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From Retinal Input to Perception

(Nassi & Callaway, 2009)



11/2/2018 3

Hierarchical Processing of Vision
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 Primary visual cortex (V1)
– tuned to simple attributes of shape, motion, 

color, texture, depth

 Middle temporal (MT) area
– tuned to coherent local motion (retinal flow)

 Medial superior temporal (MST) area
– tuned to global, complex motion
– self-motion (MSTd), object motion (MSTv)
– tuned to visual, vestibular cues

 Posterior parietal cortex (PPC)
– polysensory: visual, vestibular, somatosensory, 

auditory cues
– self-motion vs. object motion
– spatial planning, path integration(?)
– eye, arm, head movements

Visual Motion Pathway

(Britten, Annu Rev Neurosci, 2008)
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V1 simple cells
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Space-time oriented receptive fields

Wandell Ch.10
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Space-time oriented receptive fields
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 Three steps:
– 1. Linear filtering
– 2. Motion energy
– 3. Opponent energy

 1. Linear filtering:
– motion is an orientation 

in space-time
– V1 simple cells: space-

time oriented receptive 
fields

Spatiotemporal-energy models

(Bradley & Goyal 2009)
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 2. Motion energy
– Constant grating motion 

gives oscillating output 
not a useful indicator of 
motion

– Measure the energy of the 
signal instead:

𝐸𝐸𝑠𝑠 = �
−∞

∞

𝑥𝑥 𝑡𝑡 2𝑑𝑑𝑡𝑡

– Shortcut: Square and sum 
quadrature pair to remove 
phase dependence from the 
output

Spatiotemporal-energy models
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Simoncelli & Heeger model

monkey
(Movshon et al. 1983)

model

(Simoncelli & Heeger 1998)
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 What if multiple motion 
components are 
present in the 
stimulus?
 Component-direction-

selective (CDS):
– responds to both 

components in the plaid
 Pattern-direction-

selective (PDS) cell:
– responds to 

global/pattern/perceived 
direction of motion

Simoncelli & Heeger model
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 Problem: Local-
velocity sample is 
different from the 
object velocity

 Goal: Disambiguate 
local-velocity samples 
and integrate them 
into an accurate 
estimate of the global 
(object) velocity

Aperture problem
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 Problem: Local-velocity samples 
are intrinsically ambiguous

 Solution: Infer global (object) 
velocity from many local-motion 
samples

 Vector average
 Feature tracking
 Intersection-of-constraints 

(IOC):
– Each local velocity sample constrains

the global object velocity
– Find object velocity by integrating 

local samples
– MT firing rates may represent the 

velocity of moving objects using IOC

Aperture Problem

(Bradley & Goyal, Annu Rev Neurosci, 2008)

vx

vy
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 Toward Fourier transform:
– a) horizontal slice reveals a 

sinusoidal modulation of 
intensity vs. x (𝜔𝜔𝑥𝑥)

– b) same for y (𝜔𝜔𝑦𝑦)
– c) looking at a fixed location as 

the grating moves (𝜔𝜔𝑡𝑡)
 The velocity (direction and 

speed) of the grating is 
completely characterized by 
a single 3-D frequency: 
(𝜔𝜔𝑥𝑥,𝜔𝜔𝑦𝑦,𝜔𝜔𝑡𝑡)

Spatiotemporal energy models

Born & Bradley, 2005



 Space-time oriented filters:
– Space-time domain: Gabor function
– Fourier domain: “fuzzy blob”, the density of which 

decreases with distance from the center frequency
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Spatiotemporal energy models

(Bradley & Goyal 2009)



 The Simoncelli & Heeger (1998) model provides an IOC solution to the 
aperture problem

 Each 1D local-motion measurement (by a CDS cell) is consistent with a 
number of possible 2D velocities, all of which must fall on a line in velocity 
space

 A PDS cell in MT is created by summing the outputs of CDS cells with spectra 
centered on a common plane 
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Aperture problem in the Simoncelli & Heeger
model

(Pack & Born, Senses, 2008)
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 Rust et al. (2006):
– Presented sequence of 

random pattern stimuli
– Made from 12 gratings 

drifting in different 
directions

– Fit to L-N cascade model
– Explained full range of 

pattern motion selectivity 
found in MT

Middle temporal (MT) area
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L-N cascade model

(Rust et al 2006)
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L-N cascade model

