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Abstract

Smartphones are today used by people around the world to manage and organize

many aspects of their digital life from financial and health information to everyday

social interactions. Modern mobile OSs allow applications from a variety of vendors

to be installed. These applications might not all be trustworthy. While mobile OSs

employ several security measures to protect the user data, researchers have shown

that these measures are not enough. Android, the most widespread smartphone OS in

the market, has been vulnerable to attacks such as information leakage and privilege

escalation.

This thesis studies the application of information-flow control (IFC) schemes to

Android. IFC can provide formally proven security guarantees that enable a high

level of assurance.

We start by proposing a tag-based IFC policy specification scheme and run-time

enforcement mechanism for Android. This mechanism can prevent attacks such as

information leakage and privilege escalation. Policies can be specified for apps and

individual components within an app. App-level policies are robustly enforced

because Android provides strong isolation between apps. However, enforcement of

component-level policies is best effort because Android allows components to

communicate directly and avoid the monitoring of the enforcement mechanism. To

bridge this gap, we develop a static analysis tool that detects direct information

flows between components. This tool can be used by developers to ensure that their

apps lack such unmonitored flows, which makes component-level enforcement

robust. We used the tool to study more than 2,500 of the most popular Android

apps. We found that about 17% of these apps do not use direct communications

between components and thus have robust component-level enforcement. However,

the majority of these apps had very well connected components, making enforcing
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component-level policies by, for example, preventing these flows through

instrumentation, impractical.

In addition, we developed a faithful process-calculus based model of Android

and our enforcement mechanism. We then formally prove that the model satisfies

the basic noninterference property. However, basic noninterference only guarantees

security in the absence of declassification. Declassification capabilities provide

flexibility to the otherwise too strict IFC policies. Therefore, we propose a novel

noninterference definition based on label versioning that, unlike other enhanced

noninterference definitions, supports label reuse.

Even more expressive policies can be supported if conditions can be specified

to control declassification. We propose an enhancement to stateful declassification

that supports the specification of such conditions based on global, app-level, and

instance-level state. We show that this approach can be used to enforce interesting

security policies.
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Chapter 1

Introduction
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In the past decade, the rapid rise of smartphone usage has become a global phenomenon.

In fact, using smartphones has become the norm in large parts of the world, adopted by adults,

and in many cases children. Moreover, the usage of smartphones has become so integrated into

our daily life that most of our digital footprint exists in these devices, from private pictures and

videos to business emails, health records, and financial information. Applications installed on

these smartphones are sourced from different vendors with varying degrees of trustworthiness.

This combination of characteristics of modern smartphones makes it especially critical to protect

the user’s data. Unfortunately, the security mechanisms that the operating systems of these

smartphones provide to protect users’ data are inadequate. While mobile OSes employ various

security mechanisms such as application isolation and the protection of sensitive APIs with

permissions, research has shown many vulnerabilities still remain. Android, for example, the

most popular of these mobile OSes, has been shown to be vulnerable to information leakage

[1, 2] and privilege-escalation attacks [3, 4].

Many solutions have been proposed to control undesired information leakage and privilege

escalation, but no solution is comprehensive. One of the most promising approaches is

information flow control (IFC) [5, 6]. Information flow control works by associating each part1

of a computation environment with a label that usually represents a specific security level.

Typically, a partial order relation is defined between these labels. The set of all labels in a

system constitute its security policy. These labels are then used, by a policy enforcement

mechanism, to restrict the flow of information such that information can only flow from one,

otherwise isolated, part of the system to another if the source’s label is less than or equal to the

destination’s according to the partial order. A problem with this approach, when applied

naively, is that it’s too restrictive. The standard solution is to allow information to leak, i.e., flow

from parts with higher secrecy labels to ones with lower secrecy, but only through a privileged

operation [7]. The privilege to use this operation, called declassification, should only be granted

to trustworthy entities, and those entities should use it with care.

1A part maybe be a single variable, a whole application or anything in between.
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Thesis Statement

Information-flow control policies and enforcement mechanisms, augmented with

controlled declassification using traditional access-control policies, can provide

expressive, practically useful, and provable security guarantees for Android.

To support this thesis, we present the following body of work: We define the IFC mechanism

and policies (Ch. 2), and the controlled declassification (Ch. 5) for Android; We enhance the

practicality and usefulness of our approach by designing our system to use tag-based policies

with floating-labels (Sec. 2.2) and letting developers specify finer-grained policies (Chs. 2 and

3); We demonstrate through motivating scenarios with policies that cannot be specified in the

regular Android OS (Sec. 2.1) or without our enhanced controlled declassification (Secs. 5.1 and

5.4) the expressiveness of our policies; and we formally prove the security guarantees of our

approach (Ch. 4 and Sec. 5.3.3).

IFC for Android We first propose a new policy specification scheme and decentralized IFC

(DIFC) run-time enforcement mechanism for Android that is inspired by DIFC designs in legacy

operating systems [8]. Android applications are composed of smaller software modules called

components. Policies are both specified for and enforced at the levels of whole applications and

application components. Previous works either enforced a pre-determined policy [9, 10, 11] or

enforced fine-grained policies, that are often cumbersome to specify and expensive to enforce.

Most of these works also lack a formal investigation of the security properties they provide

[9, 10]. Our proposed approach, we believe, strikes a better balance in terms of granularity of

enforcement, and uses a high-level specification language. In addition, we present a formal proof

of its security guarantees in the form of a noninterference property proof [7].

Formal proofs of properties, such as noninterference, are essential for high assurance security.

However, these proofs depend on certain assumptions about the actual system. In our case, we
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assume that both applications, and their components, are isolated from each other. Unfortunately,

this assumption does not entirely hold in Android at the component level.

Finer-grained policies and enforcement The policy in our work can be specified at both

the application level and the component level. However, while the applications are robustly

isolated in Android, the components within an application are not. This problem makes policy

enforcement at the component level best-effort only, as it is the responsibility of developers to

make sure that their components only communicate through channels that are monitored by the

enforcement system, i.e., using Android APIs. As a step toward bridging this gap, we developed

a static analysis tool that reports any potential inter-component information flow, which does

not go through the monitored channels. We use this tool to analyze more than 2,500 apps from

Google Play with the goal of studying the prevalence of such unmonitored flows. Using this

tool, app developers or security engineers can analyze their apps and either adjust their policy

or implementation if unmonitored flows are detected. Moreover, this tool can be used to insert

additional run-time checks such that our enforcement is always sound at the component level

—at the expense of potentially affecting the app functionality.

Even with robust isolation, the noninterference property guarantees are limited by the

powerful declassification privileges. We aim to alleviate this limitation by introducing a new

noninterference property.

Versioned-labels noninterference property One of the main advantages of using IFC is that,

given an enforcement mechanism, we can formally prove the security of our enforcement using

a proof of the noninterference property. This property guarantees that a malicious observer that

has access to only the parts of the system with certain labels won’t be able to access, or infer

based on system behavior, any information from parts with higher secrecy labels.

A critical issue with the basic noninterference properties, and their corresponding security

policies, including the one for our initial work described above, is that they only guarantee the
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correct behavior of the system as long as declassification is not used. This means that

theoretically, and practically, once a declassification operation is used, there are no guarantees

about the flow of information. Several approaches has been proposed that allow for

noninterference properties and security policies to include declassification, including

intransitive noninterference [12], relaxed noninterference [13], gradual release [14], and

others [15, 16]; however, they are either specific to certain kinds of policies or don’t provide

guarantees when declassified labels are reintroduced by a label raise operation [12, 13, 15].

Therefore, we introduce a definition for a more precise noninterference property, which relies

on the novel idea of label versioning to describe the effect of declassification, enable label

reuse, and provide formal security guarantees. We then prove that our Android model does

indeed satisfy this property.

The versioned-labels noninterference property provides a strong security guarantee for IFC

policy enforcement. But, IFC policies may not be expressive enough for particular scenarios.

Access-controlled declassification allows a richer set of security policies to be specified and

enforced.

Access-controlled declassification A problem with declassification, is that it’s usually

unrestricted: as long as an app is granted the required capability, it can be used as many times as

desired, on any amount or type of data, etc. The versioned-labels noninterference definition

only restricts this usage to the specific apps with corresponding declassification capabilities. We

investigate the following approach to address this issue. At each declassification point, access

control checks are implemented to enable the enforcement of security policies that are more

expressive than what is possible with current IFC systems. Previous works, which investigated

similar approaches, were mostly for single programs not a platform with multiple apps like

Android, and limited the declassification control to logical conditions, without access to both

global and local state [11, 16]. Stateful declassification does enable conditions based on a state

variable, but does not explicitly differentiate between global state and local state, nor address
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the challenge of managing access to the global state without violating the IFC policy as we do

[17]. We start by modeling the Android runtime, the IFC enforcement mechanism, and the

access control mechanisms. Then, we use this model to study what security properties can be

proven and show how example policies can be specified and enforced.

The term “access control” is very broad and sometimes can encompass IFC. Thus, it is

important to clarify that when we say “access control,” we specifically mean access control

schemes or models that are not IFC.

Contributions In summary, the following are the contributions of this thesis.

• Developing an IFC policy specification language (based on security labels) with run-time

enforcement for Android, formally modeling the Android runtime and our enforcement

mechanism using a process calculus, and proving trace-based noninterference for the

model.2

• Developing a static analysis tool to investigate the previously unmonitored information

flows between components of the same application, and studying 2,500+ of Android’s most

popular applications using this tool where we find that for the majority of these applications

run-time monitoring at the component level is not practical.

• Developing a formal, simplified, labeled-transition-system model for the above

enforcement mechanism and the Android runtime, and proving it using the Coq proof

assistance for greater assurance.

• Proposing a novel approach for describing the effects of declassification on information

flow for the purpose of defining and proving the versioned-labels noninterference property,

which admits label reuse, for our model.

• Proposing an extension to the stateful declassification [17] approach, which enhances the

expressiveness of regular IFC schemes by inserting controls at the declassification points

2This was part of a joint work with Limin Jia (first author), Lujo Bauer, Elli Fragkaki, Michael Stroucken,
Kazuhide Fukushima, Shinsaku Kiyomoto, Yutaka Miyake.
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that implement access-control policies based on local, app-specific, and global state; and

incorporating this approach in our model, and versioned-labels noninterference proof, to

prove some interesting security properties, which are not usually proven for IFC systems.

Outline The remainder of this document is organized as follows. First, we complete this

introduction with background information about the Android system. In Ch. 2, we discuss

our proposed run-time enforcement mechanism for Android. After that, we discuss our static

analysis study of component-level enforcement in Ch. 3. Next, in Ch. 4, we discuss the formal

verification of security properties for our mechanisms. Then we detail our approach to enhance

DIFC systems with access control checks in Ch. 5. Finally, Ch. 6 concludes this work with a

summary and final remarks.
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1.1 Android Architecture

Android is a Linux-based OS; its applications are written in Java and each executes in a separate

Dalvik Virtual Machine (DVM) instance. Newer versions of Android replaced the DVM with

Android Runtime (ART), though both runtimes execute the same application format.

Applications are composed of components, which come in four types: 1) activities define a

specific user interface (e.g., a dialog window); 2) services run in the background and have no

user interface; 3) broadcast receivers listen for system-wide broadcasts; and 4) content

providers provide an SQL-like interface for storing data and sharing them between applications.

Activities, services, and broadcast receivers communicate mainly via asynchronous messages

called intents. An intent encapsulates possible arguments and the intended recipient. If a

recipient of an intent is not instantiated, the OS will create a new instance. The recipient

of an intent is specified by its class name or by the name of an “action” to which multiple

targets can subscribe. Any component can attempt to send a message to any other component.

In addition, components can use the binder API to communicate with components in other

applications. While the binder API is more versatile to support, for example, streaming or

synchronous communication, it requires significantly more setup and maintenance and thus

is not suitable for regular interactions.3 The OS mediates both cross- and intra-application

communications via intents or binder APIs. Between applications, intents and the binder API

are the only (non-covert) channel for establishing communication.4

Components within an application can also communicate in other ways, such as via public

static fields. Such communication is not mediated, and can be unreliable because components

are short lived—Android can garbage collect all but the currently active component. Hence,

although Android’s abstractions do not prevent unmediated communication between

components, the programming model discourages it. We will often write that a component calls

3Refer to https://developer.android.com/reference/android/os/Binder.html. In fact,
cross-application intents are delivered using the binder mechanism.

4The exception is native apps, which can utilize other OS level IPC mechanisms available in Linux, such as pipes
or shared memory.
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another component instead of explaining that the communication is via an intent.

Android uses permissions to protect components and sensitive APIs: a component or API

protected by a permission can be called only by applications that hold this permission.

Permissions are strings (e.g., android.permission.INTERNET) defined by the system or declared

by applications. Applications acquire permissions at install time (or use time in recent versions

of Android), with the user’s consent. Additionally, content providers use URI permissions to

dynamically grant and revoke access to their records, tables, and databases.
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Chapter 2

Run-time Enforcement of IFC policies in

Android
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In this chapter we will present our approach to enforce an information flow policy in Android.

This chapter aims to support our main thesis by showing how an IFC approach can provide more

expressive but still practical policies than currently possible in Android. We start by describing a

scenario that exemplifies the Android permission system’s inability to implement many simple,

practical policies (Sec. 2.1). We then discuss key aspects of our system and show it can specify

(Sec. 2.2) and enforce (Sec. 2.3) richer policies that are still practically useful for app developers.

File manager 
for secret files 

Private 
files 

Editor 

Viewer 

Email 

Internet 
… 
 
 

Figure 2.1: A simple scenario that cannot be implemented using Android permissions. The secret
files should only be sent through the email app after the user approval.

2.1 Motivating Scenario

Suppose a system has the following applications: a secret-file manager for managing files such

as lists of passwords and bank-account numbers; a general-purpose text editor and a viewer

that can modify and display this content, respectively; and an email application. Because

of their sensitive content, we want to prevent files managed by the secret-file manager from

being inadvertently or maliciously sent over the Internet; this should be allowed only if the user

explicitly requests it through the file manager. The files need to be viewed and edited. Building a

special editor and viewer just for secret files is impractical, and so these tasks have to be handled

by a general-purpose editor and viewer. This scenario is shown in Fig. 2.

