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Abstract

We study the problem of 3D pose estimation of textureless shiny objects from

monocular 2D images, for a bin-picking task. The main challenge of dealing with a

shiny object comes from the fact that the object appearance largely changes with its

pose and illumination. Therefore, conventional 3D-2D correspondence search usually

fails due to the inconsistency of feature descriptors. For a textureless object like a

mechanical part, visual feature matching becomes even harder due to the absence of

stable texture features. Hierarchical template matching approaches require a larger

number of templates to be matched when dealing with shiny objects, due to the dras-

tic appearance changes with pose. In the challenging scenario of a bin-picking task,

we must also cope with partial occlusions, shadows and inter-reflections, requiring

redoubled effort in matching each template to obtain reliable results, which compro-

mises the attractiveness of such approaches that are usually popular for textureless

objects.

In this thesis, we develop a purely data-driven method to tackle the pose estima-

tion problem. Motivated by photometric stereo, we develop an imaging system with

multiple lights to acquire a multi-light image where channels are obtained by varying



illumination directions. In an offline stage, we capture multi-light images of a given

object in several poses. Then, we use random ferns to cluster the appearance of small

patches of the multi-light images, and we store in each cluster the information of pos-

sible object poses. At run-time, the patches of the input multi-light image use the

clusters information to probabilistically vote on several pose hypotheses. Since our

pose hypotheses are a discrete set, we refine the discretized pose into the continuous

space, in order to obtain accurate object poses for robotic manipulation.

Experiments show that the given method can detect and estimate poses of tex-

tureless and shiny objects accurately and robustly within half a second. We further

compare our approach with the HALCON commercial software, a highly optimized

hierarchical template matching approach developed by MVTec, and show some of

the drawbacks of such type of approaches. Finally, we run detection on a different

object by simply changing the image database.



Keywords: object pose estimation, monocular pose estimation, object recogni-

tion, object detection, random bin-picking, photometric stereo, probabilistic voting,

random ferns, logistics, factory automation, manufacturing.



“We are like dwarfs on the shoulders of giants, so that we can see

more than they, and things at a greater distance, not by virtue of any

sharpness of sight on our part, or any physical distinction, but because

we are carried high and raised up by their giant size.”

Bernard de Chartres
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1

Introduction

1.1 Motivation

Industrial robots increasingly get deployed to serve at scale as factories and

logistic centers become global in an e-commerce era. Such industrial sites must

streamline and automate their processes in order to provide complex services in a

swift way and compete worldwide.

While industrial settings are more than ever in need for automated solutions,

the widespread adoption of robots is largely limited by their ability to manipulate

objects in the surrounding environment. Many logistic and factory processes have

been heavily automated in the past by designing constrained processes where robots

can be taught to execute a small set of motions and little or no sensing is needed.

However, many tasks in need of real-time complex 3D sensing and motion planning

remain largely manual. One fundamental challenge, common to the vast majority

of automated processes, must be solved to enable lights-out industrial sites: how to
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1.1 Motivation

feed these automated processes with parts in a flexible and scalable manner, a task

that remains hand-operated or tailored to particular scenarios. A key solution to

such problem is known as “random bin-picking”, where a robot manipulator senses,

plans, and picks objects from an unstructured bin of parts into the automated process

without any assistance of an operator.

Random bin-picking systems: an overview. Random bin-picking systems

can be used in a wide range of applications, as depicted in Figure 1.1. Some of the

most scalable, but very challenging, use-cases are:

• Fulfillment of online retail orders. The robot receives several stock-keeping

units (bins), each with several instances of a customer-selected item, and fulfills

the customer order by picking a number of items from each stock container into

the costumer container that will carry the items for packing and shipping. Since

each online order is tailored to a particular costumer, the robot must be able

to handle a very large diversity of items.

• Parts feeding for assembly lines and factory processes. Several robots spread

across the industrial site feed parts from bins into the automated processes.

Contrarily to the robots fulfilling online retail orders, these robots are often

required to pick the same few parts over and over again. However, as the man-

ufacturing processes evolve and the final products adjust to the market needs,

the same picking systems must be flexible enough to adjust to the changing

needs of the industrial site.

2



1.1 Motivation

Figure 1.1: Several illustrations of bin-picking tasks in factory automation. Contrarily to 2D

picking from a flat conveyor, picking from a deep bin involves real-time sensing and planning

for completely arbitrary object poses. The scene is drastically cluttered with identical objects,

hindering object segmentation from its background and promoting pose hallucinations. Images

courtesy of Mujin, Inc.

In such applications, the robot must carefully pick parts from the bin. While one

could be tempted to develop a system that would simply identify and aim for pickable

regions, e.g., identifying planar regions for suction picking, such simplifications are

largely unsatisfactory as robot planning tasks need detailed information of the object

to manipulate. Motion planning needs full knowledge of the object pose in order to

safely remove the part from the bin, avoid unstable grasps, take into account mass

distribution, avoid collisions during the transfer and placement, and to make sure

that the picking task is only initiated with hand grasps that allows the robot to
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place the part within the required placement pose constraints for the given task.

Therefore, the robot must accurately detect and localize the parts in the three-

dimensional space. For such a task, vision-based object detection and localization

can be a cost-effective solution.

Object-specific registration and pose estimation. Within industrial sites,

every part must be registered and carefully tracked. Either when fulfilling online

retail orders or when feeding parts to a manufacturing process, the content of each

storage bin is known and contains instances of only one registered part. Therefore,

it is of major importance to focus efforts on solving the random bin-picking problem

for bins that contain several instances of one given item.

Each object can be a-priori visually registered in order to teach the vision sys-

tem the shape and appearance of the object to manipulate. This teaching process

enables collecting accurately labeled training data, enabling for a plethora of visual

and geometric feature statistics of the object surface to be computed, e.g., object

geometry, key points and local descriptors, lines and curves, reflectance properties,

properties of textures and micro-textures, and so on.

Pose estimation of shiny textureless objects. It is generally accepted

that objects with abundant, stable, and distinctive local features from all possible

viewpoints are easy to recognize and localize when shown alone to a camera in a

non-cluttered background. While localizing these objects in the bin-picking scenario

still present many challenges, mainly due to the difficulty of segmenting an object

from its background with similar properties, the mere presence of such abundant,

stable, and distinctive local features largely eases the pose estimation problem.

However, most objects lack the properties mentioned above, making vision-based
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1.1 Motivation

methods face several major challenges in estimating the pose of industrial parts

randomly placed in a bin:

• Shiny surfaces. Parts can be made of metal, involved in a tight plastic wrap,

or simply made with a shiny finish that appeals to the buyer, thus frequently

containing highly reflective surfaces. As a consequence, the object appearance

becomes highly sensitive to the distribution of light, surface material, camera

viewing direction, and object pose.

• Lack of texture. While some objects are fully textured, the large majority of

objects are either fully textureless or abundant on textures on some viewpoints,

e.g., viewpoints designed to be attractive to the potential buyer, but severely

lacking texture in many other viewpoints. When dealing with such objects,

detection and localization becomes even harder. The absence of rich texture

frustrates the application of widely known feature descriptors [32], e.g., SIFT

[3] or ORB [4].

• Random pile. The hallmark of bin-picking applications is having a scene clut-

tered with identical objects. This invalidates approaches like [13], that rely on

distinguishing areas of interest from the background. Also, the abundance of

identical objects in an image promotes the hallucination of (erroneous) object

poses when observing local features without taking into account the adequate

geometric constraints. Finally, the existence of occlusions and large appearance

variations resulting from shadows and object inter-reflections further hinder

pose estimation, refinement, and evaluation stages.

Figure 1.2 illustrates the drastic appearance changes in a bin-picking image full

5



1.1 Motivation

Figure 1.2: A typical bin-picking image of shiny objects. Detecting and localizing a shiny

object from bin-picking images is challenging due to the high dynamic range of the image,

sensitivity to small pose changes, occlusions, and large appearance variations descendant from

shadows and inter-reflections.
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1.2 Limitations of current approaches

of metallic shiny parts. The strong specular reflection in a narrow range of viewing

directions widens the dynamic range of the image, and the intensity of the object

surface becomes highly sensitive to pose change. Occlusions, shadows, and inter-

reflections severely add to the instability of the object appearance.

Throughout this thesis, we focus on the localization of shiny textureless objects

in a bin-picking scenario, from 2D images, showing our commitment in tackling the

pose estimation problem in a setup that copes with all the problems mentioned

above. While focusing on such specific most challenging scenario we believe that

our discussion and solutions remain generic and can be applied to pose estimation

of objects observed from both textured and textureless viewpoints, thus relevant to

the pose estimation of a very wide class of objects.

1.2 Limitations of current approaches

Feature matching. One conventional way to estimate an object pose is to

match visual features between an input image and a 3D object model [1, 2, 3]. In

such a task, image features are matched to a dataset of features of the object in

different poses using descriptors robust to viewpoint changes. For a shiny object, to

tackle the discrepancy of appearance between different object poses, one needs to

collect feature descriptors across a large set of object poses. Feature matching must

then search for correspondences in a very large set of descriptors, often producing

a substantial number of outliers. Additionally, visual feature matching works well

for objects containing locally planar textures in all viewpoints [3, 5, 6, 7], which

industrial metallic parts rarely have. Figure 1.3 depicts the difficulty in feature
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1.2 Limitations of current approaches

matching for shiny and textureless objects.

Figure 1.3: Appearance of imaged object points, under distinct object poses. Due to the

textureless nature of the object, there is a scarce number of distinctive keypoints that could help

localize the object under a feature matching framework. Due to the shininess of the object, the

instability of the appearance of imaged object points further hinders feature matching.

Template matching. Another popular approach is to match whole tem-

plates [8, 9]. In this approach, synthetic or real images of an object in various

poses are entered in a database. Given an input image, the object pose is estimated

by searching the database for the most correlated example. Two major hindrances

offset the approach simplicity: long computation time, due to the exhaustive search

nature of the approach, and high sensitivity to appearance changes, due to occlu-

sion, inter-reflection, and shadows. Recent works alleviate these two issues, but still
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1.2 Limitations of current approaches

fall short. The computation time can be significantly reduced via image pyramids

and divide-and-conquer methods on a structured image database —as in the HAL-

CON commercial software we compare against [8]. The appearance sensitivity can

be mitigated using more robust appearance descriptors [10] and representing an im-

age as a grid of patches [9]. However, the computation time and the accuracy of

such methods depend on the number of templates matched at runtime and effort of

matching each template. In bin-picking, the instability of the object appearance due

to surface shininess, occlusions, shadows, and inter-reflections requires a redoubled

effort in matching to keep accuracy high.

Specular cues. The use of specular cues —usually seen as nuisances [27, 28]

—for pose estimation of shiny objects has been limited. The most popular approaches

use the highlights from high-curvature surface points for feature matching, due to

their robustness to pose changes [29, 31]. However, the availability of such specular

cues depends on the object shape and pose, and is often scarce or nonexistent, thus

restricting the applicability of the approach.

