ProtOCL: Specifying Dialogue
Games using UML & OCL

ll ”. llli ||HIIIH% “ln

ICAIL 2013, Re

Introduction

" ProtOCL-

— a prototype fool & workflow for describing &
implementing dialogue games

— (1) Describe game using industry standard fools

— (2) Implement using code generation

— (n) Build on generated code using AP

Motivation

1

Not always a big infersection between academic & industrial /
commercial tools

~ But, increasing intersection of academia & business

— projects (particularly larger EU), spin-outs

 Legitimate to investigate applied issues

~ NB. Also an increasing focus on argumentation in relation to HCl & UX

Specification Methods

Natural Language

Formal /logical Notation

omain Specific Language (DSL)

1 [—— 1 1

D
D

lagrammatic

— +various hybrids

Move Types

Assertions: The content of an assertion is a statement P, Q, etc. or the truth-functional compounds
of statements: “Not P”, “If P then Q”, “P and Q”.

Questions: The question of the statement P is “Is it the case that P?”

Challenges: The challenge of the statement P is “Why P?”

Withdrawals: The withdrawal of the statement P is “no commitment P”.

Resolution demands: The resolution demand of the statement P is “resolve whether P”.

Dialogue Rules

Rrorn: Participants may make one of the permitted types of move in turn.

RrepsTar: Mutual commitment can only be asserted when a question or challenge is responded.

RouEest: The question P can be answered only by P, “Not P” or “no commitment P”.

Romarr: “Why P?” has to be responded to by either a withdrawal of P, a statement that chal-
lenger accept, or a resolution demands of the previous commitments of the challenger which
immediately imply P.

Rresorve: A resolution demand can be made only in situations that the other party of the
dialogue has committed in an immediate inconsistent conjunction of statements, or he withdraws
or challenges an immediate consequent of previous commitments.

Rresorurron: A resolution demand has to be responded by either the withdrawal of the offending
conjuncts or confirmation of the disputed consequent.

Rriecarcaarr: “Why P?” cannot be used unless P has been explicitly stated by the dialogue
partner.

Commitment Rules

Initial commitment, CRy: The initial commitment of each participant is null.

Withdrawals, CRyy: After the withdrawal of P, the statement P is not included in the move
makers store.

Statements, CRg: After a statement P, unless the preceding event was a challenge, P is included
in the move makers store.

Defence, CRys: After a statement P, if the preceding event was Why Q7, P and If P then Q are
included in the move makers store.

Challenges, CRy: A challenge of P results in P being removed from the store of the move maker
if it is there.

Termination Rules

1. The game will be ended when a participant accepts another participants view.

Pre-Conditions - Commitment Store Contents

CeCs, Commitment C is currently in commitment store CS
C¢CS,, Commitment C is not currently in commitment store CS

Post-Conditions - Alterations to Commitment Stores

CSn+1 = CS,, U {C} Commitment C is added to commitment store CS
CS,n+1 = CS,, \ {C} Commitment C is removed from commitment store CS

Move Specifications (utilising pre- € post-conditions)

Statement(S;) Pre: ¢

Post: CP.4+1 = CP, U {S:} AICOL LG @IIMIRESIE
Withdrawal(S.) Pre: @

st IR L | = IO 2 N HISH)

Simpleq
{turns,magnitude:single,ordering:strict}
{players,min:2,max:2}
{player,id:Playeril}
{player,id:Player2}
{store,id:CStore,owner:Playerl}
{store,id:CStore,owner:Player2}
{Assert,{p},"I assert that",
{store(add, {p}, CStore, Speaker),store(add, {p}, CStore, Listener)}
+

Switch

focus current stop
claim >
. ST T I RE Tl
start claim sERRERERNL FiERiNEE
: Prop Opp Ref —
TERRRRE Nl
Ml
ok
it supply SO rebut? ok
da
Prop Prop Opp
supply rebuttal !
warrant SUPPLY
backing
Presupposing v
IWTTRERE ' .
Prop Opp on account Prop withdfaw
of —»
Supply
Presupposition
withdraw i Sk
Description: P asserts that C
. Preconditions: P has control of the dialogue
Ly Postconditions: O has control of the dialogue

C is pushed onto the claim stack
P is committed to C

Completion Conditions: C is popped from the claim stack
why (C)
Description: O seeks data supporting C
Preconditions: O has control of the dialogue

C is top of claim stack
Postconditions: P has control of the dialogue

Completion Conditions: C is not top of claim stack

ProtOCL

1. Describe a generic dialogue game UML object model

2. Describe specific rules for updating that model in OCL

Use standard UML tools to produce the OCL description

Compile against object model

[—— 1 [—— 1 1

Auto-generates a dialogue game framework with Java API

Overview: ProtOCL Lite

-

UML Class
Diagram

_—

annotates

/

OCL
Annotation

-

code generation

Argumentation

use Software Tools

Overview: ProtQOCL

UML Class
Diagram

_—

annotates

generates /

OCL
Annotation

DGDL
Description

code generation

generates \
Argument.DTD i /

Argumentation

use Software Tools

generates

”

-——

AIF2 7?77

exports

A4

‘ Game Transcript .

Object Model

DialogueHistory Turn Mowe
] +hs tory +turn *{Lr 1 - Oy &
""‘; size: Integer I%rn_lrnl:lwﬂr:I|'|t4an-g|n.'1.-r ‘: @type:ﬁlring
-
® getpreviousMove(liMove 1 0 - ¥ gettumber():Integer ; 1. ® getType()iString
L getSize():Integer
+his tory 1 +turn 1.* +move 1
+game 1 +game +proponent +playes !
S +content 1
DialogueGame ; ; Flayer
Iﬂﬂwsig:pmpgﬂjnn L makeMove :Move MoveConkent
*game +player
* start()1 String - @negatlan:l'dnue{nnttrﬂ
& end(]:String) i A\ getMegation():MoveContant
® play()istring
¥ gt Thesis(): Propositio
{Praposition 4game +opponent
+mntentfl\\ﬂ..' & &
"
1 1
+player 1 +player 1
- Proposition
CommitmentStore | [[tenerSiors
v support(p:MoveConkent):Boolean)
» selfSupport{p:MoveContent): Boolean P—
{ Inference
1 E# data: Mowe Content
+3tore E‘@5;“'r.-u:u'ni:ll.ul--u:m:I='r-u:||:u\:u:iliuzu'-
¥ getDatal):MoveContent
n 2 % e -
s tore sinference getZonchusion]): Proposition

0.2 o.-

OCL Fragments

Move Types

Assertions: The content of an assertion is a statement P, Q, etc. or the truth-functional
compounds of statements: “Not P”, “If P then Q”, “P and Q”.

Questions: The question of the statement P 1s “Is it the case that P?”

Challenges: The challenge of the statement P 1s “Why P?”

Withdrawals: The withdrawal of the statement P is ““no commitment P”.

Resolution demands: The resolution demand of the statement P 1s “resolve whether P”.

——Player makes a legal move
context Player::makeMove () :Move
——Permitted move types:
post: Set{’Assertion’, ’Question’, ’Challenge’, ’Resolve’, ’Withdrawal’}
->includes(result.getType())

' Flexible, Expressive, & Comprehensive:

— Dialogue Game AP
— Object Model

Common/Popular Rules

Increased testability of game rules

f
L
f
L
f
L

Reduced likelihood of implementation errors (code gen)

Conclusions/Discussion

~ Approaches to specification - many too distant from user(dev)
experience

' Identified existing, well supported tools within industry/
commercial software dev

" Developed preliminary workflow for bringing together those
software tools with concepts from argumentation domain.