The desired (information-flow) policy is representative of practical scenarios that Android

currently does not support. In both Android and in our proposed approach, the apps policy is

set by the developers and approved by the user. A user might attempt to prevent the editor
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or viewer from exfiltrating data by installing only viewers and editors that lack the Internet

permission; then, these applications could not send out secret data directly (as they lack the

Internet permission), but they could still do so via another application that has the Internet

permission (e.g., the email client).

2.2 Key Design Choices

In general, the attacker model we consider is one where an application may try, maliciously or

inadvertently, to exfiltrate data or access sensitive resources in violation of the policy, including

by taking advantage of cooperating or buggy applications.

We now discuss the design of our system, including the level of abstraction at which we

enforce policies, and explain how it can specify and enforce our desired example policy.

2.2.1 Enforcement Granularity

Traditionally, information-flow properties have been enforced either at instruction level (e.g., [18,

19]) or at process level (e.g., [8]). Android’s division of applications into components invites

the exploration of an interesting middle ground between these two. Android applications are

typically divided into a few key components, e.g., an off-the-shelf file manager with which

we experimented was comprised of five components. Hence, component-level specification is

most likely not drastically more complex than application-level specification. This additional

granularity, however, could enable policies to be more flexible and better protect applications

(and components) from harm or misuse.

Unfortunately, enforcing purely component-level policies is difficult. The Android

programming model strongly encourages the use of components as modules. In fact, the

Android runtime may garbage collect any component that is not directly involved in interacting

with the user; using Android’s narrow interface for communication between components is the
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only reliable method of cross-component communication. However, neither Android nor Java

prevent components that belong to the same application from exchanging information without

using the Android interfaces, e.g., by directly writing to public static fields. Hence, Android’s

component-level abstractions are not robust enough to be used as an enforcement boundary;

fully mediating interactions between components will require a lower-level enforcement

mechanism. Although such low-level enforcement is possible, e.g., with instruction-level

information-flow tracking [18], implementation and integration with existing platforms and

codebases is difficult and can cause substantial run-time overhead.

We pursue a hybrid approach. We allow policy specification at both the component level and

the application level. While application-level policies are enforced strictly because Android

provides strong isolation between applications, enforcement of component-level policies is

best-effort. When programmers adhere to Android’s programming conventions for

implementing interactions between components, most potential policy violations that are the

result of application compromise or common programming errors will be prevented by the

enforcement system. On the other hand, the components of a non-conformant application will

be able to circumvent its component-level policy (but not its application-level policy, nor other

applications’ application- or component-level policy). Thus, component-level policies are a tool

to help programmers to better police their own code and implement least privilege, and also act

in concert with application-level policy to regulate cross-application interactions at a more

fine-grained level.

2.2.2 Policy Specification via Labels

We use labels to express information-flow policies and track information flows at run time. A

label is a triple (s, i, δ), where s is a set of secrecy tags, i is a set of integrity tags, and δ is a

set of declassification and endorsement capabilities. For convenience, we also refer to s as a

secrecy label and i as an integrity label; and to δ as the set of declassification capabilities, even
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though δ also includes endorsement capabilities. Labels are initially assigned to applications

and components by developers in each application’s manifest; we call these static labels. At run

time, each application and component also has an effective, or dynamic, label, which is derived by

modifying the static label to account for uses of declassification and endorsement. Additionally,

secrecy labels s and integrity labels i can be declared as floating; we explain this below.

Labels as sets of tags Implementing secrecy and integrity labels as sets of tags was motivated

by the desire to help with backward compatibility for standard Android permissions. In

Android, any application can declare new permissions at installation time. We similarly allow

an application to declare new secrecy and integrity tags, which can then be used as part of its

label. The lattice over labels does not need to be explicitly declared—this would be impractical

if different applications declare their own tags. Rather, the lattice is defined by the subset

relation between sets of tags. The permissions that legacy applications possess or require of

their callers can be mapped to tags and labels. For the purpose of enforcement only a

partial-ordering of the labels is really required. We use the term lattice because it is often used

in related papers.

Declassification and endorsement The declassification capabilities, δ, specify the tags a

component or application may remove from s or add to i. We make the declassification

capabilities part of the label, because whether a component may declassify or endorse is a part

of the security policy. Declaratively specifying declassification policy makes it easier to reason

about and aids backward compatibility: declassification (or endorsement) that is permitted by

policy can be applied to a legacy application or component automatically by the enforcement

system when necessary for a call to succeed.

Returning to the example from Sec. 2.1: The secret-file manager application may be labeled

with the policy ({FileSecret}, {FileWrite}, {-FileSecret}). Intuitively, the first element of

this label conveys that the secret-file manager is tainted with the secret files’ secrets (and no
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other secrets); the second element conveys that the file manager has sufficient integrity to add

or change the content of files; and the third element states that the file manager is allowed to

declassify by removing FileSecret from its secrecy label. The file manager’s effective label will

initially be the same as this static label. If the file manager exercises its declassification capability

-FileSecret, its effective label will become ({}, {FileWrite}, {-FileSecret}).

The complement to declassification and endorsement is raising a label. Any component may

make its effective secrecy label more restrictive by adding tags to it, and its effective integrity

label weaker by removing tags. After a component has finished executing code that required

declassification or endorsement, it will typically raise its effective label to the prior state before

declassification or endorsement, thus implementing the principle of least privilege. Components

without declassification capabilities can also raise their labels, but this is rarely likely to be useful,

since raising a label can be undone only by endorsing.

Floating labels Some components or applications, e.g., an editor, may have no secrets of their

own but may want to be compatible with a wide range of other applications. In such cases, we

can mark the secrecy or integrity label as floating, e.g., (F{}, F{}, {}), to indicate that the secrecy

or integrity element of a component’s effective label is inherited from its caller. The inheriting

takes place only when a component is instantiated, i.e., when its effective label is first computed.

Floating labels serve a very similar purpose to polymorphic labels in Jif [18].

In our example, the editor application’s static policy is (F{}, F{}, {}). If instantiated by the

file manager, the editor’s effective secrecy label becomes {FileSecret}, allowing the editor and

the file manager to share data, but preventing the editor from calling any applications or APIs that

have a secrecy label weaker than {FileSecret}. If the editor also had its own secrets to protect,

we might give it the static label (F{EditorSecret}, F{}, {}). Then, the editor’s effective label

could be floated at instantiation to ({EditorSecret, FileSecret}, {}, {}), but any instantiation

of the editor would carry an effective secrecy label at least as restrictive as {EditorSecret}.

Similarly, when the editor is instantiated by the file manager, its static integrity label F{} would
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yield an effective integrity label {FileWrite}, permitting the editor to save files, and preventing

components without a FileWrite integrity tag from sending data to the editor.

Unlike secrecy and integrity labels, declassification capabilities cannot be changed

dynamically; they are sufficiently powerful (and dangerous) that allowing them to be delegated

is too likely to yield a poorly understood policy.

2.3 Enforcement Approach and Limitations

In Sec. 2.2, we described how to specify rich, practically useful policies in our system; we

next outline how they are enforced. The crux of our enforcement system is a reference monitor

that intercepts calls between components and permits or denies a call based on the caller’s and

callee’s labels. Much of the reference monitor responsibility is maintaining the mapping from

applications and components (and their instances) to their effective labels. We next discuss how

our reference monitor makes enforcement decisions and how our system handles persistent state.

2.3.1 Application- and Component-Level Enforcement

When two components try to communicate via an intent, our reference monitor permits or denies

the call by comparing the caller’s and the callee’s labels. When the caller and callee are part of the

same application, the call is allowed only if two criteria are met: 1) the caller’s effective secrecy

label is a subset of the callee’s and 2) the caller’s effective integrity label is a superset of the

callee’s. If both criteria are not met, the call is denied. The comparison is more interesting when

the caller and callee are in different applications. Then, a call is allowed if it is consistent with

both component-level labels and application-level labels of the caller’s and callee’s applications.

If the callee component (and application) has a floating (static) label, the callee’s effective

integrity label is constructed as the set-union of its static integrity label and effective integrity

labels of the caller and the caller’s application. The effective secrecy label (and the callee’s
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application’s effective labels) is constructed similarly.

Declassification and endorsement change the effective labels of components and applications,

and are permitted only when consistent with policy.

From the standpoint of policy enforcement, returns (from a callee to a caller), including those

that report errors, are treated just like calls. As a consequence, a return may be prohibited by

policy (and prevented) even if a call is allowed.

Much of the functionality of Android applications is accomplished by calling Android and

Java APIs, e.g., for accessing files or opening sockets. We assign these APIs labels similarly as

we would to components. For instance, sending data to sockets potentially allows information

to be leaked to unknown third parties; therefore, we assign a label with an empty set of secrecy

tags to the socket interface to prevent components with secrets from calling that API. We treat

globally shared state, e.g., individual files, as components, and track their labels at run-time.

2.3.2 Persistent State

Multi-instance components intuitively pose little difficulty for enforcing information-flow

policies: each call to such a component generates a fresh instance of the component bereft of

any information-flow entanglements with other components.

More interesting are single-instance components, which can be targets for multiple calls from

other components, and whose state persists between those calls. Interaction between single-

instance components and the ability of components to raise their labels can at first seem to cause

problems for information-flow enforcement.

Consider, for example, malicious components A and B that seek to communicate via a

colluding single-instance component C. Suppose that A’s static secrecy label is {FileSecret}

and B’s is {}, preventing direct communication from A to B; C’s static secrecy label is {}.

Component C, upon starting, sends B an intent, then raises its effective label to {FileSecret}.

A sends the content of a secret file to C; their labels permit this. If the content of the secret file
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is “Attack at dawn,” C exits; otherwise, C continues running. B calls C, then calls C again. If B

receives two calls from C, then it learns that A’s secret file is “Attack at dawn.” C can only make

the second call to B after exiting, which only happens when A’s secret file is “Attack at dawn.”

The information leak in this scenario arose because C changed its label by exiting. To prevent

such scenarios (and to allow us to prove noninterference, which ensures that no similar scenarios

remain undiscovered), raising a label must change not only a component’s effective label, but

also its static label.

2.3.3 Limitations

We explicitly avoid addressing several issues that impact the security our enforcement system

provides in practice. We do not attempt to address communication via covert channels, e.g.,

timing channels. Recent work has identified ways in which these may be mitigated by language-

based techniques [20]; but such techniques are outside the scope of this paper. We also do not

directly address the robustness of Android’s abstractions: stronger component-level abstractions

would permit robust, instead of best-effort, enforcement of information-flow policies within

applications. Improving these abstractions, or complementing them by, e.g., static analysis, could

thus further bolster the efficacy of our approach; we discuss these possibilities in Ch. 3.

Many security architectures are vulnerable to user error. On Android, a user can at installation

time (or use time in recent versions) consent to giving an application more privileges than is wise.

Our system does not address this; we design an infrastructure that supports rich, practically

useful policies. Because our approach allows developers to better protect their applications, they

may have an incentive to use it. However, we do not tackle the problem of preventing the user

from making poor choices (e.g., about which applications to trust or which permission to grant).

Furthermore, it has been shown that the vast majority of users do not usually understand or even

pay much attention to these permissions [21]. Therefore, it’s not our intention that end users

get directly involved in approving the policies in our system, which can be more complicated
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than simple permissions. These policies, which are set by app developers, should be vetted

using an intermediary. For example, in a corporate environment where smartphones are managed

by the IT department, the policies can be vetted by a security expert in the department. For

average users, we envision that cyper-security companies or organizations could provide services,

automated or otherwise, that uses high-level user preferences, among other criteria, to vet app

policies. Approved policies should be fully enforced regardless of the existence of malicious or

inadvertently misbehaving apps.

2.4 Related Work

In this section we first discuss related work on IFC and then works on Android security in general.

2.4.1 Information Flow Control

Enforcing information-flow policies has been an active area of research. Some develop novel

information-flow type systems (cf. [22]) that enforce noninterference properties statically; others

use run-time monitoring, or hybrid techniques (e.g., [19, 23, 24, 25, 26, 27]). These works track

information flow at a much finer level of granularity than ours. In contrast, the goals of our

design included minimally impacting legacy code and run-time performance on Android.

Our approach is most similar to work on enforcing information-flow policies in operating

systems [8, 28, 29, 30]. There, each process is associated with a label specifying its

information-flow policies. The components in our system can be viewed as processes in an

operating system. However, most of these works do not prove any formal properties of their

enforcement mechanisms. Krohn et al. [31] presented one of the first proofs of noninterference

for practical DIFC-based operating systems. Our design is inspired by Flume [8], but has

differences. For instance, Flume does not support floating labels. In Android, as we show

through examples, floating labels are of practical importance.
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2.4.2 Android Security

Many works have recently focused on Android security, analyzing Android’s permission

system [10, 32], developing tools to detect misbehaving applications [33, 34, 35], and proposing

new protection mechanisms (e.g., [36, 37, 38, 39]). Android’s permission system has been

shown inadequate to protect against many attacks, including privilege-escalation attacks [3, 4]

and information leaks [1, 2, 9, 40]. Closer to the goal of our work are projects such as

TaintDroid [9] and AppFence [41], which automatically detect and prevent dangerous

information leaks. They operate at a much finer granularity than our mechanism, tracking

tainting at the level of variables, enforce fixed policies, and have not been formally analyzed.

Several works have proposed more general mechanisms. Dietz et al. developed a system in

which applications can attest (via digital signatures) to their calling context, and these

attestations can be used later when reasoning about whether a call should be allowed [42]. In a

similar vein, Bugiel et al. developed a system that monitors interactions between applications at

run time and uses this information to make access-control decisions [43]. And more recently,

Bugiel et al. proposed FlaskDroid, a mandatory access control solution for Android inspired by

SELinux [44], and were able to instantiate previous mechanisms using it [45]. All of these

works develop powerful enforcement mechanisms, from which we borrow when implementing

our own. Our focus, additionally, is on supporting flexible, application- and component-centric

policies, and on formally verifying the properties of our enforcement mechanism. Most

recently, a number of IFC based solutions has been proposed. Maxoid [46] confines apps, by

blocking their access to the outside world or the file systems, when they receive secrets.