Contour matching. Object shape provides rich information for object iden-

tification and pose estimation. Several contour-based matching methods have been

developed for cluttered background scenarios [24, 25, 26], but assume stable contours

—a rarity in bin-picking conventional 2D images. Recent approaches use the shad-

ows created with a multi-flash camera to detect depth edges [22], in an attempt to

avoid the noise-sensitive clutter obtained with regular edge detectors. However, it

is assumed that the shadows remain attached to the object, while, in practice, this

depends on the shape of the object and the background. Also, illuminating a shiny

object in only a narrow range of angles leads to a large set of surface orientations
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1.2 Limitations of current approaches

with dark appearance, difficulting contour detection.

Edge-based Hough voting. Several methods attempt to use the generalized

Hough transform for detecting objects in the high dimensional pose space [11]. As

in a conventional Hough voting, each edge point votes for poses. This is highly

inefficient because the number of poses for each edge point is usually too large. In

addition, it depends on the binarization, which is not so stable for a high-dynamic

range image of a shiny object.

Patch-based Hough voting for 2D localization. Recently, similar voting

approaches based on image patches, not on edge images, have been proposed using

random forests for detecting and classifying objects [13, 17], and for matching interest

points [5, 6] in a 2D image. Within our work, we use a voting procedure, similar to

the ones used for 2D object localization in [13, 17], to hypothesize the 3D pose of

textureless shiny objects in a bin-picking application. Instead of merely obtaining

the centroid of objects in a 2D image, we perform full 3D pose estimation. In the

latter, the ambiguity of voting for poses becomes much larger and the dimensionality

of the voting space becomes a bottleneck in the localization procedure. This work is

an extension of the work in [14], is patented [15], and is planned for submission in a

journal [16].

3D Sensing for pose estimation. The current trend in vision systems for

object pose estimation is to heavily rely on 3D point-clouds or RGB-D data to ease

the pose estimation problem [9, 41, 42, 43, 44, 45, 51]. However, 3D data is often

incomplete and with outliers in presence of shiny surfaces and inter-reflections while

the pose estimation methods heavily rely on pointcloud or, worse, the corresponding

very noisy normal map. In addition, high-quality 3D sensors remain expensive and
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1.3 Patch-based Hough voting for 3D localization

slow. They are mostly based on structured light, slow due to the need of acquiring

long sequences of patterns, or on active stereo sensing, faster in acquisition but sig-

nificantly less accurate and computationally very intensive, using valuable time and

system resources that could be otherwise used for pose estimation. Instead, we be-

lieve that, with re-doubled effort in monocular pose estimation, real-time weaker 3D

sensing, e.g., time-of-flight (ToF) sensors, can become sufficient to complement 2D

vision while remaining very cheap, computationally inexpensive, robust to ambient

illumination, and real-time. Therefore we focus our work on object pose estimation

from 2D images only, showing our commitment in improving pose estimation from

2D images rather than strongly depending on 3D data, while acknowledging the im-

portance of 3D sensing to complement 2D vision as well as provide dynamic obstacle

avoidance for reliable robotic manipulation in unstructured bin-picking.

1.3 Patch-based Hough voting for 3D localization

Our main goal is to design a practical 3D pose estimation system for bin-picking

of shiny and textureless objects. We develop a multi-light imaging system coupled

with a fully data-driven method to tackle the bin-picking problem.

Multi-light system. Inspired by photometric stereo, we develop a multi-light

imaging system composed by a set of lights and a 2D camera, conceptually shown

in Figure 1.4, where each channel of our multi-light image is acquired under variable

illumination directions. Our controlled illumination setup ensures us a consistent

surface appearance for a fixed scene. Our system is robust to external lightning con-

ditions in the visible range as it is realized in the infra-red spectrum. The existence
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1.3 Patch-based Hough voting for 3D localization

Figure 1.4: A conceptual diagram of our system using three light sources.

of multiple lights, each illuminating the scene from a different direction, creates im-

ages of objects with rich clues about the 3D pose of objects. Also, it attenuates the

problem of having a large set of surface orientations exhibiting small radiance from

the camera point of view.

Data-driven pose estimation. In order to deal with appearance changes

without complicated modeling of the imaging process, we develop a purely data-

driven approach using multi-light images to address the pose estimation problem:

Offline stage. At first, we capture multi-light images of a given object in several

12



1.3 Patch-based Hough voting for 3D localization

poses. Then, we densely collect small image patches, create an appearance codebook

using random ferns and, for each codebook entry, we learn the probability of a pose

given the appearance of an image patch. By using random ferns, the generation of

the codebook becomes independent of the data and therefore computationally cheap,

circumventing the large-sized optimization problem of clustering our huge amount of

patches.

Online stage. At runtime, we infer object poses by gauging consensus among

votes of image patches, using a new probabilistic voting framework for pose hypoth-

esis generation. To the best of our knowledge there is no pose estimation approach

describing pose hypothesis generation within a probabilistic framework from which

generalized Hough Transform spontaneously emerge, thus benefiting from very strong

outlier rejection. By using a voting-based approach, we narrow the pose search to a

very small set of hypothesized poses, instead of exhaustively searching for poses as

in template matching. We differ from 2D voting methods in that (a) we vote on the

3D pose space, (b) we present a probabilistic framework, contrarily to [13], and (c)

we do not share the computational burden of iteratively refining the Hough votes as

in the probabilistic approach in [17].

Voting optimizations. By searching for 3D poses, instead of simply localizing the

object in 2D, the ambiguity of voting becomes much larger and the dimensionality of

the pose space becomes a bottleneck in the voting procedure. To address these issues,

we select the most discriminative patches for voting, in turn avoiding less informative

patches that misspend time in voting for a large set of poses. In addition, we split

the voting process into two steps, first searching in 2D for the object location and

then searching for the 3D pose only at the most voted locations, avoiding a search
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over all possible poses. Finally, to mitigate the problem of discretization of the pose

space and diminish the scattering of votes descendant from hypothesizing a pose from

a small image patch, we gather consensus for a pose from votes for similar poses.

In the 2D voting step, votes for neighbor 2D locations support each other. In the

3D pose search, we use sparse voting structures and an aspect graph to search for

supporting votes, avoiding the computational burden of directly searching on the six

degrees-of-freedom pose space.

Pose refinement. We upgrade our hypothesized poses, drawn from a discrete

set, into the continuous space, in order to obtain accurate object poses for robotic

manipulation. Towards this goal, we iterate the search for the best 3D pose from the

hypothesized one by locally aligning the image edges with the object boundaries of

the projected CAD model.

Experiments. Our results show that the given method can detect and estimate

poses of textureless and shiny objects accurately and robustly within half a second.

Our results also show that we can handle various objects by simply changing the

image database, without a need for object-specific tuning of system parameters.

We further compare our system with the HALCON software, a highly optimized

commercial solution based on hierarchical template matching. Our system is faster,

and yields a better recognition rate while providing comparable pose accuracy.

1.4 Contributions

The overall contribution of this thesis is a practical 3D pose estimation sys-

tem capable of detecting poses of textureless and shiny objects for the bin-picking
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application. We highlight below the main features of our contribution:

• Creating rich pose clues using a practical imaging system. Our multi-light imag-

ing system creates object images with rich pose clues, enabling us to explore

the photometric properties of a textureless object to estimate its 3D pose. The

system is inexpensive, easy to setup, and it works under unrestricted lighting

conditions and unknown illumination directions.

• Probabilistic voting for pose estimation. Our method uses a new probabilistic

voting framework that maps the appearance of multi-light image patches into

votes for the object pose, allowing to bypass exhaustive search methods like

template matching. Our approach is attractive due to the following reasons:

– Our method can handle various objects by simply changing the image

database, without a need for object-specific tuning of system parameters.

– Our generation of pose hypotheses is fully data-driven, solving the ap-

pearance problem without complicated modeling of the imaging process.

– We automatically select the most discriminative patches for voting, since

they are the ones that carry rich pose information while taking less voting

time.

– Our 3D pose search first seeks for 2D objects centers and then performs

a local 3D search per 2D center found, bypassing the memory and time

issues of directly searching on the pose space.

– We gather consensus from similar votes, mitigating the pose discretization

problems and diminishing the effects of scattering of votes descendant from

hypothesizing a pose from a small image patch.
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1.5 Thesis organization

– Our approach makes use of random ferns, which do not require training to

fix its binary questions, in order to circumvent the large-sized optimization

problem of clustering our huge amount of patches at the training stage.

– We use a new probabilistic framework that resembles the connection be-

tween voting frameworks and outlier-robust probabilistic models discussed

in [50], from which —otherwise non-probabilistic —approaches related to

the generalized Hough Transform spontaneously emerge.

• Accurate pose estimation. Our method refines the 3D pose hypotheses obtained

in the voting procedure by using a visual servoing method, obtaining accurate

object poses for robotic manipulation.

• Benchmarking. We compare our system with the HALCON software, a highly

optimized commercial solution based on hierarchical template matching. Our

system is more than five times faster and provides superior detection results

with just a single fern.

1.5 Thesis organization

This thesis is organized in five chapters.

In Chapter 2, we describe our multi-light system. We compare its use with

the traditional approaches of photometric stereo where these multi-light systems are

mostly discussed. We also explain how we create our image database.

Chapter 3 discusses how we hypothesize object poses from the input images

obtained with our setup. We first introduce a new probabilistic voting framework.
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1.5 Thesis organization

Then, using random ferns, we show how we map a patch appearance to a vote for an

object pose. Finally, we describe how to refine the best pose hypotheses to obtain

accurate object poses for robotic manipulation.

In Chapter 4 we illustrate the usefulness and robustness of our framework in the

bin-picking application. We present our detection results and their accuracy, and

we compare the performance of our approach with the performance of a commercial

system. We also show detections on a different object by simply changing the image

database.

Chapter 5 has some final remarks on the developed work.

In Chapter 6 we point out some of the limitations of our approach and discuss

potential future developments that do not fall into the scope of this thesis but are

possible extensions to the work presented.
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2

Imaging with multiple lights

We use of an imaging system with multiple lights, as in photometric stereo [18],

to obtain the pose of textureless shiny objects in a bin. Photometric stereo shows

that imaging with such a system enables us to compute surface orientations, which is

valuable information to determine the pose of objects. However, in order to compute

surface orientations, photometric stereo requires an accurate model of the surface

reflectance and distribution of lights. Hence, to achieve our goal of estimating object

poses, we use the photometric stereo imaging system, but we do not compute the

surface orientations of the observed scene or make any assumptions on the surface

reflectance and distribution of lights. We rather infer object poses directly from

images by using a fully data-driven approach.

In Section 2.1 we describe our multi-light system. In Section 2.2 we overview the

photometric stereo method and its limitations. Section 2.3 describes how our multi-

light system can be used for a data-driven pose estimation approach, discussing the

advantages of bypassing the estimation of surface orientations.
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Figure 2.1: Real implementation of the multi-light source imaging system with a rotation stage

for database collection. Figure 1.4 shows the corresponding conceptual system.
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2.1 Multi-light images

2.1 Multi-light images

Implemented imaging system. Our imaging system is the same as the one

used in traditional photometric stereo. Figure 2.1 shows the implemented imaging

system. It has three incandescent light bulbs, placed about 0.9 meter high from the

bottom of the container and roughly located at vertices of a regular triangle. A B/W

camera is about 1.75 meters high from the bottom of the container and aims to the

center of the bin.