(Rust et al 2006)

CDS

PDS



3D visual response properties of MSTd emerge 
from an efficient, sparse population code
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2University of Washington
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 Apparent motion on the retina caused by relative 
movement between observer and environment 
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Retinal optic flow

(Raudies & Neumann, CVIU, 2012)



 Project 3D world points 𝑃𝑃 = 𝑋𝑋,𝑌𝑌,𝑍𝑍 𝑇𝑇 onto 2D image points �⃗�𝑝 = 𝑥𝑥,𝑦𝑦 𝑇𝑇
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Motion field model

translation rotation

focus of expansion (FOE)

(Longuet-Higgins & Prazdny, Proc Royal Soc London, 1980)
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 Main visual input from MT
 Large receptive fields (up 

to 40° × 40°)
 encodes visual and 

vestibular signals
 responds to optic flow

– responds to 3D observer 
translations (heading)

– responds to 3D observer 
rotation

– act like template matches
 encodes eye position / eye 

velocity

MSTd response properties

(Gu et al., J Neurosci, 2006)
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 MSTd units receive input from a 
mosaic of MT local-motion 
detectors

 Detected heading corresponds to 
the position of the most active 
MSTd unit

 Many models have followed this 
idea
– Perrone & Stone (1994,1998)
– Lappe et al. (1996)
– Beintema & van den Berg (2000)
– Browning et al. (2009)

 Limitations:
– Combinatorial explosion of required 

heading templates
– Heading in MSTd is a population code
– Cannot explain some of the less 

intuitive response properties

Heading template model of MSTd

(Perrone & Stone, J Opt Soc Am A,1992)



November 2, 2018 26

 MSTd responds to complex 
motion
– No perfect heading templates
– Neurons prefer an intricate mixture 

of flow components
– Tuning varies in different subfields 

of the receptive field

 MSTd encodes vestibular 
signals

 MSTd codes in both retinal 
and head-centered 
coordinates

Complex motion selectivity in MSTd

(Mineault et al., PNAS, 2012)
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 MSTd simultaneously encodes multiple perceptual variables
– Distributed representation of heading, eye position, eye velocity
– Most neurons participate in encoding multiple variables (“basis functions”)
– Nonlinear interactions

Complex motion selectivity in MSTd

(Ben Hamed et al., J Neurophys, 2003; Mineault et al., PNAS, 2012)

FOE: 3D heading
P: eye position
E: eye velocity

 How can these nonintuitive response properties be explained?



 What if MSTd is trying to find an efficient encoding 
of visual input from MT?
– such that any optic flow pattern / relevant perceptual 

variable can be decoded from a small number of MSTd 
neurons (accuracy)

– such that any given stimulus activated only a small number 
of MSTd neurons (population sparsity)

– such that any MSTd neuron responded to only a small 
number of stimuli (lifetime sparsity)
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Efficient coding of optic flow
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 Form of population code
 Allows for flexible intermediate 

representations
 Most functions of interest can 

be computed using a linear 
combination of basis functions

 Examples of a basis set:
– Coordinate axes in 3D space
– Fourier transform: Any function = 

linear sum of a series of sin / cos 
– Radial basis functions (Gaussians)

 Many different basis sets 
possible…
– Cartesian (x,y,z)? Spherical (r,𝜃𝜃,𝜙𝜙)?
– Which one to choose?
– What are the constraints?

Basis function representations

(Pouget & Snyder, Nat Neurosci, 2000)

output

input

function to approximate: Z(X,Y)

radial basis
functions
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 Dimensionality reduction technique
– Similar to PCA, ICA
– Unsupervised statistical learning
– Reconstruct input data matrix from 

product of two much smaller matrices
 Use NMF to find basis set

 V: Observed data
 W: Basis vectors
 H: Hidden coefficients

 Linear decomposition: 𝐕𝐕 ≈ 𝐖𝐖𝐖𝐖
 NMF minimizes the following cost 

function:
𝑐𝑐 𝐖𝐖,𝐖𝐖 = 𝐕𝐕 −𝐖𝐖𝐖𝐖 2

Nonnegative matrix factorization (NMF)

F: features
S: stimuli (observations)
B: basis vectors

B <<< S

∀𝑖𝑖𝑖𝑖:𝑊𝑊𝑖𝑖𝑖𝑖 ≥ 0,𝐻𝐻𝑖𝑖𝑖𝑖 ≥ 0

(Paatero & Tapper, Environmetrics, 1994; Lee & Seung, Nature, 1999)
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NMF applied to face images