Weir [47] instantiates different versions of the application whenever there is a conflict between

the caller the callee’s security labels. Both Maxoid and Weir lack formal guarantees. In

addition, Maxoid policies are very limited in their expressiveness.

Formal analyses of Android-related security issues and language-based approaches to solving

them have received less attention. Shin et al. [48] developed a formal model to verify functional
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correctness properties of Android, which revealed a flaw in the permission naming scheme and

a possible attack [49]. Sorbet proposed a set of enhancements to Android’s permission system

designed to enforce information-flow-like policies, for which some correctness properties were

also formally proved [50]. The work described in this thesis is different in several respects: we

build on more well-understood theory of information flow; we support more flexible policies

(e.g., in prior work it is not possible to specify that information should not leak to a component

unless that component is protected by some permission); we make persistent state more explicit;

and we formally model our enforcement system in much greater detail, thus providing much

stronger correctness guarantees.
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Chapter 3

Component-Level Robust

Enforcment/Robust Enforcement at the

Component Level
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In this chapter we study the feasibility of robust enforcement of component-level IFC policies

in Android. The high level goal is to support our thesis claim of provable security guarantees for

the component-level enforcement.

Noninterference, the security property of our system, requires isolation and complete

mediation of all communication channels between components and applications. Otherwise,

unmediated communication channels can potentially be used to introduce information flows that

violate noninterference. While Android provides isolation between applications, it is each

developer’s responsibility to ensure that components inside one application do not communicate

except through monitored interfaces. As a result, our policy enforcement at the component level

is best-effort only. For this reason we built a static analysis tool that will detect such unintended

communication.

Android applications, except those intended to run natively, run on their own isolated virtual

machine, and thus are isolated from other applications running on the system. They can only

communicate through the monitored formal channels by calling Android APIs. However,

components within the same application share the same memory space, and can communicate

directly without going through any APIs.

Fortunately, Java does not allow arbitrary addressing of memory; memory can only be

accessed using legitimate memory references. Therefore, two components can only directly

communicate if they have access to a shared reference. There are only two ways this can

happen: (1) through Java’s static fields, and (2) through references passed from Android library

code. We will only focus on the first scenario here, and trust the library code to not pass

references between components or pass the same reference to more than one component. For

the purpose of our analysis, we define a component’s code slice as all statements reachable from

at least one entry point that is associated with this component. We base our analysis on the

following observation. In order for two components to communicate through shared memory,

there must be a write from one of the components and a read from the other of the same memory

location. By identifying all possible reads and writes to all reference and primitive variables, we
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can conservatively, but not precisely, detect possible information flows between components.

The immediate purpose for building the static analysis tool was to gain some insight into

the use of these direct communication channels, or information flows, in real applications. For

example, we wanted to know the prevalence of usage; whether usage is usually limited to few

components; whether these flows are usually bi-directional. These statistics should help us judge

the viability of future approaches. If the usage is too prevalent then it would be futile to try

and control it. But if it’s limited to a couple of components then trying to control it makes

more sense. In addition, this tool can be used to aid developers in avoiding unintentional flows,

which could violate their own component-level policies. Finally, we were aiming to leverage this

tool to make the run-time enforcement of component-level policies more robust. One potential

way to achieve our aim is by instrumenting the application with run-time checks to interrupt the

application when potential policy-violating flows are exercised at run-time.

The remainder of this chapter is organized as follows. Sec. 3.1 gives an overview of our static

analysis tool. We discuss implementation details in Sec. 3.2. Then, we list the limitations and

assumption of the analysis in Sec. 3.3. Next, in Sec. 3.4, we describe our experiment of analyzing

more than 2500 apps using the tool. Finally, Sec. 3.5 finishes this chapter with a discussion of

the results and our conclusions.

3.1 The Static Analysis

We start this section with a brief overview of our static analysis. Then we list significant decisions

that we made during the design of the analysis tool.

3.1.1 Overview

There are three main phases of our analysis. First, in Phase 0, we prepare for the actual analysis

by decompiling the application and initializing the analysis framework. The next phase, Phase 1,
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builds an abstracted model of each component’s code base. Phase 1 analysis starts with an initial

set of code entry points. However, the analysis is iterated until all the other entry points, in the

form of callback methods, are discovered. In each iteration, we first performs a points-to analysis

to discover all potential objects that references in the code can point to, and then use the result

to build a call-graph, which represent the calling relation between all methods in the code. In

the last phase, Phase 2, we search the code models from Phase 1 to find all potential information

flows through static fields. We declare a potential information flow whenever a static field is read

by some component and written to by another. In Sec. 3.2, we share more details about theses

phases and how they are implemented.

3.1.2 Noteworthy Design Decisions

Soundness An important criteria for this tool was for its analysis to be sound. This essentially

meant that whenever there was a trade-off between soundness and either precision or

performance, we chose soundness. For the tool to be sound, we decided that it needs to detect

all potential (direct) flows between all components, even if some of them turned out to be

impossible to exercise.

Entry points In order to build the call-graph and perform the points-to analysis, a set of

entry points need to be specified. In a regular Java application the explicit entry point is the

method main. We need to consider implicit entry points, such as class initializers and callbacks.

However, for an Android application, and for the purpose of our analysis, the entry points are

somewhat different. First, we did not want to include Android run-time code that runs before the

application code even starts. Our assumption is that we trust the library code to not introduce

direct information flows between components. Second, from the onset, multiple entry points that

need to be considered: the Android component life-cycle methods (e.g., the methods to start,
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resume, or stop a component). In our analysis we considered any public or protected1 method in

the class that implements a specific component, or any of its superclasses, to be an entry point

for this component.

Dynamic Broadcast Receivers Broadcast receivers can be registered dynamically without

declaring them in the Android manifest. In order to include the code that runs when the

onReceive method is called in our analysis, we need an approach similar to how we handle

callbacks (see Sec. 3.2). In practice we consider broadcast receivers as special callback

interfaces (though it does not necessarily implement any interface).

Equality of instance field accesses We consider two instance field accesses to be equal if they

could refer to the same field, i.e., the same class and the same field name, and the intersection

of the points-to sets of the references is not empty. This equality test is only used during set

intersection computations in the last phase.

3.2 Implementation

In this section, we give an overview of how we implemented the phases of our analysis described

in Sec. 3.1.

For carrying out our analysis we chose the Soot framework 2. The main reason behind this

choice was Soot’s flexibility in terms of instrumentation, as opposes to, for example, IBM’s

WALA framework3. We wanted to have this option available for future work.

Phase 0: Pre-analysis There are three necessary steps to prepare for the actual analysis.

First, the “Android Mainfest” file is extracted from the APK, using apktool 4, and a list of all

1Protected methods can be called by the library code in the super-class, e.g., the onCreate method of the
Activity class

2http://sable.github.io/soot/
3https://github.com/wala/WALA
4https://code.google.com/p/android-apktool/
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components in the application is compiled. Second, we use DARE 5, to translate the application’s

binary from Dalvik (Dex) to Java bytecode. Lastly, the tool initializes Soot’s environment, which

includes compiling a list of initial entry points for each component.

Phase 1: Points-to analysis and callback discovery Android applications are vastly

interactive and GUI-driven. Thus, programming for Android involves using callback interfaces

frequently. A callback interface is a Java interface in the Android run-time library, such that

objects implementing it can be registered to receive callbacks via specific library functions. A

callback is triggered by a certain asynchronous event, and when said event occurs the library

code calls a designated method defined in the callback interface. Since it’s not possible to

determine all the methods that are registered as callbacks from one analysis pass over the code,

an iterative process is needed. In each iteration of this phase, we first perform a points-to

analysis and build the call-graph. Then, for each component, we search all the methods that are

reachable from the current list of the component’s entry points for references to potential

callback objects, i.e., instances of classes that implement one or more of the (predefined)

callback interfaces. We add the potential callback methods of those objects to the component’s

entry points list. We repeat this process until no new callback objects are found.

Phase 2: Detecting Potential Flows The goal of the final phase of the analysis is to actually

find all the potential information flows. We begin by analyzing, for each component CX , all

reachable methods (starting from its entry points) to collect all static or instance fields written,

WX , and read, RX . Then, for each component pair (CA, CB), we calculate FA→B, which is the

intersection of the set of written fields in CA and the set of read fields in CB, i.e., FA→B =

WA ∩RB. If the set FA→B is empty, then there is no (direct) flow from CA to CB, otherwise the

flow exists, and its strength is the number of elements in FA→B.
5http://siis.cse.psu.edu/dare/
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Points-to Analysis A major component of our tool is the points-to analysis in Phase 1. During

the initial development we used the faster, but less precise, context-insensitive analysis, by

utilizing the Spark package from the Soot framework. Having fast analysis helped a lot with the

development. However, toward the end we noticed that while the result were sound, too many

false-positives were being reported by the tool. Therefore, we replaced Spark with the Paddle

package, which implemented a context-sensitive analysis. This change led to more precise results

at the expense of extra computation time.

3.3 Assumptions and Limitations

We note the important assumptions we make when interpreting the output of the tool and when

considering the robustness of component-level enforcement.

We assume that the Android run-time library does not allow communication between

components, except through the channels that are monitored at run-time (e.g., intent-based

communication and the shared preferences storage). In particular, we assume that the library

code does not pass references between components or pass the same reference to more than one

component. This is reasonable in the context of our work because one can independently verify

this assumption and, if necessary, modify the run-time library; and this only needs to be done

once. In addition, we assume that all the application level abstractions are robust enough that

components cannot communicate, say, by utilizing external colluding applications. In addition,

our tool is limited to APKs that don’t contain native code, which runs outside the virtual

machine.

3.4 The Experiment

We applied the tool to the most popular applications in each category from the Google Play

application store (March 2017). The tool was not able to process a significant percentage of the
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Figure 3.1: Percentage of connected components vs application size (in number of Jimple7

statements). The line is obtained by using LOESS fitting, and the shaded area represents the
95% confidence interval.

applications in this set for several reasons. The majority of those failures resulted from either

failures in the underlying libraries or tools we used, or miss-configured APKs (for example,

many applications mention nonexistent classes in their Android manifest). The following

results are from those applications that were successfully processed, that is 2,512 out of the

4,418 applications. To facilitate the analysis, we view applications as undirected graphs with

components as the vertices and (potential) information flows as links.

About 17% of the applications are completely disconnected, i.e., there are no direct flows

between components. This disconnection means that for a small portion of these applications,

component-level policy enforcement will automatically be as robust as application-level

enforcement. The average number of components in an application is 10.4 overall. However,

for the completely disconnected applications, the average is only 3.1 components per

application. This suggest that completely disconnected applications tend to be smaller in size.

This does not suggest the converse, however, i.e., connected applications are not mostly larger

in size. In fact, among connected applications, there is no strong relation between the

percentage of connected components in an applications and its size (see Fig. 3.4).

In Fig. 3.4, a histogram of the connectedness of the applications components is shown.

Connectedness is calculated as follows.
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Figure 3.2: Connectedness of applications

connectedness = 100 ∗ (1− number of disconnected subgraphs in the graph
number of components

)

Thus, an application having 100% connectedness means that there is a path between any

pair of components. On the other hand, 0% connectedness denotes a completely disconnected

application. One notable observation is that the vast majority of the applications that are not

completely disconnected have a connectedness of more than 60%.

Due to our concern with managing information flows, we asked “how well an approach,

which groups strongly connected components together and monitors only the links between these

groups, will work on existing applications?” Trying to answer this question, we devised a simple

algorithm to partition the graph with the added capability of being able to cut a maximum of one

link at a time. We apply a Minimum Cut/Maximum Flow algorithm on the application graph.

If the Minimum Cut set has more than one link, we stop. Otherwise, we partition the graph by

cutting this link, and then apply the algorithm recursively on the resulting parts. Fig. 3.4 shows

the connectedness of the applications after this algorithm, which we call MinCut1, was applied.
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The change was not dramatic, as for almost 90% of the applications the connectedness did not

change. We also tried applying the same algorithm but with the ability to cut more than one link

at a time. We call such an algorithm MinCutX, where X is the maximum number of cuts that

can be applied in each iteration. The graphs in Fig. 3.4 show the result of applying the algorithm

up to MinCut4. Again, the changes are still small due to the fact that most of the apps are well

connected.

These results tell us that robustness of enforcement will not improve even if we try to more

robustly enforce our DIFC policies at the component-level by run-time monitoring of potential

information flow paths (e.g., using instrumentation), grouping tightly coupled components, or a

combination of these two approaches. First, for about 17% of these applications (those with 0%

connectedness), the enforcement is already robust. Second, the majority of these applications are

well connected (connectedness > 65%) and trying to monitor all the information flow paths will

significantly degrade their performance or functionality.

3.5 Discussion and Conclusion

In order to better understand how our IFC enforcement mechanism will work at the component

level, and to confirm the results of our experiment, we conducted a manual inspection of several

open-source applications. This inspection led us to conclude that applications needed to be non-

trivially modified in order to successfully develop a suitable security policy for existing Android

applications at the component level, without sacrificing functionality. Moreover, we noticed that,

overall, the need for such modification stems from the observation that the component boundaries

are based on the GUI elements of the applications, and not on functionality. As an example,

consider an application that has two Android activities, one to view a list of objects and the other

to edit it. Both activities show advertisements using a third party library. Now if we need to

assign permissions for reading and editing this list because the integrity of this list is sensitive,

then we will need to remove the advertisements from the second activity. However, ideally, we
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Figure 3.3: The connectedness of apps after applying the MinCut1 through MinCut4 algorithms.
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want to assign separate permissions for the advertisement library and each of those activities

while keeping the ability to show the advertisement on all the screens of an application. While

the situation is better for non-activity components, we found that, for example, applications tend

to implement many functionalities, which need long running computations in a single Android

service component. This implementation means that this single service will be assigned many

permissions that are not all needed for each single functionality.