Multi-light images. With such a multi-light system, we acquire several grayscale

images and arrange them in multiple channels of a single image. Since our system has

three light sources, we conveniently show the three grayscale images simultaneously

in an RGB image throughout this thesis, as shown in Figure 2.2. We call this RGB

image a multi-light image, wherein the values of each pixel encode the orientation of

the surface, a fact that we learn from photometric stereo. Such a multi-light image

provides a high discrimination between different object poses.

Textureless shiny objects. In Figure 2.2, the images illuminated with a

single light show large areas with small radiance. Such an effect occurs due to the

reflectance property of a shiny surface illustrated in Figure 2.3. Shiny surfaces reflect

a light ray in a narrow range of viewing directions, widening the dynamic range of the

image. Our multi-light image mitigates this problem as it is acquired by illuminating

the scene from distinct directions. Furthermore, our acquisition system creates color

textures that provide rich clues about the 3D shape of the textureless scene.
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2.1 Multi-light images

Figure 2.2: Multi-light image. Three grayscale images (top-left, top-right, and bottom-left)

captured by the three light sources of the system in Figure 2.1. Through our document, we

show them simultaneously in a single RGB image (bottom-right), one grayscale image per

channel. While the images illuminated with a single light show large areas with small radiance,

the colors in our multi-light image show rich clues about the 3D shape of the scene. (Best

viewed in color)
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2.2 Photometric stereo and its limitations
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Figure 2.3: Reflectance models. While a purely diffuse surface emits the received light evenly

in all directions, a more specular surface concentrates the reflected light within a narrow range

of viewing directions.

2.2 Photometric stereo and its limitations

Photometric stereo. Photometric stereo [18] is a method for estimating the

surface normals of a scene from its responses to multiple lights. Assuming a convex

Lambertian surface, and non-existent ambient light, the intensity I of a point is

related to its surface normal n and light direction L by

I = ρn>L, (2.1)

where ρ is the albedo of the point. For multiple light sources at known positions,

the equation can be stacked[
I1 I2 I3

]
= ρn>

[
L1 L2 L3

]
, (2.2)
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2.2 Photometric stereo and its limitations

and the surface normal n and its albedo ρ can be estimated by solving the linear

system. Once the surface normal for every single point is estimated, one can try to

reconstruct the 3D surface from the surface normals [33, 34].

Challenges with appearance. The above algorithm is based on some as-

sumptions which are not appropriate for our case. The surface of shiny objects is

not Lambertian, and the bin-picking scene or even the object itself is usually non-

convex. Thus the imaging process can not be described as simply as in Equation (2.2).

To model the imaging process for a shiny surface, even in the simplest scenario of

homogeneous surface material and convex scene, an accurate bidirectional reflectance

distribution function (BRDF) is required, which is not trivial to obtain. For non-

homogeneous surface materials, in which the appearance may vary from point to

point, and for a non-convex scene, where the appearance is often contaminated with

shadows and inter-reflections, the complexity of the problem can dramatically in-

crease.

Challenges with illumination. In addition, the above method assumes that

all the light directions are known and that each intensity I is affected by a single

light direction. In practice, this assumption is useful only when using point light

sources or parallel lights with accurate system calibration, which is hard to achieve

in a factory site.

From regular images to multi-light images. Equation (2.1) immensely

increases in complexity for more realistic scenarios, e.g., with more complex direct

and global illumination, non-lambertian surfaces with spatially varying reflectance

properties, and non-convex objects and non-convex multi-object scenes. However,

together with Equation 2.2, it states clearly why using multiple images acquired
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2.3 Using multi-light images for data-driven pose estimation

under distinct illumination directions greatly reduces the solutions provided by each

equation from each image when estimating surface normals, a local cue of major

importance for pose estimation. We believe that this principle remains true under

the complexity of bin-picking images and therefore we use multi-light images in all

our work, although bypassing the estimation of surface normals. We further provide

experiments in Section 4.3 and Section 4.4 supporting the usage of multi-light images.

2.3 Using multi-light images for data-driven pose estimation

We use the images obtained with the multi-light system and, to overcome the

limitations of photometric stereo, we follow a data-driven approach to determine

object poses.

Data-driven approach. Using our acquisition system, we collect a large set of

images of an object illuminated from different directions and observed from diverse

viewpoints. We automatically label each of these images with the object pose using a

checkerboard pattern as reference. The number of images in the database determines

the resolution of the pose hypothesis. Typically, we capture about 16600 images

of an object, obtaining an orientation resolution of approximately 4-degree while

keeping the object position approximately constant. Then, as detailed in Chapter 3,

we probabilistically learn to map the appearance of an image patch to 3D pose

hypotheses of an object, exploiting the similarities between training and test images.

Dealing with appearance. Our data-driven pose estimation approach uti-

lizes the discriminative photometric appearance among different poses without using

complex imaging models and their calibration process. We naturally deal with non-
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2.3 Using multi-light images for data-driven pose estimation

homogeneous surfaces materials, inter-reflections from other surfaces of the same

object, and unknown light distribution.

Since we do not restrict our lighting to parallel illumination, the observation

angle of the light ray, the incident angle of a light ray, and the power of the light ray

may vary with change in the object location, as illustrated in Figure 2.4. In such a

case, the pixel intensities depend not only on the surface orientation but also on the

location of the observed surface point. Thus, there exists a different correspondence

between patch appearance and the object pose for each object location.

However, instead of learning a distinct map between patch appearance and pose

hypotheses for every location, we learn a map for only one location. Our approach is

robust to the appearance changes that result due to minor changes in the location,

simplifying the learning procedure. While Figure 2.4 shows considerably changes in

appearance per location, most of those changes can be mitigated by constructing a

map invariant to local brightness changes, as discussed in Section 3.2. Our experi-

ments show that only one map is enough to deal with all the appearance variations

within the large volume of our bin.
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2.3 Using multi-light images for data-driven pose estimation

R G B 

Figure 2.4: Appearance changes due to object translation. A shiny object was placed in dis-

tinct locations, while roughly maintaining its depth and orientation. The appearance of the

shiny object changes significantly, specially when compared to the appearance of the diffuse

background surface.
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Data-driven pose estimation

In this chapter, we present a data-driven approach to tackle the pose estimation

problem. We first introduce the probabilistic voting framework that we use to infer

object poses by gauging consensus among patches. Then, we show how random ferns

handle our huge amount of image patches and how they deal with the gargantuan

number of possible patch appearances. We further discuss how we avoid the high

memory and computational costs of directly searching on the six degrees-of-freedom

pose space. We end this chapter describing how to refine the best pose hypotheses

to obtain accurate poses.

3.1 Voting-based pose estimation

Consider a bin-picking scene where several objects are placed randomly in a bin,

each with a distinct 3D pose with quantized (discrete) representation p = (x, z,θ),

where x = (x, y) is the center of the object in image plane, z is the depth of the

center of the object, and θ = (ρ, φ,ψ) is the object orientation. Our goal is to find
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3.1 Voting-based pose estimation

the pose of the objects in the bin using 2D images taken by the system described in

Chapter 2.

Probabilistic model. We represent a bin-picking image as a set of patches of

size n × n, sampled evenly on a grid and indexed by k = 1, · · · ,K. We designate a

patch by Pk = (xk,Bk,Z k), where xk is the patch center in the image plane, Bk its

observed appearance, and Z k is the latent (unknown) quantized pose of an object

surface observed at an image point xk . For tractability of our model, we further

assume that the random variables of each patch, Z k and Bk , are independent among

patches, i.e., (Bk,Z k)⊥(B j,Z j),∀ j,k . Thus, we can write their joint probability as

P(B1, · · · ,BK,Z1, · · · ,ZK) =

K∏
k=1
P(Bk,Z k). (3.1)

Inference. Our goal is to infer the poses of the objects in a bin-picking image

by observing the appearance of the image, which we break down into small image

patches. One possible approach to the bin-picking problem would be to obtain the

maximum a posteriori estimate

( ẑ1, · · · , ẑK) = arg max
z1,··· ,zK

P(Z1 = z1, · · · ,ZK = zK |B1 = b1, · · · ,BK = bK). (3.2)

which, using the independence assumption in Equation (3.1), becomes

ẑk = arg max
zk
P(Z k = zk |Bk = bk), ∀k=1,··· ,K, (3.3)

obtaining, for each patch position xk , the pose ẑk of the visible object. However,

a patch appearance Bk is usually not discriminative enough to accurately estimate

the pose of the object observed at that location. More precisely, the conditional

probability P(Z k |Bk = bk) often has several equally probable maxima. In addition,
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3.1 Voting-based pose estimation

with a gargantuan number of possible patch appearances Bk and poses Z k , it is hard

to finely estimate every P(Z k |Bk = bk),

Instead of estimating the poses Z k at each position xk independently, we turn

to a random variable that gauges consensus among patches

Wp =

K∑
k=1

1Zk=p, (3.4)

where 1Zk=p is an indicator random variable that takes on the value 1 when Z k = p

and 0 otherwise. The random variable Wp counts the number of image patches

exhibiting the quantized pose p. Thus, Wp is an Hough accumulator that aggregates

pose information among patches, a capability that was lost in our probabilistic model

when the independence assumption among patches was introduced.

Using the Hough accumulator Wp, we define a pose hypothesis p̂ as

p̂ = arg max
p
E(Wp |B1 = b1, · · · ,BK = bK). (3.5)

Using our definition of Wp in Equation (3.4), we first rewrite problem (3.5) as

p̂ = arg max
p

K∑
k=1
E(1Zk=p |B1 = b1, · · · ,BK = bK). (3.6)

Since, for an event A, E(1A) = P(A), problem (3.6) becomes

p̂ = arg max
p

K∑
k=1
P(Z k = p |B1 = b1, · · · ,BK = bK). (3.7)

Considering the independence assumption among patches present in our model,

we obtain

p̂ = arg max
p

K∑
k=1
P(Z k = p |Bk = bk). (3.8)
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3.1 Voting-based pose estimation

As P(Z k |Bk = bk) is hard to finely estimate, we replaced the outlier-sensitive pose

estimate in (3.3) by the outlier-robust one in (3.8) that maximizes support among

patches, resembling the probabilistic outlier models in [50].

