
Non-equilibrium counterpart of detailed balance in
shear flows

Adrian Baule

with R. M. L. Evans

July 2013

A. Baule (QMUL) NCDB July 2013 1 / 14



Non-equilibrium statistical mechanics: recent trends

Fluctuation theorems for heat, work, currents,...
I Transient
I Steady state
I Integral, anomalous, quantum,...

Fluctuation-dissipation relations

Additivity principle

Ensemble theories
I Edward’s ensemble for granular matter: energy → volume
I Trajectory ensembles (shear flows, glasses)

How universal? How useful?
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From equilibrium to non-equilibrium steady states

Equilibrium

Characterized by energy

Statistical mechanics: P(~x)

Next simplest generalization of equilibrium is a non-equilibrium steady
state (NESS)

Physically a NESS is maintained by a balance between

Driving forces

I Temperature gradient

I Shear

←→

Dissipative forces

I Friction

I Viscosity

Stationary statistics as τ →∞
Characterized by a non-equilibrium observable: heat conductivity,
shear
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Fluid in shear flow

A sheared NESS has much in common with equilibrium:

Sheared NESS

same Hamiltonian, only
boundaries differ

ergodic

reproducible phase behavior

spatial and temporal fluctuations

ubiquitous

time
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b

Thursday, May 27, 2010

but equilibrium statistical mechanics does not apply!

In general, γ̇ influential, if relaxation times τr are long: γ̇τr � 1
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Phenomena in shear flows of complex fluids

Amphiphiles:

Micrograph courtesy of Mark 
Buchanan

equilibrium continuous shear

Sunday, June 6, 2010

Shear banding:

Thursday, May 27, 2010

Phase transition

controlled by shear rate in
addition to temperature,
concentration, etc.
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Non-equilibrium statistical mechanics of shear flow

A model fluid

is defined by a set of n rates {ωab}
for transitions between microstates
a→ b

time

s
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b

Tuesday, June 8, 2010Can the transition rates be chosen arbitrarily ?

Balance equation for the probability distribution Pa:

Ṗa =
∑

b

[ωbaPb − ωabPa] = 0

Satisfied by (equilibrium condition): ωbaPb − ωabPa = 0

→ Equilibrium heat reservoir:

ωab/ωba = e−(Eb−Ea)/kB T

Condition of detailed balance → Boltzmann’s law
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Tuesday, June 8, 2010→ Do similar constraints apply in a sheared NESS ?

A fluid volume in the bulk feels shear only intermediated through
surrounding fluid
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Monday, June 7, 2010

Postulate: statistics of sheared NESS
obtained from equilibrium trajectories
with non-zero shear

Evans, PRL (2004); JPhysA (2005)
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Biased ensemble of trajectories

Consider observable Ω (shear) of equilibrium trajectory Γ = ~x(t)

ΩΓ =

∫ τ

0
γ[~x(t)]dt

Typically 〈ΩΓ〉 = 0

Select equilibrium
trajectories with large
deviations from 〈ΩΓ〉 = 0

Construct ensemble where
these trajectories are typical
ones!

!"#$%&

'(#&

! 

"
! 

" 0
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Biased ensemble of trajectories

Ensembles

Microcanonical: constant shear

ΩΓ = γ̇0τ

Canonical: shear fluctuates

〈ΩΓ〉 = γ̇0τ
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! 

"
! 

" 0

Probability of uncorrelated paths Γ: PΓ = NΓ/N
Obtained by maximizing Gibbs entropy:

S = −
∑

Γ

PΓ log PΓ

Canonical ensemble

Pdr
Γ ∝ Peq

Γ eνΩΓ
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Non-equilibrium counterpart to detailed balance

→ s-ensemble:
〈
eνΩΓ

〉
→ Here: want probability of a

transition

ωab = Pr(a→ b|a)/∆t
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!"

#"! 

" 0

Exact relations for transition rates τ →∞
Microcanonical:

ωdr
ab = ωeq

ab lim
τ→∞

Pτ (γ̇0|a, b)

Pτ (γ̇0|a)

Canonical:

ωdr
ab = ωeq

ab e∆γba+ν∆qba
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Predictions
Invariant quantities in the sheared NESS

Product constraint

ωdr
abω

dr
ba = ωeq

abω
eq
ba ∀a, b

Noise from the reservoir determines 

which path the system follows through its 

microstate-space,  
during the  

experiment. 

time 
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Saturday, June 5, 2010

Total exit rate constraint∑dr
a −

∑dr
b =

∑eq
a −

∑eq
b ∀a, b

∑
a ≡

∑
j ωaj

Introduce shear current (rate) J = γ/τ of a trajectory

Current fluctuations

Pτ (J)

Pτ (−J)
∼= eνJτ τ →∞

→ Current fluctuation theorem

Baule and Evans, PRL (2008); JSTAT (2010)
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A rotor model
time

s
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!
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b

Sunday, June 6, 2010

Numerically time-stepping
Newtonian eqs of motion
I Θ̈i = Fi+1,i − Fi ,i−1
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Product
constraint:

Total exit
rate
constraint:
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Evans, Simha, Baule, Olmsted, PRE (2010)
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Effective forces

Driven dynamics can be expressed as effective force on the equilibrium
system

ωdr
ab = ωeq

ab lim
τ→∞

Pτ (γ̇0|a, b)

Pτ (γ̇0|a)

Systems with single degree of freedom: ẋ = F (x) + ξ(t)

I Free diffusion: F (x) = 0 → F eff = γ̇0, 〈ẋ〉 = γ̇0

I Diffusion in periodic potential: F (x) = −U ′(x)

→ F eff (x) = −U ′
eff (x) + g
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Markov processes

Markov chains (Jack and Sollich 2010):
Driven transition rates from auxiliary Markov operator:

ωdr
ab = 〈b|Waux |a〉

General diffusion processes (Chetrite and Touchette 2013):
I Auxiliary Markov process through similarity transform of generator
I Generalized invariant quantities
I Equivalence of ensembles relies on convexity of the rate function of the

observable
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