While these observations do not imply that implementing suitable security policies at the

component level is unattainable, they do indicate that significant manual modifications to the

design of existing applications are needed. But even with such modification, implementing

security policies can be awkward and the results might be sub-optimal. This finding reinforces

the need to incorporate security consideration into the software development cycle from the

beginning.

The other goal of these manual reviews was to assess the accuracy of our results. In our

limited review (of 8 apps), we found that in the instances where the tool generated a warning of

a potential flow through static fields, there was an actual data structure that was being accessed

by multiple components in the app, i.e., no false positives. While this is not significant given

the sample size, it does provide a degree of assurance in our results. A frequent example of

such shared data structure was the use of Java’s hashtables as key-value stores for data such as

application settings and cached results. Another prevalent source of unmonitored flows is the use

of advertisements libraries that are included in almost all the app’s activities.

From the results of our analysis and the observations above, we conclude that for current

Android applications, component-level enforcement is only suitable for a small portion of them.

This portion includes the 17% which don’t communicate internally using static fields and

applications that have sparsely connected components, i.e., few (1-5) links between the

components. For these applications, a (meaningful) component-level policy is likely

enforceable without affecting their performance or functionality. However, the majority of

applications are well connected such that application-level only policies are more appropriate.
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For these applications, even if we group large sets of well connected components together for

policy enforcement purposes, and monitor the rest of the direct communications, it is unlikely

that the policy for those groups will be much different from the policy for the whole application,

making the component-level policy redundant.

3.6 Related Work

There have been many works to study Android apps through the use of static analysis [51]. These

works can be divided into two general categories: 1) targeted anaylsis to find a specific kind of

vulnerabilities [10, 33, 34, 35, 52, 53, 54, 55, 56, 57, 58, 59, 60], or 2) frameworks that can be

extended or modified to perform more specific analysis [61, 62, 63, 64].

The first body of work uses static analysis to detect specific secrity vulnerbility in Android

apps. The first of such works is ComDroid, which uses static analysis to detect common misuses

of Android intents and inter-app communications that could expose an app to attacks [10].

EPICC, which targets vulnerabilities similar to ComDroid, improves the accuracy of the analysis

[52]. COPES detects apps with unused permissions that could be exploited by malware [53].

MalloDroid looks at ususes of SSL/TLS connections in Android apps and detects potentially

vulnerable implementations [54]. Finally, ADrisk detects the use of risky advertisements libraries

[55]. Our static analysis falls into this category. Unfortunately, these works are too specific to be

used for our goal of detecting unmonitored information flows.

The second body of work either creates generalized analysis frameworks, that we might be

able to specialize for our purposes [61], or works that are not truly extensible but detect general

information flows and could theoretically be appropriated to detect the flows we are targeting

[62, 64]. Both Scandal and FlowDroid, detect information flows from a list of sources (e.g., GPS

location or IMEI number) to a list of sinks (e.g., networking APIs). Amandroid is a more general

framework that can handle both control and data flows between components and is explicitly

extensible [61]. The problem with these approaches is that they can take extremely long times to
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process apps. For example, apps that took about 10 to 20 minutes to process using our tool either

finished after more than an hour or did not finish within two hours. Such times were not feasible

for our goal of analyzing hundreds of apps.

Most of the tools mentioned above have a pre-specified set of sources and sinks that are

considered security critical, and are focused on privacy. In contrast, our system allows for

more expressive policies for both secrecy and integrity. Moreover, static analysis, by definition,

does not consider actual run-time state and thus must disallow more apps than necessary. This

limitation has the potential of offsetting the benefits of the extra computational power of static

analysis that are not limited by running on users’ smartphones. Moreover, these static analysis

tools are not adequate for the purpose of our analysis in this chapter. While our analysis need to

only consider information flows outside Android’s APIs, these tools usually consider all potential

flows. Moreover, in order to enhance the precision (i.e., decrease false positives) most of these

tools track information at the instruction level at the cost of either efficiency or soundness. Ours

only track information at the component level, which is more efficient8, and does not compromise

on soundness (except possibly at the level of the points-to analysis, which is provided by the

framework and is an orthogonal problem).

8Analysis on most apps finish in less than 20 minutes. In comparison, with FlowDroid, which is also based on
the Soot framework, only 7 out of a 24 apps finished within 2 hours [64].
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Chapter 4

Verification of Security Properties
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This chapter details our effort to formally verify the security properties of the system

introduced in Ch. 2. This verification supports our thesis claim that our approach can provide

provable security guarantees. By formally proving that a piece of software has specific security

properties, we provide a much higher level of assurance in its security than informal arguments

(e.g., manual reviews, use of ad hoc static analysis tools, and testing). The standard security

property that IFC systems provide is noninterference, which guarantees that information flow is

tightly controlled by ensuring that information from a part with a security label can only flow to

parts with an equal or strictly higher label.

Sec. 4.1 introduces a formal model of the system, along with a proof that the model satisfies

the noninterference property. In Sec. 4.2, we present a different simplified model with a detailed

account of our work to encode this simplified model. In Sec. 4.3, we prove that the simplified

model satisfies the noninterference property. Finally, we define the versioned-labels

noninterference property, and prove it for the model, in Sec. 4.4.

The Coq model and proof We used the Coq proof assistant to encode the simplified model

from Sec. 4.2, and then prove the noninterference theorem from Sec. 4.3. While the model

described here and the Coq encoding should agree perfectly, there are some differences. The

main reason for these difference is to make the presentation in the dissertation clearer. For

example, the judgments names and argument orders can be different. Also, some of the trivial

implementation details are omitted in the dissertation, such as the implementation of the label

lookup judgment (aid, iid)@lm HasLabel (sl, dl). You can find a listing of the Coq model

encoding in Appx. A. Sec. 4.3 covers the main versioned-labels noninterference theorem, the

judgements and function used to define it, and some of the high level lemmas used to prove it,

omitting the reset of the proof. The actual proof is much longer at more than 12,000 lines of Coq

source code.
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The modeling gap Our model of Android, by design, omits certain (low level) details of

Android; otherwise formal verification would be much more difficult. While we tried to design

our model to be as faithful as possible while keeping the complexity manageable, there is

potentially a lack of correspondence between the model and the actual Android implementation.

Bridging this gap is out of the scope of this thesis. A similar gap exists in other formal verification

research work and for similar reasons. For example, Leroy’s work on compiler verification omits

the verification of the assembler, linker, and parser [65]. Verification of cryptographic protocols

also usually depends on idealized model that are verified in separate works [66]. One approach

to tackle this problem is to design successively more detailed models of Android until we have

an exact model of the actual implementation, where each model verifiably refines the previous

one. This approach was used to verify the seL4 microkernel [67]. Our model of Android,

because it was specifically designed as such, is closer to the actual implementation than the

general models on which most the IFC security properties are designed. For example, some

works defines noninterference for the generic, but powerful, process algebra models [68, 69].

In a more related work, noninterference is defined for a reactive system model, where apps are

encoded with event-driven loops similar to Android, that otherwise lacks other Android specific

features. In our model, we tried to capture important features of Android such as the separation

of apps into single- and multi-instance, the intent driven nature of apps execution, and shared

app state.

4.1 A π-Calculus Model and Its Noninterference Proof

In order to show that our enhanced policy specification scheme and enforcement mechanism

for Android prevent information leakage and privilege escalation attacks, we prove a

noninterference theorem. We start with a faithful process calculus model of Android’s run-time

and the enforcement mechanism in Sec. 4.1.1. Then, in Sec. 4.1.2, we define well-behaved

configurations of the system model, along with a projection function that removes “high”
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labeled parts of the configurations (i.e., the parts that are not accessible by an attacker). We then

show that any well-behaved configuration is equivalent (in the trace-based sense), up to the

attacker observable actions, to a projection of the same configuration. Full details can be found

in our technical report [70].

4.1.1 Process Calculus Model

We next show how to encode Android applications and our enforcement mechanism in a process

calculus. Our encoding captures the key features necessary to realistically model Android,

such as single- and multi-instance applications, persistent state within component instances, and

shared state within an application.

To facilitate the proof of noninterference, our model also contains some elements that are

helpful for proofs but are not part of or necessary for the enforcement mechanism.

4.1.1.1 Labels and label operations

As described in Sec. 2.2, we use labels to express information-flow policies and track flows at

run time; here we define them formally, and in sufficient detail to facilitate our proofs. Labels

express information-flow policies and are used to track flows at run time. A label is composed

of sets of tags. We assume a universe of secrecy tags S and integrity tags I. Intuitively, each

secrecy tag in S denotes a specific kind of secret, e.g., contact information or financial data. Each

integrity tag in I denotes a capability to access a security-sensitive resource.

Simple labels κ ::= (σ, ι)

Label quantifiers Q ::= C | F

Process labels K ::= (Q(σ), Q(ι), δ)

A simple label κ is a pair of a set of secrecy tags σ drawn from S and a set of integrity
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AM Erasure C(σ)− = σ F (σ)− = >
(Q(σ), Q(ι), δ)− = ((Q(σ))−, ι)

PF Erasure C(ι)∗ = ι F (ι)∗ = >
(Q(σ), Q(ι), δ)∗ = (σ, (Q(ι))∗)

Raise (Q(σ), Q(ι), δ) ]rz (σ′, ι′) = (Q(σ ∪ σ′), Q(ι\ι′), δ)
Declassify (C(σ), C(ι), δ) ]d δ1 = (C(σ\{t|(−t) ∈ δ1}), C(ι ∪ {t|(+t) ∈ δ1}), δ)
Merge (C(σ), C(ι)) ]M (C(σ′), C(ι′)) = (C(σ ∪ σ′), C(ι ∩ ι′))
Instantiate C(σ1) �S C(σ2) = C(σ1) F (σ1) �S C(σ2) = C(σ1 ∪ σ2)

C(ι1) �I C(ι2) = C(ι1) F (ι1) �I C(ι2) = C(ι1 ∪ ι2)
(s1, i1, δ) � (C(σ2), C(ι2)) = (s1 �S C(σ2), i1 �I C(ι2), δ)

Figure 4.1: Summary of label operations.

tags ι drawn from I. Simple labels form a lattice (L,v), where L is a set of simple labels and

v is a partial order over simple labels. Intuitively, the more secrecy tags a component has, the

more secrets it can gather, and the fewer components it can send intents to. The fewer integrity

labels a component has, the less trusted it is, and the fewer components it can send intents to.

Consequently, the partial order over simple labels is defined as follows:

(σ1, ι1) v (σ2, ι2) iff σ1 ⊆ σ2, and ι2 ⊆ ι1

Secrecy and integrity labels are annotated with C for concrete labels or F for floating labels,

as described in Sec. 2.2. A process label K is composed of a secrecy label, an integrity label,

and a set of declassification capabilities δ. An element in δ is of the form −ts, where ts ∈ S,

or +ti, where ti ∈ I. A component with capability −ts can remove the tag ts from its secrecy

tags σ; similarly, a component that has +ti can add the tag ti to its integrity tags ι. Deleting se

crecy tags or adding integrity tags allows the component more freedom to send intents to other

components.

We define operations on labels to allow the reference monitor to compare labels, compute the

effects of declassification, and instantiate floating labels (Fig. 4.1).
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An AM erasure function K− is used by the activity manager to reduce process labels to

simple labels that can easily be compared to determine whether a call should be allowed. This

function removes the declassification capabilities from K, and reduces a floating secrecy label to

the top secrecy label. This captures the idea that declassification capabilities are not relevant to

label comparison, and that a callee’s floating secrecy label will never cause a call to be denied.

The PF erasure function K∗ is used in defining noninterference, and is explained in Sec. 4.1.2.

The declassification operation K ]d δ1 removes from K the secrecy tags in δ1, and adds the

integrity tags in δ1. Dually, the raise operation K ]rz (σ, ι) adds to K the secrecy tags in σ and

removes from K the integrity tags in ι.

When a component that has a floating label is called, its label needs to be instantiated based

on the caller’s label. We write K � κ to denote the instantiation of a potentially floating label

K based on the caller’s simple label κ. The resulting label inherits all the tags from both of the

labels.

4.1.1.2 Preliminaries

We chose a process calculus as our modeling language because it captures the distributed,

message-passing nature of Android’s architecture. The Android runtime is the parallel

composition of component instances, application instances, and the reference monitor, each

modeled as a process.

Process calculus The syntax of our modeling calculus, defined below, is based on π-calculus.

To avoid confusing the parallel composition in process calculus with the BNF definitions, we use
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′|′ instead of | for parallel composition.

Names a ::= x | c | aid ·c | aid ·cid ·c

Label ctx ` ::= aid | cid | c | (`1, `2)

Pattern patt ::= x | | c | ( = x) | ctr patt1 · · · pattk

| (patt1, · · · , pattn)

Expr e ::= x | a | ctr e1 · · · ek | (e1, · · · , en)

Process P ::= 0 | in a(x).P | in a(patt).P | out e1(e2).P

| P1 + P2 | νx.P | !P | (P1
′|′ P2) | `[P ]

| if e then P1 else P2

| case e of{ ctr1~x1 ⇒ P1 · · · | ctrn~xn ⇒ Pn}

aid denotes an application identifier, and cid a component identifier, both drawn from a

universe of identifiers. c denotes constant channel names. A composed constant name is a

constant name c prefixed by an application ID (aid ·c) or by application and component IDs

(aid ·cid ·c). These names model specific interfaces provided by an application or a component;

we will show examples later in this section.

Expressions e include variables, names, and data constructors. We extend the standard

definition of a process P with if statements, pattern-matching statements, and a pattern-matched

input inx(patt). This input only accepts outputs that match with patt. A pattern can be a variable

x, where the x will be bound in the process after the input; a wildcard that matches everything;

and a constance c. An equality check pattern is written = x, where x is not considered bound

in the process after the input; instead, x is bound earlier and by the time the pattern-matched

is evaluated, x is substituted with a ground term. A pattern can also be a data constructor, or a

tuple of patterns. These extensions can be encoded directly in π-calculus, but we add them as

primitive constructors to simplify the representation of our model.