Invariance to patch translation. Although (3.8) is already quite simplified,

P(Z k |Bk = bk) remains hard to finely estimate since we have a distinct probability

function for every patch Pk in the image. More precisely,

fxk (x, z,θ; b) := P(Z k = (x, z,θ)|Bk = b) (3.9)

depends on k (or xk since k 7→ xk is a one-to-one map). In order to further sim-

plify the function f in (3.9), we assume that the appearance of an object remains

unchanged under any pose translation in x. Under this assumption, a translation of

a patch induces the same translation in the pose to estimate

fxk (x, z,θ; b) = fxk+δ(x + δ, z,θ; b). (3.10)

Given the translation-invariance property in (3.10), there is a function g such that

fxk (x, z,θ; b) = g(x − xk, z,θ; b),∀k . (3.11)

We showed in (3.10) and (3.11) that the conditional probability distribution

in (3.9) can be written as function of the offset ∆x = x − xk , rather than depending

on x and xk separately. Thus, we create the random variables ∆Z b ∼ g(x−xk, z,θ; b),

only dependent on a patch appearance b, and write problem (3.8) as

p̂ = arg max
p

K∑
k=1
P(∆Z bk = p − (xk,0,0)). (3.12)

where ∆Z bk is the pose transformation induced by the appearance bk of patch Pk .

30



3.1 Voting-based pose estimation

Conceptually, under perspective effects and nonparallel illumination, the as-

sumption that the appearance remains constant under pose translations is a good

approximation only within a small volume, as illustrated in Figure 2.4. However,

as explained in Section 2.3 and corroborated by our experiments, we show that a

probabilistic function learnt at a single object location is enough to deal with all

the appearance variations within the volume of our bin. This is because our binary

representation of a patch appearance created from Equation (3.13) is invariant to

local brightness changes. For larger scenes, the alternative to a larger multi-light

system is to learn distinct probabilistic functions at a sparse set of object locations.

Implementation challenges. The alphabet of ∆Z b, for a given b, is smaller

than the one of Z k , since the offset ∆x = x − xk is limited by the size of the object

in an image. With such an alphabet reduction on the pose variable and a distri-

bution P(∆Z b) shared across all k, we drastically diminished the complexity of the

distributions to learn and consequently the amount of training data needed. Still,

the gargantuan number of appearances b that a patch can have limits the applica-

bility of (3.12), a problem that we tackle in the next section by quantizing the patch

appearance into a visual codebook. In addition, implementing a voting algorithm

on the pose space is time and memory consuming. Therefore, we describe in Sec-

tion 3.3 how to speed-up the voting process by pose marginalization, a 2-step search

algorithm that aims towards a more practical implementation.

Revisiting voting approaches. In diverse work on object localization [13, 17],

it is common practice to aggregate information from patches as a process of voting,

either via a sum of probabilities or via sums of log-probabilities over all patches. Ap-

proaches performing sums of probabilities became widely popular because, contrarily
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to sums of log-probabilities, they do not excessively penalize scenarios which have

insufficient data to finely learn the probability distributions needed. Equation (3.12)

provides a probabilistic interpretation for some voting approaches based on sum of

probabilities, opening doors for further improvements of such approaches within a

probabilistic framework.

3.2 Visual codebooks using random ferns

In order to use the voting scheme in Equation (3.12), we now address the problem

of effectively computing the probabilistic vote of a patch, since computing P(∆Z b)

for all values of b is unfeasible. To compute the probabilistic vote of a given patch

appearance b, we search for similar patch appearances in our training database

and extract their pose information. Below, we discuss the possible approaches for

effectively extracting pose information from similar database patches.

Exhaustive search. Given an input patch at run-time, one possible approach

is to search exhaustively for similar patches in the entire database, and then vote

based on the pose information of the patches found. However, the number of patches

in the database is huge, being approximately 130 million for our experiments. The

dimension of n × n patches is 3n2 when using three light sources, which is also very

large for our patch size n = 17.

Approximate nearest neighbor. Alternatively, we can use fast approximate

nearest neighbor (NN) search methods to query our large database of patches. These

methods usually use trees such as KD-trees, hierarchical k-means trees or ferns, where

the querying time grows logarithmically with the database size. Using trees, a basic
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3.2 Visual codebooks using random ferns
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(b) Fern

Figure 3.1: Binary space partitioning (BSP) tree and a fern. The questions in the same level of

a fern are the same, turning it into a non-hierarchical structure.

search for a NN candidate corresponds to traversing the tree and, upon reaching a

leaf node, performing exhaustive search on the data points in that leaf. Such an

approximate NN search requires all the data points to be in memory, which requires

a large amount of memory for our database size. Also, the NN candidate might not

contain useful pose information, e.g., due to the image noise, or might have multiple

similar data points, from neighbor object poses, with useful information for voting.

Instead of finding a single NN candidate and extracting its pose information, we

extract the pose information from all the NN candidates in the leaf cluster, which

does not require patch appearances to be stored. We explain below our choice of

tree to implement such a procedure.

Random fern. We construct a visual codebook using binary trees. Given the

large size of our database, we need a tree that is easy to train, consumes low memory,

and has short retrieval time. For training a tree, optimally designing its questions

requires solving large-sized optimization problems. In addition, for a binary tree with
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3.2 Visual codebooks using random ferns

m−levels, storing 2m−1 questions for large trees consumes a large amount of memory.

To simplify our training and test stages, we use a binary random fern, illustrated

in Figure 3.1, which is a binary tree with only one question per level. Having only

one question in each level of the m−level tree, independent of the ancestors, a fern

becomes easily parallelizable. More importantly, there are only m questions to store

in memory and access at run-time. The fern questions are designed via an easy

random process, as described below.

Simple random binary questions. We use simple binary questions defined

as

Qi(b) =


1, if b(r i) − b(r′i) < τi

0, otherwise
(3.13)

at each level i of the fern, similar to the ones used in [6, 23]. Each question compares

two intensity values in the patch appearance b, at locations r i and r′i, with a threshold

τi. Since the image has multiple channels, the location r = (x, y, c) in the patch

includes the channel c as well.

The number of possible pixel comparisons for n × n three-light image patches is

3n2×3n2, which makes the design of the m questions a large optimization problem. We

circumvent such a large-scale optimization problem by alternating among channels

and choosing two random points in the same channel and a random threshold value.

Storing pose information at leaves. In the training stage, we assign to each

patch a label l composed by the answers to the m questions of the fern. Then, each

leaf of the fern collects the pose information (∆x, z,θ) of the patches with the same

label l. For each label l, with a set Sl of votes v j = (∆x j, z j,θ j), j = 1, · · · , |Sl |, we
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3.2 Visual codebooks using random ferns

r1

r2

r1

r3

r2

Figure 3.2: Binary questions in a fern. For τ = 0, the question between locations r1 and r2

is informative for the given patch, but one between r2 and r3 is determined randomly by the

camera noise. (Best viewed in color)

35



3.2 Visual codebooks using random ferns

Patches from training images 
and their pose information ∆𝒙, 𝑧, 𝜽  

ℙ ∆𝑍𝑙1  ℙ ∆𝑍𝑙𝑗  

Fern 

. . . 

Training 
 images 

        

. . . 

. . . 

Figure 3.3: Illustration of the training procedure. We compute P(∆Z l) at each leaf of the fern,

which will be used at run-time as a probabilistic vote.

compute the voting probability as

P(∆Z l = (∆x, z,θ)) =

∑Sl
j=1 1∆Z l=v j

|Sl |
, (3.14)

where |Sl | is the cardinality of Sl and 1∆Z l=v j is an indicator random variable that

takes on the value 1 when ∆Z l = v j and 0 otherwise. Figure 3.3 illustrates the

training procedure.

At run-time, we use this probability distribution to cast votes for poses given

a label l computed from each patch appearance b in the input image. It is much

more feasible to compute P(∆Z l) for every label than computing P(∆Z b) for all patch

appearances.
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3.2 Visual codebooks using random ferns

Depth of the fern. For about 130 million patches in our database, we use 27

questions in the fern, which results in 227 (over 134 million) leaves for nearly the

same number of training patches. We are deliberately over-splitting the patch space,

leaving about 90% of the 227 leaves empty. As a result, at run-time, a patch label may

have no corresponding training data. This allows us to detect test patches that are

clearly distinct from the trained ones, e.g., due to shadows or inter-reflections, and

prevent them from voting for a pose, considering the difficulty of retrieving relevant

pose data from their appearance. On the contrary, under such over-splitting, having

a multitude of training patches in a single leaf indicates that such a patch appearance

is too common to be used in the voting process and can be easily discarded. Thus,

we disregard the fern leafs with more than 100 patches, therefore using only the

most discriminative patches for voting while avoiding large clusters that substantially

increase the voting time while adding low certainty about the object pose.

Dealing with multiple channels. The multi-light image captured by our sys-

tem in Figure 2.1 implicitly encodes the surface normal information in the form of

color. Since the light sources in our system are not far enough to provide parallel illu-

mination, they often produce significant variations in the image color while changing

the surface location and maintaining the orientation, as shown in 2.4. Therefore,

there is no unique map between color and surface orientation for all image loca-

tions, which restrains the use of a single fern to map the patch appearance to object

poses. The answers to the fern questions comparing values of a pixel across multiple

channels, i.e., reasoning on the color of a single pixel, are not robust to surface trans-

lation. On the contrary, the comparison of pixels values within the same channel of

a patch is robust to surface translation. Thus, in Equation (3.13), we define each
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3.3 Online algorithm for pose hypotheses generation

question in one channel at a time, and not across multiple channels. This allows us

to create a single fern useful on the whole volume of the bin of objects, drastically

diminishing the number of images to be acquired and simplifying the training and

online procedure.

In case the light sources are far enough to be assumed parallel, or the database

image is sampled over a dense grid of (x, y, z) locations, we can use the assumption

that the color is strongly related to the surface orientation. In this case, it would

make more sense to design questions across multiple channels. Still, such questions

would be sensitive to inter-reflections, since a channel brightness can change consid-

erably under inter-reflections. In contrast, our current questions are robust to such

brightness changes, and inter-reflections effects are often nearly constant within a

neighborhood.

3.3 Online algorithm for pose hypotheses generation

The online algorithm consists of aggregating the votes from each patch to gen-

erate several pose hypotheses. For each patch in the input image, we obtain its label

l by asking the m questions of the fern. Then, from leaf l, we retrieve the set Sl

of votes
{
(∆x j, z j,θ j)

} |Sl |
j=1, with cardinality |Sl |. By accumulating all the votes from

all the patches in the input image and finding the highest voted poses, we generate

reliable pose hypotheses. As in the training stage, homogeneous patches do not par-

ticipate in this online voting process, since they are usually non-discriminative about

the object pose.

Algorithm 1 summarizes our approach at the online stage. In the sequel, we
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3.3 Online algorithm for pose hypotheses generation

discuss some of the strategies for speed and robustness of the given algorithm.

Algorithm 1: Pose hypothesizing algorithm

Given a set Sl =
{
(∆x j, z j,θ j)

} |Sl |
j=1 of votes for each label l, with cardinality

|Sl |, and m random fern questions fixed at training stage:

1. Compute the gradient of the input image.

2. Choose pixels x = (x, y) with large image gradients.

3. Allocate memory for the 2D voting accumulator VI(x) and the sparse

accumulator for 3D pose votes Vz,θ(x).

4. for each pixel xk with large image gradients, vote with P(∆Z lk = (∆xk, z,θ))

given by Equation (3.14), i.e, do
4.1 Compute the label lk of the image patch centered at xk by asking the

m fern questions.