(Lee & Seung, Nature, 1999)
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Sparse decomposition model of MSTd
 Input stimuli: All naturally occurring optic flow fields
 MT-like units: local motion sensors (direction / speed)
 MSTd-like units: small basis set of complex motion templates

(Beyeler et al., J Neurosci, 2016)

𝑆𝑆 = 6000 virtual flow fields 𝐹𝐹 = 15 × 15 × 8 × 5 = 9000 virtual flow fields 𝐵𝐵 = 64 basis vectors
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NMF applied to optic flow

(Beyeler et al., J Neurosci, 2016)
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Using NMF to model neuronal response properties

MSTd

MT

Sparse decomposition model

Takahashi et al., JNeurosci, 2007

(Beyeler et al., J Neurosci, 2016)
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3D translation / rotation selectivity
 All 3D directions are represented
 Bias towards lateral headings

– Only few neurons respond to straight-ahead headings
– Only few neurons respond to roll rotation

(Beyeler et al., J Neurosci, 2016)



 Decode 𝑥𝑥FOE,𝑦𝑦FOE of arbitrary expansive flow fields 
from a population of 𝑁𝑁 MSTd-like model units
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Decoding heading from the population response

MSTd

MT

linear decoding 
weights

– linear regression, 
cross-validated

– randomly sampled 
10,000 flow fields

– azimuth between 
45°, 135° , elevation 

between −45°, +45°
– learn a set of 𝑁𝑁 × 2

linear decoding weights

𝑥𝑥FOE 𝑦𝑦FOE
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Sparse population code for heading

FOE = focus of expansion (Beyeler et al., J Neurosci, 2016)

Translation FOE (𝑥𝑥,𝑦𝑦)

Ben Hamed et al. (2003) (3.62° ± 6.78°, 3.87° ± 4.96°)

Sparse decomposition model 5.75° ± 5.62°, 6.02° ± 5.51°

s=0: minimal sparseness 

s=1: maximal sparseness 



FOE = focus of expansion
P = pursuit (eye movement velocity)
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Encoding of multiple perceptual variables

(Beyeler et al., J Neurosci, 2016)

Translation FOE (𝑥𝑥,𝑦𝑦) Eye velocity 𝜔𝜔𝑥𝑥 ,𝜔𝜔𝑧𝑧
Ben Hamed et al. (2003) (3.62° ± 6.78°, 3.87° ± 4.96°) 1.39° ± 3.69°, 1.38° ± 3.02°

Sparse decomposition model 5.75° ± 5.62°, 6.02° ± 5.51° 0.82° ± 0.89°, 0.92° ± 0.99°

 A strong decoding weight 
suggests a neuron contributes 
strongly to the decoding
– most model units involved in 

encoding both FOE and P
– same is true for neurons in 

MSTd
 These neurons are generalists, 

not specialists
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 Heading discrimination is best around straight-ahead 
headings

 MSTd is causally linked to heading perception
– behavioral performance due to neurons preferring straight-ahead 

headings with sharp tuning curves? (Duffy & Wurtz, 1995)
 But most MSTd neurons prefer lateral headings!

Heading discrimination

(Gu et al., Neuron, 2010)



 Calculate tuning curves:
– Preferred direction: Heading where neuronal activity is maximal (peak of 

tuning curve)
– Tuning width: Spread of tuning curve at half-maximum
– Peak discriminability: Heading where derivative of tuning curve is maximal

November 2, 2018 40

Population code underlying heading discrimination

max activitymax derivative

tuning width

(Beyeler et al., J Neurosci, 2016)
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Population code underlying heading discrimination

(Beyeler et al., J Neurosci, 2016)

overrepresentation of lateral headings

subset of MSTd neurons preferring
forward headings with sharp tuning curve



 Sparse decomposition model of MSTd
– Offers a biologically plausible account of a wide 

range of visual response properties ranging from 
single-unit selectivity to population statistics

– Suggests that most visual response properties are 
a by-product of MSTd neurons performing 
dimensionality reduction on their inputs

– Provides a further step towards a scientific 
understanding of nonintuitive MSTd response 
properties
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Conclusion
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 Sparseness metric 𝑠𝑠 for a 
signal 𝑟𝑟 with 𝑁𝑁 sample 
points (Vinje & Gallant, 
2000):