The only major addition is the labeled process `[P ]. Label contexts ` include the unique

identifiers for applications (aid ) and components (cid ), channel names (c) that serve as identifiers

for instances, and a pair (`1, `2) that represents the label of a component and its application.
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Bundling a label with a process aids noninterference proofs by making it easier to identify the

labels associated with a process.

Bellow we define standard structural congruence and labeled transition rules for the calculus.

Structural congruence ≡ is the smallest congruence on processes that satisfies the axioms

below.

id [P + Q ] ≡ id [P ] + id [Q ]

id [P |Q ] ≡ id [P ] | id [Q ]

id [0 ] ≡ 0

id [ νx.P ] ≡ νx.id [P ] if x /∈ fn(id)

P | (Q |R) ≡ (P |Q) |R

P |Q ≡ Q |P

P |0 ≡ P

P + Q ≡ Q + P

P + (Q + R) ≡ (P + Q) + R

νx.0 ≡ 0

P + 0 ≡ P

νx.νy.P ≡ νy.νx.P

νx.(P |Q) ≡ P | νx.Q if x /∈ fn(P )

!P ≡ P | !P

Labeled transition rules A complete list of the labeled transition rules is shown in Fig. 4.2.

The rule for pattern-matched input requires the existence of a substitution σ for bound variables

in patt, such that the value z output on channel x is the same as the term resulting from applying

the substitution to the pattern patt(σ).

Lemma 1. If P α−→ P ′, and P ≡ Q, then exists Q′ such that Q α−→ Q′ and Q′ ≡ P ′

Proof. By induction on the structural congruence relation.
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outx(y).P
outx(y)−→ P inx(y).P

inx(z)−→ [z/P ]y

patt(σ) = z

inx(patt).P
inx(z)−→ P (σ)

P
α−→ P ′

P + Q
α−→ P ′

Q
α−→ Q′

P + Q
α−→ Q′

P
α−→ P ′ bn(α) ∩ fn(Q) = ∅

P |Q α−→ P ′ |Q

Q
α−→ Q′ bn(α) ∩ fn(P ) = ∅

P |Q α−→ P |Q′
P

inx(y)−→ P ′ Q
outx(y)−→ Q′

P |Q τ−→ P ′ |Q′

P
outx(y)−→ P ′ Q

inx(y)−→ Q′

P |Q τ−→ P ′ |Q′
P

inx(y)−→ P ′ Q
νy.outx(y)−→ Q′ y /∈ fn(Q)

P |Q τ−→ νy.(P ′ |Q′)

P
νy.outx(y)−→ P ′ Q

inx(y)−→ Q′ y /∈ fn(P )

P |Q τ−→ νy.(P ′ |Q′)
P

α−→ P ′ x 6= n(α)

νx.P
α−→ νx.P ′

P
outx(y)−→ P ′ x 6= y

νy.P
νy.outx(y)−→ P ′

P
α−→ P ′ bn(α) ∩ fn(id) = ∅

id [P ]
α−→ id [P ′ ]

P
α−→ P ′

!P
α−→ P ′ | !P

P
inx(y)−→ P ′ P

outx(y)−→ P ′′

!P
τ−→ P ′ |P ′′ | !P

P
inx(y)−→ P ′ P

νy.outx(y)−→ P ′′ y /∈ fn(P )

!P
τ−→ νy.(P ′ |P ′′) | !P

if true then P1 else P2
τ−→ P1 if false then P1 else P2

τ−→ P2

case ctr i ~ei of{ | ctr 1~x1 ⇒ P1 · · · | ctrn~xn ⇒ Pn}
τ−→ [~ei/Pi]~xi

Figure 4.2: Labeled Transition Rules for the Core Calculus

Common encoding structures We summarize the basic constructs that model commonly used

programming idioms.

To establish communication between processes P and Q, P can generate a new channel

r, send it only to Q, and then wait for messages on r. When a service process has many active

instances, this ensures that a call to one instance will not be confused with calls to other instances.

We use the choice operator together with the pattern-matched input to encode a process that
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can handle several different requests. For example, the following process evaluates to P1 if a

request rd is received, and to P2 if a request wt is received: in c(rd, x1).P1 + in c(wt, x2).P2.

We encode a recursive process using the ! operator. Often, a recursive process P is of

the form !(in c(x).P ′), where P ′ contains out c(y). The ! operator is also used to encode the

fragment of an application or a component from which run-time instances are generated. A

process !(in c(x).P ) will run a new process P each time a message is sent to c. This models the

creation of a run-time instance of an application or a component. In both cases, we call channel

c the launch channel of P , and say that P is launched from c.

4.1.1.3 A model of android and our enforcement mechanism

We model as processes the three main kinds of constructs necessary to reason about our

enforcement mechanism: application components, the activity manager, and the label manager.

The activity manager is the part of the reference monitor that mediates calls and decides

whether to allow a call based on the labels of the caller and the callee. The label manager is the

part of the reference monitor that keeps track of the labels for each application, component, and

application and component instance.

Life-cycles of applications and components and their label map A large part of the

modeling effort is spent on ensuring that the process model faithfully reflects the life-cycles of

the application and components, which is crucial to capturing information flows through

persistent states within or across the life-cycles. The reference monitor maintains a label map Ξ,

which reflects these life-cycles. Android supports single- and multi-instance components. Once

created, a single-instance component can receive multiple calls; the instance body shares state

across all these calls. A fresh instance of a single-instance component is created only when the

previous instance has exited and the component is called again. For a multi-instance

component, a new instance is created on every call to that component.

All calls are asynchronous; returning a result is treated as a call from the callee to the caller.
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When a component instance is processing a call, any additional intents sent to that instance (e.g.,

new intents sent to a single-instance component, or results being returned to a multi-instance

component) are blocked until the processing has finished.

A single-instance component is initially unlaunched. When an intent is sent to an

unlaunched component, the reference monitor creates a new instance of the component, which

becomes launched. Once the instance exits, the component goes back to the unlaunched state.

The reference monitor does not explicitly track whether multi-instance components have been

launched.

Similarly to a single-instance component, an application is initially unlaunched. The first

call to one of its components changes the application’s state to launched, and creates a new

application instance. After one of its components executes the exit application instruction, the

application enters the exiting state. In this state, the reference monitor will not initiate new calls

to the application. Once all of its components’ instances exit, the application instance exits, and

the application returns to the unlaunched state. We assume a cooperative environment where an

application exits only after each of its components exits on its own. We do not model the run-

time monitor force quitting an application, as this makes it hard to correctly implement cleaning

up dangling state, and does not critically affect noninterference.

Encoding applications and components The encoding of applications and components is

shown in Fig. 4.3. We summarize special-purpose channels in Fig. 4.5. We delay explaining the

label contexts `[...] that surround processes until Sec. 4.1.2—they are annotations that facilitate

proofs, and have no run-time meaning.

The encodings of single- and multi-instance components are the same except for a label that

distinguishes between them; the differences in run-time behavior are due to how they are handled

by the reference monitor.

The event loop body of a component CB(arg, s) waits on its new intent channel cnI before

executing its program (A(...), defined later). The output 〈out I(self)〉 is purely for the proof of
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Parameters arg = aid , cid , I, cAI , csv , cls , cnI , clock , rt
Comp. loop body CB(arg, s) = in cnI (I).〈out I(self)〉.A(arg, {s})
Comp. event loop CE (arg) = !(in cls(s).CB(arg, s))
Component CP(aid , cid , cAI , csv ) = !(in aid ·cid ·ccT ( =cAI , I, cnI , clock , rt).

(cAI , cnI )[νcls .(out cls(σ0).out cnI (I) ′|′CE (arg))]

Shared store body SVBody(csvL, csv ) = in csv (rd, r).out r(x).out csvL(x) + in csv (wt, v).out csvL(v)
Shared store SV (csvL, csv ) = !(in csvL(x).SVBody(csvL, csv ))

Application body AppBody(aid , cAI ) = νcsvL.νcsv .out csvL(s0).(SV (csvL, csv ) ′|′
(cAI , cid1)[CP1(aid , cid1, cAI , csv )] ′|′ · · · ′|′
(cAI , cidn)[CPn(aid , cidn, cAI , csv )])

Application App(aid) = aid [!(in aid ·cL(cAI ).cAI [AppBody(aid , cAI )])]

Figure 4.3: Encoding of applications and components.

Component body A(cid , aid , I, cAI , csv , cls , cnI , clock , rt, V ) ::=
· · ·
| out tm(raiseA, aid , cAI , δ, ι).A(· · · )
| out tm(raiseC, cid , cnI , δ, ι).A(· · · )
| out tm(dclassifyA, cAI , δ).A(· · · )
| out tm(dclassifyC, cnI , δ).A(· · · )
| out am(callI , rt, aid , cAI , cidce , I) ′|′A(· · · )
| out am(callE , rt, cAI , cnI , aidce , cidce , I) ′|′A(· · · )
| out am(exitA, aid , cid , cAI , cnI , rt, e)
| out am(exitC, aid , cid , cAI , cnI , rt, e)
| out cls(e).out clock () | out csv (wt, e).A(· · · )
| νr.out csv (rd, r).in r(x).A(· · · , V ∪ {x})

Figure 4.4: Partial encoding of component bodies.

noninterference; we will revisit this in Sec. 4.1.2. The parameters arg, together with s, appear

free in A. They are generated by outer-layer processes, which we explain next. The event loop

CE (arg) is triggered by an input to the local state channel cls , which is sent by this component

instance when the previous intent has been processed. This ensures that each iteration of a

component instance shares the local state of the previous iterations.

A component CP(aid , cid , cAI , csv) is launched from a designated creation channel

aid ·cid ·ccT . The message it receives on the creation channel is a tuple ( =cAI , I, cnI , clock , rt)

whose first argument ( ) must match the current application instance (cAI ). I is the intent

conveyed by the call. cnI is the new intent channel. clock is the channel used to signal the
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ID launch ch. instance ID instance-specific channels
App aid aid ·cL cAI csvL: shared variable launch channel

csv : shared variable read-write channel
Comp. cid aid ·cid ·ccT cnI clock : lock channel for processing new intents (returns)

cls : launch channel of the instance’s local state

Figure 4.5: Summary of identifiers for applications and components. cAI , cnI , and clock
are generated by the activity manager; csvL, csv , and cls are generated by the application or
component.

reference monitor that this instance has finished processing the current intent and is ready to

receive a new one. Finally, rt contains information about whether and on what channel to return

a result.

Once a component instance is created, it generates a new name for the local state channel

cls . The process running in parallel with the component event loop launches the event loop by

passing an initial local state σ0 to the cls channel, and then sending the intent I to cnI .

The body of the shared state SVBody processes read and write requests through the channel

csv , and is launched through channel csvL.

An application App(aid) with ID aid is the parallel composition of a shared state SV and

components CP i(aid , cid i, cAI , csv). Each application has a designated launch channel aid ·cL.

The channel cAI , passed as an argument to the launch channel, serves as a unique identifier for

an application instance. Once an application is launched, it launches the shared state with an

initial value. At this point, the application’s components are ready to receive calls, and we call

this application instance an active launched instance.

Component body We define the body of a component in terms of the operations that a

component can perform. It is parameterized over several variables, most of which were

introduced previously. The only new variable is the last one, V , which is a set of variables that

are free in the body; these are bound by outer-layer case statements or ν. In Fig. 4.4, we omit

the variables when they are clear from the context.

A component can use if statements and case statements. A component can change its label
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or its application’s label only by sending explicit requests to the label manager.

A component can call another component in the same application by sending a request

out am(callI , rt, . . .) to the activity manager. Here am is the designated channel to send requests

to the activity manager. The argument rt is NONE if no return is expected; otherwise the caller

includes in rt its application’s ID and application’s instance ID, new intent channel, and the lock

channel (SOME(aid , cAI , cnI , clock)).

To exit, an instance sends a request to the activity manager (out am(exitC, · · · )), which

contains information for cleaning up its state and any return information (rt). An instance can

also terminate the application upon exiting (out am(exitA, · · · )). After one of these two messages

is sent, the instance is left as dead code guarded by the input to channel cls . No one can send new

intents to this instance, since the channel cnI is not available to receive input.

A component can also start another iteration of its body: (out cls(e).out clock()). The output to

the channel clock will inform the activity manager that the component is ready to receive another

intent. The activity manager always waits for an output on this channel before sending a new

intent to the channel cnI . Therefore, clock acts like a lock. One reason for using such a lock is

that an instance can change its label, and the activity manager needs to know an instance’s most

up-to-date label before sending the new intent.

Finally, a component can read or write to the shared variable in its application.

Label manager The label manager maintains the mappings from applications, components,

and run-time instances to labels, and processes calls to update the mapping. The label manager’s

local state is a label map Ξ defined as follows:

Ξ ::= · | Ξ, aid 7→ U(K) | Ξ, aid 7→ L(cAI ,K)

| Ξ, aid 7→ onEx(cAI ,K) | Ξ, aid ·cid 7→ S(K)

| Ξ, aid ·cid 7→ SL(cnI ,K) | Ξ, aid ·cid 7→ M(K)

| Ξ, cAI 7→ DA(K, LC(cnI 1
, ...cnIn

)) | Ξ, cnI 7→ DC(clock ,K)

If an application has not been launched, then its aid maps to U(K), where K is the
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application’s static label. Once an application is launched, its aid maps to L(cAI , K), where cAI

is its instance ID, and K the static label. After one of its components sends a call to terminate

the application, but before the application exits, aid maps to onEx(cAI , K).

Unlaunched single-instance components have their ID (aid ·cid ) mapped to a S(K), where

K is their static label. Ξ maps the ID of running single-instance components to SL(cnI , K),

where cnI is the new-intent channel for this instance, and K the static label. For multi-instance

components, Ξ maps the component ID to M(K).

The last kind of mapping in Ξ records the labels of each run-time instance (of applications

and single- and multi-instance components). An application instance channel cAI maps to a pair

of its current label and a list of the active new-intent channels of its components. A component

new intent channel cnI maps to a pair (clock , K), where clock is the lock channel for the instance

and K is its effective label.