4.2 Retrieve the set Slk of votes
{
(∆x j, z j,θ j)

} |Slk |
j=1 of the label lk .

4.3 for each vote (∆x j, z j,θ j) do
Add the voting confidence 1/|Sl | to VI(xk + ∆x j).

Insert the pose information (z j,θ j) and its confidence 1/|Sl | in

Vzj,θ j (xk + ∆x j).

5. Apply a Gaussian Parzen window to VI(x), to gather confidences for each

location from neighboring locations.

6. Search for object locations x̂ in VI(x) with the highest voting score.

7. For each peak x̂, retrieve votes from all Vz,θ(x̂).

8. Gather voting confidences for a pose (x̂, z,θ) from neighboring poses.

9. Search for the pose hypotheses among (x̂, z,θ) with the highest voting

score.

Speeding-up by pose marginalization. We implement the result obtained
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3.3 Online algorithm for pose hypotheses generation

in Equation (3.5-3.12) using random ferns. The online algorithm becomes

V(x, z,θ) = E(W x,z,θ |B1 = b1, · · · ,BK = bK)

=

K∑
k=1
P(∆Z lk = (x − xk, z,θ)).

(3.15)

Though the online algorithm is simple, it requires a huge accumulator of (x, z,θ).

For example, if the image size is 1024 × 768 and the number of database images,

i.e., the number of possible depths z and orientations θ, is 16600, the number of

accumulator bins is more than 13 billion. Searching for pose hypotheses in this huge

accumulator is impractical. Thus, to accelerate the search without decreasing our

search resolution, we provide an approximation to Equation (3.15) by splitting the

search for poses into a 2-step search method.

In the initial voting stage, a two-dimensional voting accumulator VI(x) for object

centroids x is considered by marginalizing the remaining pose dimensions (z,θ), thus

evaluating

VI(x) =
∑
z,θ

V(x, z,θ)

=
∑
z,θ

K∑
k=1
P(∆Z lk = (x − xk, z,θ)).

(3.16)

This is simply achievable by labeling each patch and accumulating its votes in

the accumulator independently, as shown in Algorithm 1. Peaks x̂ in VI(x) are likely

to have the best pose hypotheses (x̂, ẑ, θ̂) since wrong votes usually scatter randomly.

Once the peaks x̂ in the 2D accumulator VI(x) are picked up, we search for

the best pose hypotheses in V(x, z,θ) only for the selected peaks, which is a search

within just a few sparse votes. For this search, we have a sparse accumulator Vz,θ(x)
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3.3 Online algorithm for pose hypotheses generation

that contains the votes for each (z,θ) at each pixel x. Because only a few poses are

voted for each pixel, Vz,θ(x) is an array of lists containing poses and votes for efficient

memory usage and faster search.

Since the number of bins visited in the two-step search process is greatly reduced

compared to the original search in the 6-DOF pose space, generating pose hypotheses

becomes much faster.

Vote support from neighbor poses. Patches from the same object in the

input image tend to scatter votes around similar poses, instead of consistently vot-

ing for the same pose. Such scattering occurs because objects in a slightly different

pose have similar appearance, making it hard to accurately estimate a pose from the

appearance of a small patch. Moreover, the observed object pose often differs from

the quantized pose hypotheses, forcing the patches to vote for neighbor poses. To

improve the robustness to errors due to pose quantization and difficulty of hypothe-

sizing a pose from a small image patch, we boost the voting score of a pose by taking

into account the votes for neighbor poses.

When computing VI(x), given a patch at xk , we alter the voting confidence 1/|Sl |

of each pose hypothesis (∆x j, z j,θ j) in a leaf l to

1
|Sl |

1
2πσ2 exp

(
−



(x − xk) − ∆x j




2σ2

)
. (3.17)

where σ2I2×2 is the covariance of the Gaussian Parzen window. This can be efficiently

computed by Gaussian-filtering the voting confidences 1/|Sl | accumulated at each

pixel of VI(x).

In the second step of our voting procedure, we must search for neighbor poses

around peak x̂ in VI(x). We first collect sparse sets of pose hypotheses from Vz,θ(x)
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3.3 Online algorithm for pose hypotheses generation

at neighbors x of x̂. Then, we efficiently identify neighbor poses using an aspect

graph where each training pose has a precomputed list of neighbors. Finally, for

every voted pose (x̂, z,θ), we gather votes from its neighbor poses, weighted equally

in all the reported experiments. A possible improvement can include a weight factor

representing the pose dissimilarity.

Robustness of voting to noisy labeling. Since images are contaminated

by noise, aggravated by infra-red imaging, similar training patches are likely to

scatter to different fern labels, in turn dispersing the information that is used to

build a probabilistic vote. Consequently, when a test patch gets labeled, such a

label frequently contains information from only a small subset of similar patches

in the database, thereby weakening the vote quality. Also, test patches are often

corrupted by shadows and inter-reflections, which make them substantially different

from training data. We counterbalance such issues of ANN patch search with our

voting mechanism. Since wrong votes usually scatter randomly and the voting space

is very large, the probability of accumulating several votes for the same pose with

random wrong votes is small. By using an ensemble of random forests, instead of a

single random fern, we can make our voting mechanism even more robust, a topic

whose details we leave for future work but has shown to improve object recognition

and pose estimation results [6]. The number of decision trees to use in a forest is a

tradeoff between accuracy, memory usage, and run-time. We expect the labeling and

voting time of 136ms, reported in Table 4.4, to increase linearly with the number of

ferns used, while keeping the remaining processing times nearly constant.

Memory usage. As previously discussed, we avoid the use of a large voting

accumulator via a 2-step pose search. In addition, we tune our training data in
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several ways for a small memory footprint at the online stage. First, we do not

store the appearances or any descriptors of the training patches in the fern leaves.

Second, the number of possible object depths and orientations (z,θ) considered for

voting is limited by the number of images taken in the training stage. Thus, the pose

information (∆x, z,θ) in a fern can be simply represented by (∆x, i), where i is the

training image index corresponding to (z,θ), reducing our memory usage to two 16-

bit long integers for ∆x and one unsigned 16-bit long integer for i, a total of 5 bytes

per training patch. Third, in our implementation we do not store leaves with more

than 100 patches, as the patches with such label are considered non-discriminative

to vote for the object pose, spending too many resources for the value added by their

votes. Finally, we do not store the individual voting confidences from each training

patch. Instead, we just store the number of training patches |Sl | with label l, from

which the voting confidences 1/|Sl | can be computed and used in Algorithm 1, which

can be represented by an unsigned 8-bit long integer as we limit it to 100.

3.4 Pose refinement

Each generated pose hypothesis (x̂, ẑ, θ̂) is in a discretized space.

As illustrated in Figure 3.4, the pose hypothesis is not accurate because the pose

of the object in the input image is usually not the same as any of the discretized

pose hypotheses. A denser sampling of the training poses may alleviate this problem,

but can not solve it. We describe how to upgrade the discretized pose into the 3D

continuous space, and our criteria for rejection of wrong pose hypotheses.

Refinement procedure. To estimate a more accurate 3D pose, we refine the
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3.4 Pose refinement

Figure 3.4: Pose hypothesis obtained with the developed algorithm and its refinement. (Left) A

pose hypothesis (x̂, ẑ, θ̂) is misaligned. (Right) After the pose refinement, the model is aligned

accurately. (Best viewed in color)
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object pose starting from the discrete pose hypothesis. Assuming that the pose

hypothesis is similar to the object pose, an incremental pose update is made by

using a visual servoing method. First, we obtain the boundary of the object imaged

in a certain pose hypothesis by projecting the object CAD model to the image

plane and collecting the 3D coordinates of the boundary of the projected object.

Once the computed object boundary is overlaid on the image, we search for the

correspondence between that boundary points and edge points extracted from the

image. We first compute the direction of the projected boundary pixel and then

choose as correspondence the strongest gradient point along its perpendicular, within

a small distance. We validate this correspondence by checking the similarity between

the boundary direction and the edge direction at the corresponding image point.

After establishing all the correspondences between the input image and the CAD

model boundary, the 3D object pose is updated by calculating the image Jacobians.

This is a conventional visual servoing based object pose refinement procedure [20].

Similar methods are also described in [36]. Further efforts can be put into pose

refinement, to avoid getting stuck in local optimal, e.g., as described in [49].

Speeding-up by precalculation. In practice, extracting 3D boundary points

by rendering the object CAD model in a given pose takes a considerable long time.

To make it faster, we precalculate all the 3D boundary points in each database image

in advance. In the refinement process, only the precalculated 3D points are projected.

This precalculation makes us avoid the time-consuming boundary point calculation

in the iteration loop.

Rejecting hypotheses. Pose estimation using random ferns sometimes pro-

poses wrong pose hypotheses. We use the matching score of the pose refinement as
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3.4 Pose refinement

an evidence of the object existence. In searching for the boundary correspondences,

we measure the ratio of valid matches out of all the points. If the ratio is less than

a certain threshold, we simply reject the pose hypothesis.
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4

Experimental results

In Section 4.1 we describe our experimental setup and choice of most relevant

parameters. Section 4.2 shows how the developed method works step-by-step, and

illustrates pose estimation of different objects. In Section 4.3 we evaluate the quality

of our pose hypothesis when varying the number of channels of multi-light images. In

Section 4.4 we show how our probabilistic voting approach performs when compared

to simple unitary voting. The subsequent sections analyze the system performance

in terms of robustness, accuracy, and computation time.

4.1 Experimental setup

Figure 4.1 depicts the system setup used for training and testing on all our

experiments. The system is composed by a B/W camera, and three incandescent

light bulbs, which are easily available from a retail store. The lights are about 0.9

meter high from the bottom of the container and roughly located at vertices of a

regular triangle. The B/W camera is a PointGrey FL2-08S2M-C, with sensor Sony
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ICX 204, of resolution 1024 x 768, equipped with a 16mm lens. The camera is located

about 1.75 meters high from the bottom of the container, and aims to the center of

the bin. To minimize the effects of the ambient light from fluorescent lights on a

ceiling, we acquire infrared images, having a 720nm IR filter attached in front of the

lens of the 2D camera. Figure 2.1 shows the real system setup.

Training parameters Using the system in Figure 4.1(a), we generate the

database of an object by taking 16602 images, roughly uniformly sampled on S3,

with samples being 4 degrees apart. Then we train one random fern following the

training procedure illustrated in Figure 3.3. Since the number of patches to be

trained were approximately 1.3x108, we used m = 27 fern questions, which generates

227 ≈ 1.34x108 fern leaves.

As discussed in Section 3.2, we deliberately over-split the patch space in order

to identify non-descriminative training patches or large mismatch between the test

patches and the training patches in our database. Empty leaves and leaves with

more than 100 patches do not vote for a pose at runtime. Leaves with less than 10

patches vote with 0.1 instead of following Equation (3.14), avoiding aggressive voting

as such leaves can represent non-discriminative patches spitted into a separate leave

simply due to noise.

