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Example: Poisson process
Γ

P (n, t) =
(Γt)n

n!
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• Peak well-described 

• Tails not captured by 
Gaussian approximation

fl
 

Consider cumulants

Review on large deviation functions: H. Touchette, Phys. Rep.
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Introduction to full counting statistics:

P (n, t)

Example: Poisson process
Γ

P (n, t) =
(Γt)n

n!
e−Γt

Yuli V. Nazarov, TU-Delft"Quantum Noise in Mesoscopic Physics" (Kluwer, 2002)

Said about full counting statistics (FCS):

• "…
 

is the ultimate knowledge about 
charge transfer"

• "… is everything to us"

• "…
 

in love with FCS"



Outline of talk

• Introduction to full counting statistics

• Universal oscillations in full counting statistics
- CF et al., Proc. Natl. Acad. Sci. USA

 

106, 10116 (2009)
- Experiment: C. Fricke, F. Hohls, R. J. Haug (Hannover)
- Theory: CF, T. Novotný (Prague), K. Netocný (Prague), T. Brandes (Berlin)

• Dynamical Lee-Yang zeros and phase transitions
- CF & J. P. Garrahan, Phys. Rev. Lett.

 

110, 050601 (2013)
- Theory: CF, J. P. Garrahan (Nottingham)

• Large deviations of Andreev tunneling events (if t<Ttalk )
- V. F. Maisi, D. Kambly, CF & J. P. Pekola, in prep.
- Experiment: V. F. Maisi, J. P. Pekola (Helsinki)
- Theory: D. Kambly (Geneva),  CF

• Summary
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• Single electron tunneling through 
Coulomb blockade quantum dot (QD)

• QPC current sensitive to QD occupation

• Advantages: 

- tunable tunneling rates

- single-electron detection

- high-quality statistics

• Draw-backs:

- slow tunneling rates (~ kHz regime)

Experimental setup from the group of R. J. Haug (Hannover)

Universal oscillations in full counting statistics



• The cumulants grow strongly with the order and oscillate with time

• Similar behavior found theoretically in many other systems

• What is the origin?

Dots: Experiment
Lines: Model calculations

Universal oscillations in full counting statistics



Universal oscillations in full counting statistics

• Cumulants are derivatives of the cumulant generating function (CGF)

• High-order derivatives of a function are determined by its singularities 
in the complex plane [M. V. Berry, Proc. R. Soc. A 461 (2005) 1735]

• Zeros of the MGF are log-singularities of the CGF: 

Michael V. Berry

S(z, t) = logM(z, t)



Universal oscillations in full counting statistics

• Express MGF in terms of its zeros         (Hadamard factorization):

• The zeros are log-singularities of the CGF:

• The cumulants become:

zj(t)

S(z, t) = logM(z, t) =
X
j

£
log{zj(t)− z}− log{zj(t)

¤

hhnmii(t) = ∂mz S(z, t)|z→0 = −
X
j

(m− 1)!
zmj (t)

M(z, t) '
Y
j

∙
zj(t)− z
zj(t)

¸
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• Factorial growth with cumulant order

• Oscillations as functions of any
 

parameter that changes arg{zj(t)}

CF, C. Fricke, F. Hohls, T. Novotný, K. Netocný, T. Brandes, and R. J. Haug, 
Proc. Natl. Acad. Sci. USA
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Universal oscillations in full counting statistics

Simple “one-shot” example:

One charge with probability T of 
being transmitted

P (n)

• Zeros at

• Large-m
 

behavior:
φ0

M(z) = (1− T ) + Tez

T

zj = (2j + 1)πi+ log(1/T − 1)

hhnmii = −(m− 1)!
X
j

e−im arg{zj}

|zj |m

' −2(m− 1)!|z0|m
cos(mφ0)
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Universal oscillations in full counting statistics

Simple “one-shot” example:

One charge with probability T of 
being transmitted

P (n)

φ0

M(z) = (1− T ) + Tez

T

1←T T→0

Exact

hhnmii ' −2(m− 1)!|z0|m
cos(mφ0)



Universal oscillations in full counting statistics

ExperimentTheory
Zeros

• High order cumulants grow factorially with the order and oscillate as 
functions of basically any parameter (universal oscillations)   

CF, C. Fricke, F. Hohls, T. Novotný, K. Netocný, T. Brandes, and R. J. Haug,            
Proc. Natl. Acad. Sci. USA
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Universal oscillations in full counting statistics

Asymmetry

Ti
m

e

Ti
m

e

Experiment Theory

Asymmetry

Experiment: C. Fricke et al., Appl. Phys. Lett.
 

96, 202103 (2010)

Theory: D. Kambly, CF, and M. Büttiker, Phys. Rev. B 83, 075432 (2011)



Universal oscillations in full counting statistics

• Work in Geneva on detection of interactions:

• Work with Le Hur group @ Yale on FCS & entanglement entropy:

“Factorial cumulants reveal interactions in counting statistics”, 
D. Kambly, CF & M. Büttiker, Phys. Rev. B 83, 075432 (2011), Editors’ Suggestion

“Bipartite fluctuations as a probe of many-body entanglement”, 
H. F. Song, CF, S. Rachel, I. Klich, and K. Le Hur, 
Phys. Rev. B 83, 161408(R) (2011) & Phys. Rev. B 85, 035409 (2012), Editors' Suggestion

Physical im/ap-plications?
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Dynamical Lee-Yang zeros and phase transitions

C• We consider a complex many-body system

• Dynamics may be rich, even if 
equilibrium/stationary properties are simple

• The dynamical observable is the activity K:             
# of configuration changes during [0,t]
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Eigenvalues of W(s)

s = 0 s 6= 0

Dynamical Lee-Yang zeros and phase transitions
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"phase" 
transition

Inactive phase

Active 
phase

Dynamical Lee-Yang zeros and phase transitions



Phase transitions in FCS have recently been investigated e. g. in:

• J. P. Garrahan et al., Phys. Rev. Lett.