The encoding of the label manager is shown in Fig. 4.6. The label manager is launched

from channel tt, and the argument sent to tt is the current label map of the system. Requests to

the label manager are sent to the channel tm. At the end of processing each request, the label

manager will launch itself again with the current label map. This also ensures that at any time

there is only one active copy of the label manager running.

The encoding of the label manager is shown in Fig. 4.6. The label manager is launched

from channel tt, and the argument sent to tt is the current label map of the system. Requests to

the label manager are sent to the channel tm. At the end of processing each request, the label

manager will launch itself again with the current label map. This also ensures that at any time

there is only one active copy of the label manager running.

When a component instance requests to declassify, the label manager checks that the calling

instance has the capabilities to do so, and if appropriate updates the current label for that instance.

The label manager also answers queries from the activity manager for labels. Such queries

cannot be made by components, since they would leak information. The label manager also

processes requests from the activity manager to update its mapping when applications or
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components launch and exit. When a component exits, the label manager removes the current

instance’s mapping, and restores a single-instance component’s mapping to its static label.

When the last component of an application exits, the label manager cleans up the application’s

state.

Note that, as we discussed in Sec. 2.3, the raise operation has to raise both the static and

the effective label of single-instance components (or applications). In addition, we don’t allow

floating instances to raise their labels. If we allowed a floated instance to raise its label, we would

have allowed a high component (this floated instance) to affect low components by changing its

static label, which could be low.

Activity manager Android’s activity manager mediates all intent-based communication

between components, preventing any communication that is prohibited by policy. We describe

here the enhanced activity manager that we use for enforcement in our system.

The top-level process of the activity manager is of the form: AM =!(AMI + AME +

AMEX + AMR). The activity manager processes four kinds of calls: AMI processes calls

between components within the same application; AME processes inter-application calls; AMEX

processes exits, and AMR processes returns.

We focus on explaining the fragment of the encoding of the activity manager that processes

calls between components within the same application.

When the activity manager receives a request to send intent I to a component with ID cid ce ,

it first looks up the callee’s label by sending a request to the label manager. The label manager’s

reply will indicate one of four cases: the callee (1) does not exist; (2) is a single-instance

component without an active instance; (3) is a single-instance component with one instance;

or (4) is a multi-instance component. If the callee does not exist, the activity manager exits.

When the callee is a single-instance component with no active instance, the activity manager

allows the call if the caller’s label is lower than or equal to the callee’s label. To do this, the

activity manager (1) generates a new intent channel and a lock channel for the new instance; (2)
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updates the label for that component to indicate one instance launched, inserts the mapping for

the new-intent channel, and records this new active instance in the label map and (3) sends a

message containing the intent to the callee’s creation channel. Single-instance components never

return, so the last argument of the message is always NONE.

If the callee is a single-instance component with an active instance, the activity manager waits

to receive a message on the lock channel. At this point, it knows that no other process can have

the lock to communicate with the callee. The activity manager then allows the call if the simple

label of the caller is lower than or equal to that of the callee.

Because calls to single-instance components (e.g., an editor) often result in replies to the

caller (e.g., to return edited text), legacy applications may function poorly if the callee’s

responses cannot be returned. Hence, if the activity manager detects that a callee has an

effective label that would not allow a reply to the caller, but a static label that would, the activity

manager delays the original call. After the callee exits, the call has a chance to complete

(although it may have to compete with other calls to the same callee). If the call is denied, the

lock on the callee is released so that other processes can send new intents to the callee.

Calls to multi-instance callees are treated similarly to calls to unlaunched single-instance

callees. If the call is permitted, a new callee instance is launched. Returns are treated similarly

to calls to active instances of single-instance components.

The code fragment in Fig. 4.7 illustrates some key design decisions of the activity manager:

how to maintain the label mapping throughout the life cycle of an instance, and when to allow,

deny, or delay a call. The other parts of the encoding that deals with returns, exits, and cross-

application calls where we need to enforce both the application-level policies and the component-

level policies are illustrated in Figs. 4.8, 4.9, and 4.10.

An application resembles a single-instance component: both allow only one active instance

and both admit shared state within each instance; hence, the life cycle of applications is managed

similarly to that of single-instance components, except that application exit is more complicated

as it has to allow all its active component instances to exit.
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Overall system We assume that an initial process init bootstraps the system. This process

launches the label manager with the static label map that reflects the labels of applications and

components at install time, and then calls the first process with fixed labels.

init = out tt(Ξ
0).init [out am(callE ,NONE, initA, initC , aid0, cid0, I0)]

initA and initC represent the initial process’s application instance and component instance.

These are not meaningful except that Ξ0 assigns them the lowest secrecy label and highest

integrity label so that the initial process can start any other process.

We model the whole system as follows:

S = TM |AM |App1(aid1) | · · · |Appn(aidn) | init

4.1.2 Noninterference

To show that our system prevents information leakage, we prove a noninterference theorem.

We use the simple label κL as the label of malicious components. We call components whose

labels are not lower than or equal to κL high components, and others low components. Low

components are considered potentially controlled by the attacker. We want to show that a system

S that contains both high and low components behaves the same as a system composed of only

the low components in S.

4.1.2.1 Choice between trace & bisimulation-based equivalence

Processes P and Q are trace equivalent if for any trace generated by P , Q can generate an

equivalent trace, and vice versa. Another commonly-used equivalence, barbed bisimulation, is

a stronger notion of equivalence: it additionally requires those two processes to simulate each

other after every τ transition.
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Our decision about which notion of process equivalence to use for our noninterference

definition is driven by the functionality required of the system so that practically reasonable

policies can be implemented. As we discussed earlier, floating labels are essential to implement

practical applications in Android. However, allowing an application (or single-instance

component) to have a floating label weakens our noninterference guarantees: In this case, we

cannot hope to have bisimulation-based noninterference (see our technical report [70] for an

example).

Rather than disallowing floating labels, we use a weaker, trace-equivalence-based definition

of noninterference. This still provides substantial assurance of our system’s ability to prevent

disallowed information flows: noninterference would not hold if our system allowed: (1)

explicit communication between high and low components; or (2) implicit leaks in the reference

monitor’s implementation, such as branching on data from a high component affecting low

components differently depending on the branch.

4.1.2.2 High and low components

Most commonly seen techniques that classify high and low events based on a fixed security level

assigned to each channel cannot be directly applied to the Android setting, as the components

may declassify, raise, or instantiate their labels at run time. Whether an input (output) is a high

or low event depends on the run-time label of the component that performs the input (output).

Similarly, whether a component is considered high or low, also depends on its run-time label.

This makes the definitions and proofs of noninterference more challenging. To capture such

dynamic behavior, we introduce the label contexts of processes, and use the run-time mapping

of these labels in the label manager to identify the high and low components in the system. The

current label of a process can be computed from its label context and the label map Ξ. For a

process with nested label contexts `1[...`n[P ]...], the innermost label `n reflects the current label

of process P .
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Our mechanism enforces information-flow policies at both component and application level;

we consequently define noninterference to demonstrate the effectiveness of the enforcement at

both levels. Next, we explain how to use the application ID, the component-level label, and

the application-level label to decide whether a process is high or low for our noninterference

theorem.

Without loss of generality, we pick one application whose components do not access the

shared state of that application, and decide whether each of its components is high or low solely

based on each component’s label; all other applications, whose components may access the

shared applicate state, are treated as high or low at the granularity of an application, based on

their application-level labels. We write aid c to denote the specific application whose components

we treat as individual entities and disallow their accesses to the shared state.

Now we can define the procedure of deciding whether a process is high or low. We first

define a binary relation vaidc between a label context (aid , (κ1, κ2)) and a simple label κ. We

say that (aid , (κ1, κ2)) is lower than or equal to κ relative to aid c. This relation compares the

application-level label (κ1) to κL if the application is not aid c, and compares the component-level

label (κ2) to κL if the application ID is aid c.

(aid , (κ1, κ2)) vaidc κL iff κ1 v κL when aid 6= aid c and κ2 v κL when aid = aid c

Now, given the label map Ξ, let Ξ〈c〉 denote the label associated with a channel name c in

Ξ. We say that a process of the form aid [...(cAI , cnI )[P ]...] is a low process with regard to κL if

(aid , ((Ξ〈cAI 〉)∗, (Ξ〈cnI 〉)∗) vaidc κL; otherwise, it is a high process. Please see our tech report

for a formal definition and additional details [70].

The function K∗ (Fig. 4.1) removes the declassification capabilities in K, and reduces

floating integrity labels to the lowest integrity label (on the lattice). This is because a call to a

component with a floating integrity label may result in a new instance with a low integrity label,

a low event observable by the attacker; hence, a floating component should always be

considered a low component.
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4.1.2.3 Traces

The actions relevant to our noninterference definitions are intent calls received by an instance,

since the only explicit communication between the malicious components (applications) and

other parts of the system is via intents. We model intents I as channels. The encoding of

components includes a special output action 〈out I(self)〉 right after the component receives a

new intent (Fig. 4.3). This outputs to the intent channel the current labels of the component,

denoted by self. Traces consist of these outputs (out I(aid , (kA, kC))), which contain

information about both what the recipient has learned and the security label of the recipient. We

call such an action low, if (aid , (kA, kC)) vaidc κL, and high otherwise.

We restrict the transition system to force the activity manager’s processing of a request—

from receiving it to denying, allowing, or delaying the call—to be atomic. Some requests require

that a lock be acquired; we assume the activity manager will only process a request if it can grab

the lock. This matches reality, since the run-time monitor will process one call at a time, and the

run-time monitor’s internal transitions are not visible to the outside world. We write a small-step

Android-specific transition as S α−→AS
′, and S τ

=⇒AS
′ to denote zero or multiple τ transitions

from S to S ′.

4.1.2.4 Noninterference

We define the projection of traces t|aidc
κL

, which removes all high actions from t. The function

projT(Ξ;κL; aid c) removes from Ξ mappings from IDs or channel names to high labels.

Similarly, proj(P, κL, aid c,Ξ) removes high components, applications, and instances from P .

The resulting configuration is the low system that does not contain secrets or sensitive

interfaces.

We say that a declassification step is effective with regard to κL and aid c if the label of the

declassified instance before the step is not lower than or equal to κL relative to aid c, and the label

after is. We call a sequence of transitions t
=⇒A valid if each step preserves the application-level
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label of aid c (application aid c cannot exit the application or raise its application-level label), and

if it is not an effective declassification step.

We prove a noninterference theorem, which captures the requirements on both

cross-application and intra-application communications. The theorem only concerns traces

generated by valid transitions. Declassification can cause the low actions that follow it to differ

between the two systems. However, we do allow arbitrary declassification prior to the

projection of the high components. A component that declassified will be treated as a low

component, and will afterward be denied any secrets unless further declassification occurs

elsewhere. Changing aid c’s application-level label interferes with our attempt to view

components in aid c as independent entities.

Theorem 1 (Noninterference).

For all κL, for all applications App(aid1), · · · ,App(aidn),

given a aid c (aid c = aid i), i = 1 . . . n, whose components do not access the shared variable,

let S = AM |TM |App(aid1), · · · ,App(aidn) be the initial system configuration, S=⇒AS
′,

S′ = AM |TM | ν~c.(TMI(Ξ) |AC (aid c) |S′′), where TMI(Ξ) is an instance of the tag manager, Ξ is the

current label map, and AC (aid c) is an active launched instance of aid c,

let Ξ′ = projT(Ξ;κL; aid c),

SL = AM |TM | ν~c′.(TMI(Ξ
′) | proj(AC (aid c) |S′′, κL, aid c,Ξ

′))

1. ∀t s.t. S′ t
=⇒AS1, and t

=⇒A is a sequence of valid transitions, ∃t′ s.t. SL
t′

=⇒ASL1, and t|vaidc
κL =

t′|vaidc
κL

2. ∀t s.t. SL
t

=⇒ASL1, and t
=⇒A is a sequence of valid transitions, ∃t′ s.t. S′ t

′
=⇒AS1, and t|vaidc

κL =

t′|vaidc
κL

4.1.2.5 Proof sketch

Here we only give a general idea about our prove of Theorem 1. For more details, please refer to

[70]. In order to prove Theorem 1, we prove that there is a simulation relation between the valid

configurations of the system and the system with only low components (S and SL, respectively).
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The theorem then easily follow from the existence of such relation.

To prove that such simulation relation exists, we start by defining what are the stable (i.e.,

valid) configurations of the whole system by defining the stable configurations of the different

parts of the system, i.e., the activity manager, label manager, components, etc. Then we define

(Android-specific) transition rules for those stable configurations, and prove progress and

preservation, ensuring the well-definedness of the these transition relations.

After that, we define a projection function, proj(P,Ξ, aid c, κL), on those configurations,

parameterized by κL and aid c, which removes high process (processes whose behavior should

not effect the attacker) and dead code (process guarded by channel names that do not exist in

the label map). These projections are based on the label contexts. Similar projection functions

for label maps are also defined. We prove that these projections preserver the stability of the

configurations. In addition to the projection functions, we also define two relations between

two label maps: Ξ -κL
aidc

Ξ′ and Ξ -κL
comp Ξ′. Intuitively, these relations imply that although Ξ

is the label map for the system with high components, and Ξ′ is the label map for the system

without high components, Ξ and Ξ′ agree on low mappings. We need two relations because

of the different treatment of labels based on whether they are related to application aid c. The

relation -κL
comp relates two label maps only containing mappings related to aid c.

Operations, such as calling, declassification, and exiting, will cause the label map to be

updated. We define classification of these label update, which either classify them as high

updates, or low updates. Update classification is based on the effective label of the instance

of the updated application (or component). The main idea is that high updates only affect high

components. In addition, we say a process P contains fewer components thanQ (written P ≤ Q)

if Q is the parallel composition of P and another process.

Definition 1. P ≤ Q
def
= Q = P |Q1

Finally, we define a function sp(P ) to simplify a labeled process wrapped in adjacent nested

labels to a labeled process wrapped by a pair of its application ID and the innermost label:
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sp(aid [l1[l2 · · · lk[P ]]]) = (aid , lk)[P ] or aid [P ],

where P 6= l[P ′].