Our random fern questions follow Equation (3.13), where positions and channels

were created uniformly at random except that questions that are the a repetition

of previous ones up to 1 pixel shift in position are ignored and re-created. All our

reported experiments used τi = 10. To decide on this value we tested two different

strategies: using a fixed threshold τ = 0, 5, or 10 for all questions, and randomly

selecting τ for each question within the range [0,20]. In almost all the cases there is
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Camera

1.65 m

0.8 m

IR filter

(a) Training setup

Camera

1.75 mm

0.9 m

IR filter

(b) Test setup

Figure 4.1: Multi-light setup for (a) training and (b) test. Our system works in infra-red

wavelength to avoid the influence of environment illumination without the need to cover the

system. With our training setup in (a) we create a database of 16602 images, roughly uniformly

sampled on S3 every 4 degrees. Using our test setup in (b) we evaluate the performance of

our vision system in the bin-picking scenario. The corresponding real system is shown in

Figure 2.1.
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no significant performance variation, with the exception of τ ≈ 0, where the overall

performance degrades a little as the result becomes strongly dependent on image noise

when performing questions on uniform regions of the patch with strong gradients.

Pose estimation on sequences of bin-picking images. All our experiments

in Sections 4.5, 4.3, and 4.4, use sequences of 100 bin-picking images, instead of

independently generated random bin-picking images. By using sequences of bin-

picking images we keep our experiments as close as possible to the real bin-picking

scenario where multiple parts must be picked sequentially from the same bin. This

problem is surprisingly much harder than when using independently generated ran-

dom bin-picking images. After detecting and picking several objects, the subsequent

detections and picks are, most often, increasingly difficult because the majority of

the remaining objects are the ones that the system kept postponing in the previous

cycles as they were harder to tackle.

4.2 Pose estimation examples

Pose estimation process. Figure 4.2 shows the intermediate results of our

method, while searching for “bracket” objects. The multi-light image shown in Figure

4.2(a) is captured by the imaging system in Figure 2.1. After voting with each image

patch, we observe a few peaks in the 2D voting image VI(x) as shown in Figure 4.2(b).

Figure 4.2(c) shows the pose hypotheses selected at the highest peak points, which

are fairly accurate. Note that several pose hypotheses can be generated at a single

x̂ peak. The pose refinement and rejection provide accurate pose estimation in 3D

space as shown in Figure 4.2(d).
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(a) Input multi-light image (b) Voting in 2D

(c) 50 pose hypotheses (d) Top 5 detections

Figure 4.2: Step-by-step pose estimation procedure. We obtained the multi-light image (a)

using the imaging system with three lights in Figure 2.1. After voting, the candidate object

locations are collected from the marginalized votes (b). Then, pose hypotheses (c) are at the

candidate object locations, which are close to the actual object poses. The final detection (d)

is obtained through pose refinement.

51



4.3 Single-channel images versus multi-light images

Support patches. From VI(x), depicted in Figure 4.2(b), we can observe which

pose hypotheses have highest voting score. However, it remains unclear the distri-

bution of (z,θ) per peak location x̂, and which patches contribute to which peak. To

that end, in Figure 4.3(a) we show 3 objects from Figure 4.2(a) with pose hypotheses.

For each object, we show in Figure 4.3(b) the 3 pose hypotheses with highest score,

and in Figure 4.3(c) which patches contributed to each of those pose hypotheses.

Multi-class object detection. In Figure 4.4, we show the flexibility of our

method in a multi-class scenario. Figure 4.4(a) is an input multi-light image which

contains two kinds of objects. The search for N = 10 peaks results in a few wrong

pose hypotheses since the image has only four “bracket” objects, as seen in Figure

4.4(b). Figure 4.4(c) shows that the pose refinement successfully rejects all the wrong

hypotheses.

On the other hand, the other objects are successfully detected by just changing

the object-specific database, as shown in Figure 4.4(d). This flexibility is very useful

for handling many different parts with the same system setup.

4.3 Single-channel images versus multi-light images

To evaluate the benefits of using multi-light images versus single-channel images,

we run training and detection on the following 4 types of images:

• Average image. A single-channel image created by averaging the channels of

our regular multi-light image. It mimics taking a single gray scale image with

all 3 lights turned ON.

• 1 channel image. A single-channel image created by taking the first channel of
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4.3 Single-channel images versus multi-light images

(a) Object found by pose hypotheses generation

(b) Images of 3 pose hypotheses per object found
(c) Patch contribution to each pose hypothesis

Figure 4.3: Illustration of pose hypotheses and patch contributions for some of the objects

in Figure 4.2(a). (a) 3 objects from Figure 4.2(a), (b) best 3 pose hypotheses found, and (c)

patches contributing to each of the pose hypothesis found. In (c), green pixels correspond to

locations containing votes from the pose hypothesis found, red pixels correspond to locations

containing votes from supporting hypothesis pose neighbors, and gray pixels correspond to

voting locations with no votes from the pose hypothesis found or its neighbor poses.
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4.3 Single-channel images versus multi-light images

(a) Input multi-light Image (b) 50 pose hypotheses

(c) Detection results (d) Detection of another object

Figure 4.4: Object specific detection. (a) The scene has two kinds of objects, and (b) some of

the pose hypotheses are incorrect. (c) The pose refinement successfully rejects the incorrect

hypotheses. (d) The exactly same code can be used for another object by simply changing the

object-specific database.
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4.3 Single-channel images versus multi-light images

our regular multi-light image.

• 2 channel image. A dual-channel image created by taking the first 2 channels

of our regular multi-light image.

• 3 channel image. Our regular multi-light image with all 3 channels.

We use the same training dataset and 500 detection images as in Section 4.5,

since all the types of images listed above can be generated from our multi-light

images. Our training and detection procedure remain the same.

To evaluate the difference in detection capability between using single-channel

images and multi-light images we define the ratio between the highest peak of

V(x, z,θ) and the average of all the voted (non-zero) V(x, z,θ) entries as peak-to-

noise ratio (PNR).

Table 4.1: Peak-to-noise ratio of probabilistic voting with single channel and multi-light im-

ages

Rank average image 1 channel image 2 channel image 3 channel image

1 29.17 29.02 49.84 72.31

2 24.40 23.89 38.20 50.24

3 22.11 21.32 33.26 42.45

4 20.74 19.90 30.57 38.23

5 19.66 18.71 28.51 35.59

For all 500 bin-picking picking scenes, we generate the 4 types of images listed

above and we plot in Figure 4.5 the PNR of probabilistic voting on those images.
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Figure 4.5: Peak-to-noise ratio of probabilistic voting with single-channel and multi-light im-

ages. While single-channel images with one or all three lights ON produce poor voting peaks,

multi-light images generate much stronger voting peaks. Multi-light images creates a much

larger number of discriminative patches, notably boosting the voting procedure.
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4.4 Probabilistic voting versus unitary voting

We also summarize, in Table 4.1, the average PNR across all 500 picking scenes, per

image type and for the 5 highest voting peaks.

The difference in the results lie on the richness of the content of each type of

images. Since each channel of a patch contains large homogeneous regions, it is hard

to generate a large number of discriminative labeling questions from a single channel.

On the contrary, by using multi-light images, with channels varying differently with

surface orientation, we increase the discriminative power of the labeling questions

obeying Equation (3.13) by providing additional pose information on the new chan-

nels. Consequently, we increase the quality of the probabilistic votes in each leaf

of the fern, during the training procedure illustrated in Figure 3.3. Figure 4.5 and

Table 4.1 show the clear benefits of using multi-light images in the voting procedure

as it shows much higher scores for multi-light images than for single channel images.

4.4 Probabilistic voting versus unitary voting

In order to illustrate the capabilities of our probabilistic voting approach, we

repeated the experiments made in Section 4.3 with a change in the voting procedure.

Now, instead of following the probabilistic votes of Equation (3.14), we perform

unitary voting, i.e., all the patches vote for poses with the same weight 1.

We display the PNR of unitary voting in Figure 4.6, with the same scale as

Figure 4.5 for easy comparison. We also summarized the PNR of unitary voting of

the 5 highest peaks of V(x, z,θ) in Table 4.2.
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Figure 4.6: Peak-to-noise ratio of non-probabilistic voting with single-channel and multi-light

images. In comparison with the PNR values of probabilistic voting in Figure 4.5, the PNR

values of non-probabilistic voting are considerably lower.
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4.4 Probabilistic voting versus unitary voting

Table 4.2: Peak-to-noise ratio of unitary voting with single channel and multi-light images

Rank average image 1 channel image 2 channel image 3 channel image

1 18.56 18.91 28.09 45.38

2 16.03 16.90 22.43 33.97

3 14.91 15.10 20.03 29.63

4 14.12 14.15 18.64 27.24

5 13.47 13.40 17.65 25.59

By comparing the PNR values with the ones of the previous section we can see

the benefits of using probabilistic voting versus unitary voting. The PNR values

in Table 4.1 are consistently higher —1.53 times higher on average —than in Ta-

ble 4.2. These results show that it is not only important to generate images with

rich pose cues but also to make sure that the patches of the input image that are

more distinctive vote with more certainty.
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4.5 Detection performance

Table 4.3: Detection performance of 100-part picking test

Rank Number of detections False alarms Inaccurate poses

1 498 (99.6%) 1 (0.2%) 11 (2.2%)

2 447 4 (0.89%) 20 (4.47%)

3 341 1 (0.29%) 13 (3.81%)

4 218 4 (1.83%) 11 (5.04%)

5 96 1 (1.04%) 6 (6.25%)

Total 1600 11 (0.7%) 61 (3.8% )

Our multi-light approach. To test the detection performance of our method,

we design a “100-part picking” test. At first, we randomly stack 100 parts in a bin,

within the image field of view. Then, we run our method to detect object poses,

and we carefully pick out, by hand, the object with the highest detection score. We

repeat the detection procedure on the remaining parts in the bin, and continue to

pick out parts until we empty the bin. We conduct this test five times, processing 500

images in total. Our method fails to detect object poses only in two images out of

500, and only one pose with the highest detection score is a false alarm. While trying

to detect 5 poses per image, a total of 1600 poses are detected, with an overall false

alarm rate of 0.7%, and the remaining poses are rejected after refinement. Within

this experiment, the pose estimation never fails for images with less than 5 objects.

Sometimes, pose refinement is trapped by the nearby strong image gradient. It

happened 3.8% in total and 2.2% for the best pose detected. Table 4.3 shows the

60



4.5 Detection performance

statistics of the 5 best pose hypotheses in each of our 500 bin-picking images.

Hierarchical template matching. We compare the detection performance of

our method with the commercial implementation HALCON developed by MVTec.

To this end, we use the 5 sequences of 100 images previously collected, and we de-

tect one part per image. Since a sequence of 100 images is generated by sequentially

picking each object detected by our system, a different detection by HALCON imple-

mentation often results in multiple detections of the same object until it is removed.

Thus, to measure the detection performance, we just account for the 182 images con-

taining the first detection of an object, removing all the repeated detections. Such

experiment gives to the HALCON implementation accurate detections with the rate

of 92.31% on the 182 images being considered. This result is considerably lower than

the results obtained with our system, where we have accurate detections with the

rate of 97.2% for 500 images, reported in Table 4.3, or 98,35% for the set of 182

images being used in this HALCON experiment.