𝑠𝑠 = �1 −
1
𝑁𝑁

∑𝑖𝑖 𝑟𝑟𝑖𝑖 2

∑𝑖𝑖 𝑟𝑟𝑖𝑖2
1 −

1
𝑁𝑁

 Sparseness: 𝑠𝑠 ∈ 0,1
– 𝑠𝑠 = 0: minimal sparseness 

(dense code)
– 𝑠𝑠 = 1: maximal sparseness 

(local code)

 Population sparseness:
– How many MSTd-like model 

units were activated by any 
given stimulus

– 𝑟𝑟𝑖𝑖: response of 𝑖𝑖-th neuroto a 
particular stimulus

– 𝑁𝑁: number of model units
 Lifetime sparseness:

– How many stimuli any given 
MSTd-like model unit 
responded to

– 𝑟𝑟𝑖𝑖: response of 𝑖𝑖-th stimulus
– 𝑁𝑁: number of stimuli

Sparseness



 Provides an upper limit on the precision with which 
an unbiased estimator can discriminate small 
variations in a variable (𝑥𝑥) around a reference value 
(𝑥𝑥𝑟𝑟𝑟𝑟𝑓𝑓):

𝐼𝐼F(𝑥𝑥ref) = �
𝑖𝑖=1

𝑁𝑁
𝑅𝑅𝑖𝑖′ 𝑥𝑥ref

2

𝜎𝜎𝑖𝑖 𝑥𝑥ref
2

 𝑁𝑁: number of neurons in the population
 𝑅𝑅𝑖𝑖′ 𝑥𝑥ref : derivative of tuning curve for the 𝑖𝑖-th

neuron at 𝑥𝑥ref
 𝜎𝜎𝑖𝑖 𝑥𝑥ref : variance of 𝑖𝑖-th neuron’s response at 𝑥𝑥ref
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Population Fisher Information

(Pouget et al., Neural Comput, 1998; Seung & Sompolinsky, PNAS, 1993)
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 Discrimination best around 
straight-ahead headings

 Traditional view: Performance due 
to neurons tuned to straight-
ahead headings

 Gu et al. (2010): Performance due 
to neurons tuned to lateral 
headings
– Broad tuning curves
– Slope is max near straight-ahead

 Consider two input stimuli with 
similar headings (e.g., 0°, 4°)

 Neurons with preferred direction 
(peak response) near 0° will 
contribute little to 
discrimination
– Small heading deviations do not 

significantly alter response amplitude 
=> not informative

– Derivative ≈ 0
 Neurons whose tuning curve 

slope is steepest near 0° will 
contribute a lot to 
discrimination
– Near steepest slope, small heading 

deviations cause large changes in 
response amplitude

– Derivative is max
– => “Peak discriminability”

Population Code for Heading Discrimination

(Beyeler et al., J Neurosci, 2016)

max activitymax derivative

tuning width



 Combination of dimensionality reduction and sparse coding
– represents observed data V with a small number of dictionary 

elements in W
• such that all dictionary elements are nonnegative
• such that elements are sparsely activated (H)

 can explain response properties in V1, V2
 shown to be equivalent to spike-timing dependent plasticity 

(STDP) and homeostatic synaptic scaling

November 2, 2018 47

Nonnegative sparse coding (NSC)

V: Observed data W: Basis vectors H: Hidden coefficients

∀𝑖𝑖𝑖𝑖:𝑊𝑊𝑖𝑖𝑖𝑖 ≥ 0,𝐻𝐻𝑖𝑖𝑖𝑖 ≥ 0 sparsity constraintsnonnegative matrix
factorization (NMF)

(Hoyer, NNSP, 2002; Hoyer, JMLR, 2004; Carlson et al., IJCNN, 2013)

min
𝐖𝐖, 𝐖𝐖

1
2

𝐕𝐕 −𝐖𝐖𝐖𝐖 2 + 𝜆𝜆�
𝑖𝑖𝑖𝑖

𝑓𝑓 𝐻𝐻𝑖𝑖𝑖𝑖



 Sparse and (potentially) parts-based representations have 
been found throughout the brain

 Could NSC be a general principles to which neuronal 
computations adhere?
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Nonnegative sparse coding (NSC)

(Beyeler et al., bioRxiv, 2017
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