Now we are ready to define a candidate simulation relation:

Definition 2. P R(aidc,κL) Q iff

• P and Q are stable configurations,

• P = TM |AM | ν~x.TMI(ΞP ) |P0,

• Q = TM |AM | ν~x′.TMI(ΞQ) |Q0,

• ΞP -κL
aidc

ΞQ

• proj(sp(P0), κL, aid c,ΞP ) ≤ proj(sp(Q0), κL, aid c,ΞP )

First, we utilize several key observations (lemmas):

• If the label map does not change and P does not generate any new low components when

P takes a step to P ′, then P ′ relates to Q.

• If the label map does not change and the components that reduce in P are low components

when P steps to P ′, then Q can take the same step as P to Q′, and P ′ and Q′ relate.

• If the label map changes when P steps to P ′, but the update preserves the label map relation

between P ′ and Q, and P ′ does not have more low components than P according to the

new label map, then P ′ and Q relate.

• When the update to the label map is a low update, and the components that reduce in P

exist in Q as well, then Q can take the same step as P and P ′ and Q′ relate.

After proving the lemmas above, we then proceed to prove thatR is a Γ-simulation relation.

We need to prove two conditions: (1) τ transition preserves R(aidc,κL), and (2) if P R(aidc,κL)

Q, P
out b(aid ,(KA,KC))−→ P ′ and (aid , (KA

∗, KC
∗)) vaidc κL, then Q

out b(aid ,(KA,KC))
=⇒ Q′, and

P ′ R(aidc,κL) Q
′.

By the definition of P R(aidc,κL) Q, we know that stb(P ). We examine all possible proof

cases for conditions (1) and (2), given that P is a stable configuration. The proof cases for (1)
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are categorized below. There is only one proof case for condition (2), and it is similar to case 1

for condition (1).

1. Transitions that do not change the labels of any components:

(a) Read/write to shared variable.

(b) Launch component loop body for the first time through channel cls .

(c) Re-launch component loop body through cls .

(d) First output to cnI right after the instance is created.

(e) Output to cnI from the activity manager.

2. Transitions that cause the component’s label context to change:

(a) The special transitions that record the current labels for requests to the activity

manager.

(b) Launch an application.

(c) Launch the shared variable SVBody.

(d) Launch a component instance through its create channel ccT .

3. Operations on labels:

(a) Raise.

(b) Declassify.

4. Component exit and application exit.

5. Calls and returns:

(a) Calls (returns) are denied or delayed.

In these cases, the label map does not change, and no low components are generated

by the transition.

(b) Calls are allowed.

In all proof cases, we distinguish between whether the update to the configuration
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is low or high. In the former case, because of the properties of the label operations,

both the caller and the callee’s label have to be low and thus Q takes the same step.

In the latter case, P ′ relates to Q directly.

(c) Returns are allowed.

The proofs for this case are similar to the case where a call to a launched application

or a single-instance component is allowed.
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Label Mngr TM =
0 !( in tt(x).
1 in tm(lookUp, id, r). out r(x(id)).out tt(x)
2 + in tm(upd, u).out tt(updateMap(x, u))
3 + in tm(cleanA, aid , cid , cAI , cnI ).
4 case x(aid)of
5 L(cAI , k)⇒ out tt(x[aid 7→ onEx(cAI , k)]).
6 out tm(cleanC, aid , cid , cAI , cnI )
7 | ⇒ out tm(cleanC, aid , cid , cAI , cnI )
8 + in tm(cleanC, aid , cid , cAI , cnI ).
9 case x(aid .cid)of SL(cAI , cnI , clock , kCs)⇒
10 if x(cAI ) = (k, {cnI}) ∧ x(aid) = onEx(cAI , kAs)
11 then out tt(x [aid .cid 7→ S(kCs)]
12 [aid 7→ U(kAs)]\cAI\cnI )
13 else out tt(x[aid .cid 7→ S(kCs)]
14 [cAI 7→ x(cAI )\cnI ]\cnI )
15 |M(kCs)⇒if x(cAI ) = (kAd, {cnI})
16 ∧ x(aid) = onEx(cAI , kAs)
17 then out tt(x[aid 7→ U(kAs)]\cAI\cnI )
18 else out tt(x[cAI 7→ x(cAI )\cnI ]\cnI )
19 + in tm(dclassifyA, cAI , δ).
20 if dL(x(cAI )) ⊇ δ
21 then out tt(x[cAI 7→ x(cAI ) ]d δ])
22 else out tt(x)
23 + in tm(dclassifyC, cnI , δ).
24 if dL(x(cnI )) ⊇ δ
25 then out tt(x[cnI 7→ x(cnI ) ]d δ])
26 else out tt(x)
27 + in tm(raiseA, aid , cAI , σ, ι).
28 if floating(x〈aid〉)
29 then out tt(x)
30 else out tt(x[aid 7→ x(aid) ]rz (σ, ι)]
31 [cAI 7→ x(cAI ) ]rz (σ, ι)])
32 + in tm(raiseC, aid , cid , cnI , d).
33 case x(aid ·cid) of M(k)⇒
34 out tt(x[cnI 7→ x(cnI ) ]rz (σ, ι)])
35 | SL( )⇒
36 if floating(x〈aid ·cid〉) ∨ floating(x〈aid〉)
37 then out tt(x)
38 else out tt(x[aid ·cid 7→ x(aid ·cid) ]rz (σ, ι)]
39 [cnI 7→ x(cnI ) ]rz (σ, ι)])

Figure 4.6: Encoding of the label manager.
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0 AMI = in am(callI , kAcr , kCcr , rt, aid , cAI , cidce , I).
1 νc. out tm(lookUp, cidce , c). in c(s).
2 case s of NE ⇒ 0
3 | S(kce)⇒

if kCcr
− v kce−

4 then νcnI .νclock .
5 out tm(upd, { (aid ·cidce ,SL(cnI , kce)),
6 (cnI , (clock , kCcr � kce)), (cAI , {cnI })}).
7 (aid , (cAI , cnI ))[out aid ·cid ·ccT (cAI , I, cnI , clock ,NONE)]
8 else 0
9 | SL(cnI , ks)⇒ νc. out tm(lookUp, cnI , c).in c(DC(clock , )).
10 in clock (). νc. out tm(lookUp, cnI , c).in c(DC( , kd)).
11 if kCcr

− v kd−
12 then if kCcr

− = kd
− ∨ concrete(ks)

13 then (aid , (cAI , cnI ))[out cnI (I)]
14 else (aid , (cAI , cnI ))[out clock ()]
15 | (aid , (kAcr , kCcr ))[out am(callI , kAcr , kCcr , rt,
16 aid , cAI , cidce , I)]
17 else (aid , (cAI , cnI ))[out clock ()]
18 |M(kce)⇒
19 if kcr

− v kce−
20 then νcnI .νclock .
21 out tm(upd, { (cnI , (clock , kCcr � kce)), (cAI , {cnI })}).
22 (aid , (cAI , cnI ))[out aid ·aid ·ccT (cAI , I, cnI , clock , rt)]
23 else 0

Figure 4.7: Encoding of the activity manager subprocess that handles calls between components
of the same application.
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Activity Manager Exit AMEX =
24 in am(exitA, kAce , kCce , aid ce , cid ce , cAI ce , cnI ce , rt, I).
25 out tm(cleanA, aid ce , cid cecAI ce , cnI ce ).
26 case rt of NONE⇒ 0
27 | SOME(aid cr , cAI , cnI , clock)⇒
28 (aid ce , (kAce , kCce))[out am(return, kAce , kCce , aid ce ,
29 cAI ce , aid cr , cAI , cnI , clock , I)]
30 + in am(exitC, kAce , kCce , aid ce , cid ce , cAI ce , cnI ce rt, I).
31 out tm(cleanC, aid ce , cid ce , cAI ce , cnI ce ).
32 case rt of NONE⇒ 0
33 | SOME(aid cr , cAI , cnI , clock)⇒
34 (aid ce , (kAce , kCce))[out am(return, kAce , kCce , aid ce ,
35 aid cr , cAI , cnI , clock , I)]

Activity Manager Return AMR =
36 in am(return, kAce , kCce , aid ce , cAI ce , aid cr , cAI , cnI , clock , I).
37 in clock().
38 if aid ce = aid cr

39 then νr.out tm(lookUp, cnI , r).in r(s).
40 case s of ( , kCd) ⇒
41 if kCce

− v kCd
−

42 then (aid cr , (cAI , cnI ))[ out cnI (I) ]
43 else (aid cr , (cAI , cnI ))[ out clock() ]
44 | ⇒ 0
45 else νr.out tm(lookUp, cAI , r).in r(s1).
46 out tm(lookUp, cnI , r).in r(s2).
47 case (s1, s2) of ((DA(kAd), ), ( , kCd))⇒
48 if kAce

− v kAd
− ∧ kAce

− v kCd
−

49 ∧ kCce
− v kAd

− ∧ kCce
− v kCd

−

50 then (aid cr , (cAI , cnI ))[ out cnI (I) ]
51 else (aid cr , (cAI , cnI ))[ out clock() ]
52 | ⇒ 0

Figure 4.8: Encoding of the subprocesses of the activity manager that handle exit and return
calls.
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Activity Manager Inter-app Call AME =
53 in am(callE , kAcr , kCcr , rt, aidcr , aidce , cidce , I).
54 νr.out tm(lookUp, aidce).in r(s1). out tm(lookUp, aidce ·cidce , r).in r(s2).
55 case (s1, s2) of (NE, ) ⇒ 0 | ( ,NE)⇒ 0
56 | (U(kAce),S(kCce))
57 ⇒ if kAcr

− v kAce
− ∧ kAcr

− v kCce
− ∧ kCcr

− v kAce
− ∧ kCcr

− v kCce
−

58 then νcAI .νcnI .νclock .
59 out tm(upd, { (aidce , L(kAce , cAI )), (aid ·cidce , SL(cnI , kCce)),
60 (cAI ,DA(kAce � (kAcr ]M kCcr ), LC({cnI }))),
61 (cnI , (clock , kCce � (kAcr ]M kCcr )))}).
62 (aidce , cAI )[out aidce ·cL(cAI )]
63 | (aidce , (cAI , cnI ))[out aidce ·cid ·ccT (cAI , I, cnI , clock ,NONE)]
64 else 0
65 | (U(kAce),M(kCce))
66 ⇒ if kAcr

− v kAce
− ∧ kAcr

− v kCce
− ∧ kCcr

− v kAce
− ∧ kCcr

− v kCce
−

67 then νcAI .νcnI .νclock .
68 out tm(upd, { (aidce , L(kAce , cAI )),
69 (cAI ,DA(kAce � (kAcr ]M kCcr ), LC({cnI }))),
70 (cnI , (clock , kCce � (kAcr ]M kCcr )))}).
71 (aidce , cAI )[out aid ·cL(cAI )]
72 | (aidce , (cAI , cnI ))[out aid ·cid ·ccT (cAI , I, cnI , clock , rt)]
73 else 0
74 | (L(cAI , kAce),S(kCce))
75 ⇒ out tm(lookUp, cAI , r).in r(DA(kAd, )).
76 if kAcr

− v kAce
− ∧ kAcr

− v kCce
− ∧ kCcr

− v kAce
− ∧ kCcr

− v kCce
−

77 then if (conrete(kAce)∧ kAcr
− v kAd− ∧ kCcr

− v kAd− )
78 ∨(floating(kAce) ∧ kAcr

− = kAd
− ∧ kCcr

− = kAd
− )

79 then νcnI .νclock .out tm(upd, { (cAI , {cnI }), (aid ·cidce ,SL(cnI , kCce)),
80 (cnI , (clock , kCce � (kAcr ]M kCcr )))}).
81 (aidce , (cAI , cnI ))[ out aid ·cid ·ccT (cAI , I, cnI , clock ,NONE) ]
82 else (aidcr , (kAcr , kCcr ))[ out am(callE , kAcr , kCcr , rt, aidcr , aidce , cidce , I) ]
83 else 0
84 | (L(cAI , kAce),SL(cnI , kCce))
85 ⇒ out tm(lookUp, cAI , r).in r(DA(kAd, )).
86 out tm(lookUp, cnI , r).in r(DC(clock , )). in clock ().
87 out tm(lookUp, cnI , r).in r(DC( , kCd)).
88 if kAcr

− v kAce
− ∧ kAcr

− v kCce
− ∧ kCcr

− v kAce
− ∧ kCcr

− v kCce
−

89 then if (conrete(kAce) ⊃ (kAcr
− v kAd− ∧ kCcr

− v kAd−))
90 ∧ (floating(kAce) ⊃ (kAcr

− = kAd
− ∧ kCcr

− = kAd
−))

91 ∧ (conrete(kCce) ⊃ (kAcr
− v kCd− ∧ kCcr

− v kCd−))
92 ∧ (floating(kCce) ⊃ (kAcr

− = kCd
− ∧ kCcr

− = kCd
−))

93 then (aidce , (cAI , cnI ))[ out cnI (I) ]
94 else (aidce , (cAI , cnI ))[ out clock () ]
95 | (aidcr , (kAcr , kCcr ))[ out am(callE , kAcr , kCcr , rt, aidcr , aidce , cidce , I) ]
96 else (aidce , (cAI , cnI ))[ out clock () ]

Figure 4.9: Encoding of the subprocess of the activity manager that handles calls between
applications (part 1 of 2).
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97 | (L(cAI , kAce),M(kCce))
98 ⇒ out tm(lookUp, cAI , r).in r(DA(kAd)).
99 if kAcr

− v kAce
− ∧ kAcr

− v kCce
− ∧ kCcr

− v kAce
− ∧ kCcr

− v kCce
−

100 then if (conrete(kAce)∧ kAcr
− v kAd− ∧ kCcr

− v kAd− )
101 ∨(floating(kAce) ∧ kAcr

− = kAd
− ∧ kCcr

− = kAd
− )

102 then νcnI .νclock .out tm(upd, { (cAI , {cnI }),
103 (cnI , (clock , kCce � (kAcr ]M kCcr )))}).
104 (aidce , (cAI , cnI ))[ out aid ·cid ·ccT (cAI , I, cnI , clock , rt) ]
105 else (aidcr , (kAcr , kCcr ))[ out am(callE , kAcr , kCcr , rt, aidcr , aidce , cidce , I) ]
106 else 0
107 | (onEx(), ) ⇒ 0

Figure 4.10: Encoding of the subprocess of the activity manager that handles calls between
applications (part 2 of 2).
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4.2 A Simplified ModelM(L)

In this section we introduce a model of our system that is simpler than the initial, π-Calculus

based, one from Sec. 4.1. This simpler, labeled-transition-system (LTS) based, model represents

apps only and not their components. Moreover, we restrict the policy to concrete labels, i.e.,

no floating labels. We started our work with the model from Sec. 4.1, which was adequate

for the purpose of formally verifying that the system is secure (in the noninterference sense).