Figure 4.7 shows a few incorrect results obtained with the HALCON implemen-

tation, illustrating that the exhaustive search for location and local direction of shape

edges is not enough to obtain good results in a bin-picking application. Template

matching often gets a high matching score while matching edges from multiple ob-

jects, substantially decreasing the performance in presence of partial occlusions, even

when fully visible parts exist in the image. Our approach makes use of the photo-

metric appearance of the object under different poses to overcome such limitations

present in edge-based template matching approaches.
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4.5 Detection performance

Figure 4.7: A few wrong detections obtained with the template matching approach, illustrating

that the exhaustive search for location and local direction of shape edges is not enough to

provide accurate detections and eliminate false positives, even in cases of no occlusion, no

shadow, and no near inter-reflection.
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4.6 Pose estimation accuracy

4.6 Pose estimation accuracy

As we discussed in Chapter 2, the light sources in the system are not far enough

to provide parallel illumination, due to which surfaces in the same orientation at a

different location may have different colors. Because of such location dependency

and non-orthographic projection, the database image usually differs from the input

object image, even though the object orientation is the same.

To test the accuracy of our pose estimation with respect to object location, we

conducted an experiment where we vary the orientation and location of the object.

We located an object right under the camera at first, and moved it using a rotation

stage and a linear guide along each axis. For each location and orientation set,

we compare the estimated pose with the pose obtained from the ground-truth of the

rotation stage and linear guide. To study the repeatability of the result we collect 100

multi-light images. Figure 4.8 shows the statistics of the results obtained with our

method, before and after pose refinement, and with the HALCON implementation.

Because the camera is located at 1750 mm high, which is much larger than the

object size, the estimated rotation around X and Y axes and the translation along Z

axis are less accurate than the rotation around Z axis and the translation along X and

Y axes, for both our method and the HALCON implementation. We notice that the

translation along X and Y axes and the rotation around Z axis are very accurate even

though the multi-light images are location-dependent. This is because our method

does not use the absolute intensity of pixels, but only rely on the intensity difference

in each channel, as discussed in “Dealing with multiple channels” of Section 3.2. In

addition, placing the camera far from the scene decreases the perspective distortion
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4.6 Pose estimation accuracy

and visual servoing successfully corrects the coarsely computed pose hypotheses.

The estimated pose obtained from the voting process is one of the discretized

pose hypothesis from the object database. Pose refinement improves the accuracy of

the estimated pose significantly by correcting the pose errors due to discretization.

Even though rotation around X and Y axes and the translation along Z axis are

visibly inaccurate after the voting process, as seen in Figure 4.8, pose refinement

greatly increases their accuracy. We observe that the large errors in the estimated Z

location do not significantly affect the accuracy of pose refinement. This is because

such large errors in Z are perceived as minor changes in the size of the imaged object,

due to the large distance of the bin to the camera.
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Figure 4.8: Analysis of pose estimation accuracy. The camera is placed at about 1750mm high

from the object and the axes are set as shown in (a). We show the pose estimation results of our

method, before and after refinement, while changing the object location (b,c,d) or orientation

(e,f,g). We also show the results of the HALCON implementation. For each pose, we acquired

100 images and computed the mean and variance of the obtained pose.
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4.7 Speed

Table 4.4: Processing time for detecting up to 5 poses with 50 pose hypotheses

Estimation phase Average [ms] St. dev. [ms]

Choosing voting points 69.1 6.7

Labeling and Voting 136 41.7

Generating pose hypotheses 75.4 21.6

Refining pose hypotheses 164 35.6

Total 445 76.5

HALCON [-30◦,30◦] 839 101

HALCON [-50◦,50◦] 2446 243

Table 4.4 shows the computation time in each estimation phase for detecting up

to 5 poses. We used a 3.2GHz Intel QuadCore processor with 3GB memory for this

test, without implementation of CPU intrinsics or usage of additional computational

hardware. In this case, at most 50 pose hypotheses were tested after picking up 10

peaks in the marginalized 2D voting image VI(x). We used a set of 100 bin-picking

images for this analysis. Speed of the labeling process depends on the number of

voting points, which are determined by the complexity of the input image. In average,

the whole process is done in about 500 ms per image. Refining and evaluating poses

takes the longest time, being linearly proportional to the number of pose hypotheses.

If a user wants to detect just one pose, the number of hypotheses can be reduced.

Compared to the commercial implementation HALCON, our method runs faster.
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4.7 Speed

The processing time of the HALCON software using template matching depends on

the pose coverage. For similar pose coverage of [-50◦,50◦], our method runs more

than 5 times faster.
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5

Conclusion

As stated in the introduction, the main goal of this work is to design a practical

3D pose estimation system for the bin-picking of shiny and textureless objects. We

develop a multi-light acquisition system and a fully data-driven method to jointly

tackle the bin-picking problem. The accomplishments of our work are summarized

as follows:

• Creation of images with rich pose clues using a multi-light imaging system. We

use a multi-light imaging system, as in photometric stereo, to create object

images with rich pose clues. Using such multi-light system, we are able to

explore the photometric properties of a textureless object to estimate its 3D

pose. Our system is cheap, easy to setup, and it works under unrestricted

lighting conditions and unknown illumination directions.

• Probabilistic voting for pose estimation. We design a new probabilistic voting

framework to map the appearance of image patches into votes for the object
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pose. The voting method is robust to changes in the object appearance due to

object translations, where the incident and viewing angles can vary substan-

tially. Our method is also robust to appearance variations due to shadows,

inter-reflections, and occlusions. The method handles distinct objects by sim-

ply changing the image database.

• Accurate pose estimation. We refine the 3D pose hypotheses obtained in the

voting step by using a model-based tracking technique, common in 3D visual

servoing [20], achieving accurate object poses for robotic manipulation.

• Benchmarking. We compare our system with the HALCON software, a highly

optimized commercial solution based on hierarchical template matching. Our

system is more than five times faster and provides superior detection results

with just a single fern.

While focusing our discussion on the detection and pose estimation of textureless

and shiny objects, our approach remains generic. Thus, we strongly believe that

our approach can be applied to a large class of objects including the ones that are

textured in certain viewpoints and textureless in other viewpoints, without the need

for a multi-modal approach.
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6

Discussion

A single bin-picking system working in an assembly line may need to perform

hundreds or even thousands of picks per hour. As a result, even though our system

computes an accurate pose for 97% of the bin images, we may still require a picking

system with strong recovery mechanisms or frequent intervention of a human operator

to cover the limitations of the bin-picking system. In order to tackle the major issues

that adversely impact the accuracy and usability of our system, we discuss possible

extensions to our current approach. In addition, the system requires acquiring a large

set of multi-light images before beginning to recognize a different object. Hence, we

identify potential ways of shortening the acquisition time, to increase the usability

of our system.

6.1 Topics for future research

Alternative patch representations. Random ferns are a computationally in-

expensive way of creating patch descriptors and providing efficient nearest neighbor
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search, allowing us to compute them in a dense number of points over the input im-

age. However, we can consider other patch descriptors such as HOG [48] (Histograms

of Oriented Gradients), D-Brief [47], or CNN-based descriptors [46]. Although more

expensive to compute, compare, and store, they are alternative patch representations

that have shown to be robust to several image disturbances such as noise, illumina-

tion changes, and small image transformations. Therefore, they have the potential to

improve the mapping from patch appearance to pose space, and enabling the learn-

ing of more meaningful probabilistic votes for pose hypotheses generation. With

alternative patch representations, we can also consider other similar approximated

nearest neighbors search structures, popular with such kind of patch representations,

based on hierarchical k-means trees, k-dimensional trees, hash maps, etc.

Ensemble learning. Using forests instead of a single decision tree has shown to

improve object recognition and pose estimation results [6]. The number of decision

trees to use in a forest is a tradeoff between accuracy, memory usage, and run-time.

We expect the labeling and voting time of 136ms, reported in Table 4.4, to increase

linearly with the number of ferns used, while keeping the remaining processing times

nearly constant.

Multiplexed illumination for noise reduction. In our system, we acquire

images under variable illumination directions using only a single light source at a

time. Another way to obtain the same images is based on a multiplexing princi-

ple [39, 40]. In such a method, images are acquired with multiple light sources

simultaneously illuminating the scene from different directions, which can be com-

putationally demultiplexed using the same number of images as in the single light

source method. For N light sources, the multiplexed illumination method increases
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the signal-to-noise ratio by
√

N/2, allowing faster acquisition times or less noisy in-

puts for the computer vision algorithms. This approach is useful for imaging dim

object areas, common in shiny objects when illuminated by small light sources.

Video-rate acquisition of multi-light images. Capturing multiple channels

of the multi-light image can be done in parallel by frequency division multiplexing

instead of time division multiplexing. For example, using a 3CCD camera (or any

other multi-spectral camera with non-overlapping bands) and 3 colored lights at the

frequencies of maximum sensor response for each channel band, we can acquire a

multi-light image with a single snapshot. This way, we can acquire a large set of

training images at video rate and have a very fast acquisition system for real-time

pose estimation and picking. Also, we can avoid the otherwise unpleasant flashes

coming from a multi-light imaging system.

Illumination and acquisition strategies. Illuminating the scene with three

light bulbs from distinct directions, as in photometric stereo for lambertian sur-

faces, is only one of the many possible ways of illuminating the scene to extract

3D information or reflectance information. Surely the fields of shape from shading,

multiplexed illumination, and relighting, have shown many other ways of exploring

different illumination patterns and a diverse number of lights that should be explored

for bin-picking. Light-field photography is also a known way to explore light to more

easily collect 3D scene information or reflectance distribution functions of the scene

surface.

Bin-picking for large bins. When picking in large volumes, the learned object

appearance can differ drastically from the appearance in the input image for the

given illumination. To tackle such issues, one can design approximately parallel
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illumination that would provide constant illumination direction and power across

the bin. However, such illumination designs are usually not compact and not so

affordable. Instead, we can normalize the image per average illumination power per

image ray, as well as derive expected approximate changes in appearance per pixel

(or per pixel region) and per channel instead of assuming them constant across all

the large bin volume.

Multi-light bin-picking should meet CNN. With the rising of deep Con-

volutional Neural Networks (CNN), the advances in object classification, detection,

and instance segmentation have been remarkable. However, the problem of 3D pose

estimation from monocular images have received limited attention from the deep

learning community until very recently [53, 54, 55, 56, 57, 58, 59]. While the exper-

imental results look promising, they tend to fall short on real bin-picking data like

the one presented in this work. It would be great to see results on object-specific

bin-picking where the clutter in the scenes have the same properties as the object

to detect. Also, experiments with deep bins and textureless shiny objects would

make more evident the power and drawbacks of approaches regarding strong occlu-

sions, shadows, inter-reflections, instability of appearance, and scarcity of distinctive

features. Last, it would be great to see how such approaches could benefit from

multi-light images.