 

98, 195702 (2007), ibid. 104, 160601 (2010)

• Y. S. Elmatad and R. L. Jack, J. Chem. Phys. 138, 12A531 (2013) 

• I. P. Levkivskyi & E. V. Sukhorukov, Phys. Rev. Lett.

 

103, 036801 (2009)

• D. A. Ivanov & A. G. Abanov, Europhys. Lett.

 

92, 37008 (2010), Phys. Rev. E

 

87, 022114 (2013)
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• Convential phase transition: a real physical field tunes the equilibrium 
configuration of microstates and may drive the system through a phase transition.

• FCS phase transition: the counting field s
 

biases the dynamical trajectories.

M(s, t) =
X
K

P (K, t)e−sK ≈ eΘ(s)t

Dynamical Lee-Yang zeros and phase transitions
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biases the dynamical trajectories.

M(s, t) =
X
K

P (K, t)e−sK ≈ eΘ(s)t

• FCS phase transitions occur in the long-time limit, which may be out of reach.

• The transition may occur at , but real dynamics takes place at           . 

Dynamical Lee-Yang zeros and phase transitions



s = 0

Problems/difficulties:

sc 6= 0

Our (potential) resolution:

• Use dynamical Lee-Yang zeros and high-order cumulants.

CF & J. P. Garrahan, Phys. Rev. Lett.
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• The (dynamical) Lee-Yang zeros of the 
MGF move towards the transition point in 
the long-time limit.

C. N Yang T. D. Lee

C. N. Yang & T. D. Lee, Phys. Rev.

 

87, 404 (1952)
T. D. Lee & C. N. Yang, Phys. Rev.

 

87, 410 (1952)
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C• We consider a complex many-body system

• Dynamics may be rich, even if 
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• The dynamical observable is the activity K:             
# of configuration changes during [0,t]

hhKnii(t) ' (−1)(n−1)(n− 1)! 2 cos[n arg{s0(t)}]|s0(t)|n

• Solve for s0

 

from the ratios of four consequtive cumulants :⎡⎣ 1 −κ(+)n

n

1 −κ
(+)
n+1

n+1

⎤⎦ · ∙ −(s0 + s∗0)|s0|2
¸
=

⎡⎣ (n− 1)κ(−)n

nκ
(−)
n+1

⎤⎦
κ(±)n ≡ hhKn±1ii

hhKnii

Dynamical Lee-Yang zeros and phase transitions



• Toy model: Two coupled Poisson processes

We start in process 1 with rate      and switch 
at a random time to process 2 with rate 

• Transition point:

t=0

γ1

γ2

Γ

sc = − log[1 + Γ/(γ1 − γ2)]

γ1
γ2

Dynamical Lee-Yang zeros and phase transitions
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• East model: N
 

spins on a lattice

• Spin flip rates:

N
 

spins

ni = 0, 1
E = J

X
i

ni
11→ 10: 1
10→ 11: e−J/T

00¿ 01: Not allowed

J. Jäckle and S. Eisinger, Z. Phys. B
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84, 115 (1991)
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Dynamical heterogeneity (typical for glasses)
J. P. Garrahan et al., Phys. Rev. Lett.

 

89, 035704 (2002)

Inactive region

Active region
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A first-order phase transition at sc

 

=0 has 
been predicted for the East model

s s

J. P. Garrahan et al., Phys. Rev. Lett.

 

98, 195702 (2007)

s0 0
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• Glauber-Ising model

• Exhibits a whole curve of critical points in the complex-s
 

plane

• Low temperatures: an ellipse.

• High temperatures: a circle. 
R. L. Jack and P. Sollich, Prog. Theor. Phys. Supp., 184, 304 (2010)

J. M. Hickey, CF & J. P. Garrahan, Phys. Rev. E

 

87, xxxxxx (2013), arXiv:1305.2723 

Dynamical Lee-Yang zeros and phase transitions

Low temp. High temp.



Outline of talk

• Introduction to full counting statistics

• Universal oscillations in full counting statistics
- CF et al., Proc. Natl. Acad. Sci. USA

 

106, 10116 (2009)
- Experiment: C. Fricke, F. Hohls, R. J. Haug (Hannover)
- Theory: CF, T. Novotný (Prague), K. Netocný (Prague), T. Brandes (Berlin)

• Dynamical Lee-Yang zeros and phase transitions
- CF & J. P. Garrahan, Phys. Rev. Lett.

 

110, 050601 (2013)
- Theory: CF, J. P. Garrahan (Nottingham)

• Large deviations of Andreev tunneling events (if t<Ttalk )
- V. F. Maisi, D. Kambly, CF & J. P. Pekola, in prep.
- Experiment: V. F. Maisi, J. P. Pekola (Helsinki)
- Theory: D. Kambly (Geneva),  CF

• Summary



Summary

• Universal oscillations of high-order cumulants 

• Lee-Yang zeros can be extracted from cumulants

• FCS phase transitions can be detected 

• Large deviation function for Andreev events

• CF et al., Proc. Natl. Acad. Sci. USA
 

106, 10116 (2009)
• CF & J. P. Garrahan, Phys. Rev. Lett.

 
110, 050601 (2013)

• V. F. Maisi, D. Kambly, CF & J. P. Pekola, soon on arXiv.org
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