ
{µw � �µ} P (W = nw) ⇣ e�nIw

lundi 8 juillet 13



Outlook

• Collaborators: 
Massimiliano Esposito 
Christian Van den Broeck 

• More details on Arxiv:1306.6667
Contact: gatien.verley@uni.lu

* Several baths 
* Sthocastic thermodynamics of an engine 
* Increase the number of field state 
  (No time reversal symmetry of the driving)

lundi 8 juillet 13