Multi-view pose estimation. Capturing multiple views of an object can be

useful to speed up the acquisition of the object database and improve the robustness

of the online algorithm. In order to accelerate the acquisition of the object database,

we can place the object in a smaller number of poses while acquiring more views of

the object per pose. During the online process, we can use the voting procedure on
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the multiple views of the bin-picking scene, possibly improving the object detection.

Also, pose refinement and evaluation can be made more robust since the object pose

can be more accurately computed, e.g., due to better depth perception and increased

geometrical constraints, possibly reducing the number of inaccurate poses and false

positives reported in Table 4.3.

Benchmark on very large sets of objects. One of the very limiting factors of

deploying scalable picking systems to factory automation and logistics is the difficulty

in creating generic systems that can recognize and manipulate a multitude of objects.

While we focus on the very hard problem of bin-picking of textureless and shiny

objects, we believe that our approach remains generic for a much broader class of

objects containing textured and/or textureless viewpoints. Thus, we see great value

in evaluating our approach on very large datasets and tackling issues related to the

large variations in object properties.

Bin-picking with real-time 3D data. Major efforts are still needed to explain

every single pixel of the unstructured scene inside a bin from 2D vision, in order to

meet the very-low-failure requirements of industrial bin-picking applications. Simply

estimating poses using a monocular 2D camera is not enough for safe robot ma-

nipulation as the rest of the bin-picking scene remains unexplained and sporadic

incorrect poses can make the picking system unreliable, hence unusable. We concede

that 3D data is very useful to further prune votes, early reject pose hypothesis, aid

pose evaluation and refinement, as well as provide dynamic obstacle avoidance for

robot motion planning. However, even though current industrial 3D vision sensors

for bin-picking provide fairly accurate pointcloud, they remain very expensive and

slow. They are mostly based on structured light, slow due to the need of acquiring
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long sequences of patterns, or on stereo-matching, fast in acquisition but computa-

tionally very intensive, using time and system resources that could be otherwise used

for pose estimation. Instead, we believe that, with re-doubled effort in monocular

pose estimation, cheap and real-time 3D sensing, e.g., time-of-flight (ToF) sensors,

can be sufficient to complement (rather than almost substitute) 2D vision while re-

maining affordable, thus scalable, and real-time. This idea contradicts the current

trend in vision systems for 3D pose estimation [9, 41, 42, 43, 44, 45, 51] that heavily

rely on 3D data.

Structured learning. Rather than having patch labels computed indepen-

dently of each other, we should obtain coherently labeled regions [52]. Such ap-

proach should be able to correct erroneous noise-prone label bits to some extent,

substantially guiding voting towards an improved peak-to-noise ratio.

Factoring out inter-reflections for appearance stability. The appearance

of an object in a given pose can vary substantially on changing the surrounding scene,

in large part due to shadows and intra and inter-reflections, making pose estimation

unreliable. Thus, we highlight the usefulness of computing the direct component of

illumination [21, 38], factoring out intra and inter-reflections and, consequently, eas-

ing shadow detection. By computing the direct component of illumination, we can

make our system more predictable and trustworthy at localization and evaluation

stages, since each pixel intensity becomes more closely related to the orientation of

the object surface and reflectance model. Thus, the realistic rendering of new object

views will become easier, enabling acquisition of fewer training images and render-

ing of new views for more precise pose hypothesis and evaluation. Given the clear

advantages of removing inter-reflections, we detail below this possible path of future
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Figure 6.1: Illustration of light transport using a single light source. The intensity of an image

pixel results from a complex sequence of reflections and inter-reflections, since the light emit-

ted from a light source may bounce on one or more surfaces before it reaches the camera. Only

the intensity of the first bounce, i.e., the direct component of illumination, can be independent

of the remaining scene.

research. While we believe that the discussion below opens doors to more precise,

physics-based, computer vision, we stress that its applicability remains limited due

to the current pricy and complex approach in direct-global light separation.

6.2 Direct-global light separation: tackling inter-reflections

As illustrated in Figure 6.1, the appearance of a surface point is usually in-

fluenced by reflections from the surrounding scene. In a bin-picking scenario, the

directional shape of the BRDF of shiny objects and the proximity among objects

makes such appearance changes even more visible. Also, the possible environment

changes, e.g., people or robots moving nearby or different system placement with

respect to walls, can considerably influence the object appearance.

Therefor, we discuss below how to compute the direct component of illumina-

tion of our bin-picking images, factoring out appearance uncertainties due to inter-
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reflections. To obtain the direct component of illumination, we lit the objects in

the bin with high-frequency spatial patterns, using projectors instead of simple light

bulbs. The direct component of illumination provides each pixel value with a more

straightforward physical interpretation, since their intensities will be more closely re-

lated to the BRDF and normals of the object surface. These pixel intensities would

allow us to easily detect shadows, redesign tree questions based on pixel color and

presence of shadows, realistically render new object views, among others.

Related work. The most popular methods that estimate the direct component

of illumination aim to compute the transport matrix [35], after which the inter-

reflection components can be computed and removed. However, the acquisition and

computational effort needed to compute such matrix would make our system imprac-

tical. Since we just need to separate the direct illumination component from all the

other components, we can use the method in [21, 38] to factor out inter-reflections

and other global effects from each of our light sources. We describe a simplified ver-

sion of the original method in the sequel, and discuss the advantages and limitations

in using it in a bin-picking system.

Computing the direct component of a scene via high frequency illu-

mination. Consider a scene viewed by a camera and illuminated by a point light

source. The radiance R of a point in a scene, measured by the camera, can be

decomposed in direct and global components as

R = Rd + Rg, (6.1)

where Rd and Rg are the direct and global component of the radiance R.

Now, assume that only half of the light source pixels are activated and that these

activated pixels are well-distributed over the entire scene to produce a high frequency
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illumination pattern. Under the smoothness conditions discussed in [21], where the

light transport coefficients remain approximately constant within a neighborhood,

we can write that

Ron = Rd + 0.5Rg Roff = 0.5Rg, (6.2)

where Ron and Roff are respectively the radiances of a lit or unlit point in a half-

illuminated scene, and Rd and Rg are, as in Equation(6.1), the direct and global

components of a point when the scene is fully illuminated. Under the mentioned

high-frequency spatial illumination and scene smoothness assumptions, if only half

of the scene is illuminated, the contribution of the scene to the global component

of the point radiance under analysis is also half. Also, Ron ≥ Roff, since Rd is non-

negative.

In order to compute the direct component of illumination, consider two checker-

board illumination patterns with very tiny squares (high-frequency), that have only

half of the source pixels activated and that lit with complementary illumination, i.e.,

if both the checkerboards simultaneously illuminate the scene, it will be equivalent

to having the light source fully turned on. With these two illumination patterns, it

is possible to obtain the values Ron and Roff for each pixel in the scene, since the

pixels that are lit with one illumination pattern are unlit with the complementary

pattern. For the two values Ron and Roff that we obtain for each pixel, we know that

Ron ≥ Roff, thus the larger value corresponds to the case where the pixel is lit, and

we can compute the direct component of illumination as

Rd = Ron − Roff = Rmax − Rmin. (6.3)

One main disadvantage of illuminating shiny surfaces with point light sources,
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e.g., a projector, is that it accentuates the specularities and micro-texture of the

surface material. To reduce such effects, we can enlarge the light source, while still

being able to project high frequency patterns, by combining a projector with a linear

diffuser positioned perpendicular to one-dimensional patterns, as in [37].

Computing the direct component of illumination in a multi-light set-

ting. The method described above requires 2 images per light source in order to

compute the direct component of illumination. In a multi-light setting, this corre-

sponds to taking 2N images when using N light sources. A theoretical result in [38]

shows that, instead of 2N, N + 1 images are sufficient. Let Ri
d and Ri

g denote the

direct and global illumination components corresponding to the i-th light source

i = 1, · · · ,N. First, we turn on all N lights at half-brightness and compute the image

I0:

I0 =
N∑

i=1
(Ri

d + Ri
g)/2. (6.4)

Next, we set the i-th light source to be a high frequency pattern, with half the pixels

on, while keeping all the other N − 1 light sources at half brightness. Since the

average intensity of the high frequency patterns is half of their maximum intensity,

the global component of a light projecting such high frequency pattern is the same

as that of a light homogeneously illuminating the scene at half-brightness, i.e., Ri
g/2.

Thus, in the captured image intensity Li, only the coefficient of direct component

changes, obtaining

Li =


L0 + Ri

d/2, for lit points

L0 − Ri
d/2, for unlit points.

(6.5)
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Projector 1 Projector 2 

Projector 3 

(a) Illumination for L0

Projector 1 Projector 2 

Projector 3 

(b) Illumination for L1

Figure 6.2: Illustration of how to acquire images in a multi-light setting in order to compute

the direct component of light. Example for N = 3 light sources. The projectors simultaneously

illuminate a scene at half brightness to create L0. Then, to create Li, the i-th light source is set

to be a high frequency pattern, with half the pixels on, while keeping all the other N − 1 light

sources at half brightness.

Since Ii − I0 = ±Ri
d/2, the N direct components can be computed as

Ri
d = 2 |Li − L0 | , i = 1, · · · ,N, (6.6)

from N + 1 images.

Benefits of computing the direct component of illumination. By com-

puting the direct component of illumination, our data-driven approach can take

advantage of several facts:

• Shadows become easier to detect. Our voting procedure should take into account

the existence of shadows when searching for similar patches, as illustrated in

Figure 6.3. In order to detect shadowed areas, it is common to assume that

they display less radiance than areas being directly illuminated. However,
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inter-reflections can cause shadows to display more radiance than directly illu-

minated surfaces, making it hard to discriminate between shadows and directly

illuminated surfaces. Computing the direct component of illumination removes

inter-reflections, due to which shadows become easier to detect since they will

display no radiance.

• Stability of appearance. By using the direct light component, the appearance of

the object surfaces no longer depends on the surrounding scene. Thus, neither

the surrounding bin objects nor the environment changes such as bin walls or

objects outside the working area will affect the surface appearance. As a result,

the use of the direct light component makes the object appearance in training

images and test images easier to compare, making our system more predictable

and trustworthy at localization and evaluation stages.

• Advantages of acquiring the BRDF of the object surface. The direct light compo-

nent of an illuminated patch directly provides BRDF information of a surface.

Obtaining the BRDF of an object surface opens the doors for research in the

acquisition of less training images, rendering of new views for richer training

or more accurate pose evaluation, full rendering of training images for a given

reflectance function, or designing of new tree questions based on surface orien-

tation.

While we did not implement direct-global light separation, the discussion above

clarifies the limitations of the current system in linking the image pixel values with the

reflectance function of the object surface, in detecting channels affected by shadows,

and in narrowing down the difference in pixel intensities between training and test
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(a) Input image (b) Edges extracted from image

Figure 6.3: Edge pixels extracted from an input image, illustrating that a large part of the edges

only exist due to shadows. The presence of edges due to shadows considerably increase the

number of voting patches, thus increasing the time taken by the voting process. Also, such

edges contain little information about the object pose since the variable background shape of

a bin-picking scene changes the location of those edges for the same object pose.
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images due to inter-reflections, thus encouraging future research in light transport

for bin-picking applications.
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