However, for the purposes of defining and proving the versioned-labels noninterference property,

and introducing controlled declassification later (see Ch. 5), we wanted to start with a simpler

model that will enable us to focus on those aspects without the distraction of all the details from

the full model. These omitted details are important, and we intend to add them back to model

in future work. Furthermore, the transition from π-Calculus to an LTS model makes it more

convenient to encode the model and both the noninterference property and proof in Coq, mainly

because we avoid encoding π-Calculus itself.

We start by defining the security lattice in Sec. 4.2.1. Next, we describe the language for

apps’ code in Sec. 4.2.2. Then, we detail the syntax and operational semantics of the whole

system model in Sec. 4.2.3 and Sec. 4.2.4, respectively.

4.2.1 The Security Lattice

The security lattice represents the security level or labels in the systems and the relation between

them. Actually, the lattice construct here is not a strict requirement, we only need a partially

ordered set, or a poset. Lattices are a special kind of posets that guarantee the existence of

a unique least upper bound and a unique greatest lower bound for any two elements in the set.

However, we don’t need such requirement for our system. Some IFC systems, such as JFlow [18],

do require it because they use meet and join operations on labels and need the answer to be

unique. Moreover, the tag-based labels described in Ch. 2 do form a lattice with the subset

relation. For these reasons we use the name security lattice, or simply lattice, throughout this
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dissertation.

A lattice, L, is a pair (L,v), where L is a set of elements, and v is partial ordering relation

for the elements of L.

4.2.2 App Language

We define a simple imperative programming language to encode the applications in our system.

This language has standard side-effect free expressions that are defined in Fig. 4.11. They include

generic binary operations, variables, and and memory referencing. The only final values an

expression can yield are booleans, integers, and memory references. Memory references are just

encapsulated integers that index into memory. The ARG variable, is a special variable used to

access the intent (i.e., argument) received by the app instance.

Next, we define statements (Fig. 4.12), which includes assignments, conditionals, memory

allocation, and variable declaration. We did not include loops for simplicity, but they won’t affect

any of the later results since we don’t try to prove termination for apps or progress-sensitive

security [71]. In addition, we define commands, which are special statements that represent

inter-app calls or actions that affect the app’s label or life cycle.

Memory We model memory as a linear list of values. Memory locations, l, are natural numbers

that index into this list. Once a new memory location is allocated, through the new statement, its

type is set and cannot be changed.1 Only values of the same type can be written to an allocated

memory location. This memory model approximates how Java, the language in which Android

apps are written, abstracts memory. The main difference between this memory model and Java

is that Java’s garbage collector reclaims allocations that are not needed anymore.

Operational Semantics We describe the semantics of the language using small-step

operational semantics rules (Fig. 4.13). The substitution used in the operational semantics of

1This is enforced by the typing system.
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id ::= x | ARG
B ::= true | false
N ::= 0 | 1 | 2 | . . .
val ::= B | N | LOCN
exp ::= id | val | exp⊕ exp | *(exp)

Figure 4.11: App language syntax: expressions.

AppID ::= N
label ::= 〈 any label l, such that l ∈ L 〉
cmd ::= RAISE label | DECLASSIFY label | CALL(AppID, exp,B)

| RETURN exp | EXIT exp
stm ::= (stm; stm)

| if exp then stm else stm
| exp := exp
| new x := exp in {stm}
| cmd | null

Figure 4.12: App language syntax: statements.

the new statement (and later in Fig. 4.23) is described in Fig. 4.14. Note that there are no rules

at this level to describe the execution of commands, as those will be handled at a higher level

(see Sec. 4.2.4.2). Commands are handled at a higher level because they require interactions

with external constructs, such as the label map, or other apps or instances. The RAISE l and

DECLASSIFY l commands are requests to change the instance’s dynamic label to l. The

CALL(aid, n, er) command sends an intent with argument n to the app whose ID is aid. The

third argument, er, specifies if the calling instance is expecting a return or not. The difference

between RETURN n and EXIT n is that the later will remove the instance from the system,

while the former will not. Both of these commands will initiate a return call, with argument n,

if it was expected.

Typing In order to assure that apps are well behaved, we require that all apps are type checked

using the typing system specified in the Coq encoding (see Appendix A). This is a straight

forward type system that follows the treatment by Pierce et al. [72]. For example, the typing
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system ensures that all memory accesses are of the correct type. We write ∆; Γ `s s to state that

statement s is well-typed given variable type assignments Γ and memory type assignments ∆.

We also write ∆ `mem m to indicate that all the memory m contain values of the corresponding

types in ∆. In addition, we prove that the language is safe, i.e., we prove preservation and

progress.2

4.2.3 Modeling the Android System: Syntax

The model of the Android system includes four components: (1) a set of apps, (2) a set of app

instances, (3) a label map, and (4) a pending queue. An app instance in the model represents an

active app process in Android.

The apps set contains the actual code of each app in the system. The instances set contains

all current app instances in the system. The label map associates with each app and each app

instance their security labels and state. The pending queue contains all pending requests that

could not have been processed immediately. The exact syntax for the system is in Fig. 4.15.

Below we will explain the different parts of this syntax.

Lists We use the list construct to model various aspects of the system. To facilitate our

modeling we will use a standard inductively defined abstract list type. Figure 4.16 summarizes

the notation and operations we use for lists. In addition, when we write, for example, Apps ::=

list stm, it’s a syntactic sugar for Apps ::= [] | (stm::Apps). In our Coq modeling we use

Coq’s native list datatype.

App IDs App IDs are essentially integers which index into the apps set, the label map, and the

instances set. All three constructs are lists that must have the same length. The length of these

lists will never change throughout the execution of the system ensuring that app IDs consistently

refer to the same app.

2The proof is in our Coq development.
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Expressions

e1/m =⇒e e
′
1

e1⊕ e2/m =⇒e e
′
1⊕ e2

e2/m =⇒e e
′
2

val⊕ e2/m =⇒e val⊕ e′2

val1⊕ val2 = val

val1⊕ val2/m =⇒e val

e/m =⇒e e
′

*(e)/m =⇒e *(e′)

n ≤ length(m)

*(LOCn)/m =⇒e lookup(m,n)

Commands

e/m =⇒e e
′

CALL(aid, e, b)/m =⇒c CALL(aid, e′, b)

e/m =⇒e e
′

RETURN e/m =⇒c RETURN e′

e/m =⇒e e
′

EXIT e/m =⇒c EXIT e′

Statements

(null; s)/m =⇒stm s/m

s1/m =⇒stm s′1/m
′

(s1; s2)/m =⇒stm (s′1; s2)/m′

e/m =⇒e e
′

if e then s1 else s2/m =⇒stm if e′ then s1 else s2/m

if true then s1 else s2/m =⇒stm s1/m

if false then s1 else s2/m =⇒stm s2/m

e/m =⇒e e
′

e := e1/m =⇒stm e′ := e1/m

e/m =⇒e e
′

LOC(n) := e/m =⇒stm LOC(n) := e′/m LOC(n) := val/m =⇒stm null/m[n]← val

e/m =⇒e e
′

new x := e in {s}/m =⇒stm new x := e′ in {s}/m

new x := val in {s}/m =⇒stm [LOC(length(m) + 1)/x]s/(val::m)

c/m =⇒c c
′

c/m =⇒stm c′/m

Figure 4.13: App language operational semantics.
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[v/x]y = y x 6= y
[v/x]x = v
[v/x]e1⊕ e2 = [v/x]e1⊕[v/x]e2

[v/x] *(e) = *([v/x]e)
[v/x]RAISE l = RAISE l
[v/x]DECLASSIFY l = DECLASSIFY l
[v/x]CALL(aid, e, b) = CALL(aid, [v/x]e, b)
[v/x]RETURN e = RETURN [v/x]e
[v/x]EXIT e = EXIT [v/x]e
[v/x](s1; s2) = ([v/x]s1; [v/x]s2)
[v/x]if e then s1 else s2 = if [v/x]e then [v/x]s1 else [v/x]s2

[v/x]e1 := e2 = [v/x]e1 := [v/x]e2

[v/x]new y := e in {s} = new y := [v/x]e in {[v/x]s} x 6= y
[v/x]new x := e in {s} = new x := [v/x]e in {s}

Figure 4.14: Definition of variable substitution.

IID ::= N
Apps ::= list stm
ret ::= None | Some (AppID, IID)
mem ::= list val
Instance ::= (IID,mem, stm, ret)
IS ::= list(list Instance)
LM ::= listAppLabelMap
PendingType ::= pCall ret | pRet IID
PendingRq ::= (AppID, val, label, PendingType)
PQ ::= listPendingRq
Sys ::= (Apps, IS, LM,PQ)

Figure 4.15: The syntax for the Android system model.

[] The empty list
[a] A list with a single element a
(a::l) The list construction operator :: appends element a to list l
(l1 ++ l2) This operator appends the list l1 to the list l2
len(l) This function returns the number of elements in the list
ldncd This function returns the n’th element of the list l; returning d if len(l) ≤ n
map(f, l) Apply the function f to each element in l and return the resulting list
a ∈ l Test whether the a is an element of l or not

Figure 4.16: Summary of list notation and operations.
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DynamicLabelList ::= list(IID, label)
AppLabelMap ::= SingleInstanceUnlaunched label IID |

SingleInstanceLaunched label label IID |
MultiInstance label DynamicLabelList | NA

Figure 4.17: The syntax for the app label map.

Return address When a call is made the caller has the option to expect a return and the system

will register the return address as part of the callee state. This address will be used whenever

the callee issues the RETURN command. The address is a 2-tuple: the app ID and the instance

ID. The app ID is needed because we only guarantee that instance IDs are unique within a single

app. This assumption makes it easier to assign an ID to a new instance when we design the

operational semantics later. If the caller does not expect a return the return address will be None.

Label map The label map keeps track of each app’s status and security labels. Figure 4.17

encode the syntax of an app’s label map entry. For single-instance apps, the entry indicates

whether an app is launched or not. An unlaunched, single-instance app has a static security label

and the instance ID, IID, of the previous instance. A launched app has, in addition to the static

label, the dynamic, or effective, label and the ID of the currently running instance. For multi-

instance apps, we record the static label and a list of instance IDs and dynamic label pairs, which

inlcudes a pair for each active instance of the app. We call this list the app’s dynamic-label-list.

The NA mapping is reserved for apps that should not be available, and is only used when we use

projection on a system for the purpose of the noninterference proofs (refer to Sec. 4.3).

Pending Queue The pending queue (PQ) contains all the call or return requests that could not

be processed before. Each request consists of the ID of the destination app, the dynamic label of

the source app instance at the time of the original request, and either the destination instance ID

for return requests, or the return address for call requests.
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Instance set The set of all active instances, IS, in the system is implemented as a list of lists.

Each entry in the top-level list, indexed by the app ID, contains the list of active instances of the

corresponding app; we call such list the app-instance-set. Unlike the instances set, app-instance-

sets are not indexed by the instance IDs and can change length throughout the execution of

the system. Each app instance consists of an instance ID, the instance memory, the program

statement, and the return address.

4.2.4 Modelling the Android System: Semantics

In this section we detail the operational semantics of our Android model. For reference, all the

judgments used in this section are listed in Tables 4.1 and 4.2 with a brief description of each

judgment.

We write S =⇒a S ′ to state that a system instance, sys, takes a step with label a and that

S ′ is what becomes of S after the step is taken. In other words, instance S transitions to instance

S ′, and a is the transition label. A system step can produce an event, which is recorded using the

transition label. If the system step produces no event, the transition label will have a the special

value of τ , and we call it a τ step (=⇒τ ). For now, the only events are output events (we add

declassification events later). We write =⇒(n,dl) to indicate that the output event had a value of

n and security label dl.

An instance of the system can take a step in three main ways: (1) =⇒is an internal step where

an app instance program takes a regular (i.e., not a command) step, (2) =⇒pq a pending request

being processed from the pending queue, or (3) �a an execution step where a command that

has been issued by an app instance is executed. Output events record the values sent between

app instances and the security labels of the sending instances. Thus only command execution

steps for the CALL and RETURN commands can result in output steps, all other system steps

are τ steps. Since the sent value and the security label are fixed at the time the command is

issued we can always record the output then, even if the request will be placed in the pending
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S1
OUT(n,l)
=⇒ S2 System instance S1 takes a step that produces an output event of value n and label

l, and results in instance S2

S1
τ

=⇒ S2 System instance S1 takes a silent, or τ , step resulting in instance S2

is1 =⇒is is2 Internal step: Exactly one app instance in instance set is1 takes an internal (i.e.,
not a command) step with the resulting instance set being is2

(lm1, is1, pq1)/apps =⇒pq (lm2, is2, pq2) PQ processing: starting with is1, lm1, and pq1

(with an app set App), one request from the pq1 is processed resulting in is2, lm2, and pq2

(lm1, is1, pq1)/apps
OUT(n,l)
� (lm2, is2, pq2) Execution step: Starting with is1, lm1, and pq1

(with an app set App) an app instance in is1 issues a command and and the command is executed
resulting in a final state is2, lm2, and pq2, and producing an output of value n and label l

(lm1, is1, pq1)/apps
τ
� (lm2, is2, pq2) Execution Step: similar to the judgment above, except

that there is no output

ais1 =⇒as ais2 Exactly one app instance in the app-instance-set ais1 takes an internal step
with the end result being ais2

(aid, iid)@is1 �is 〈c, is2, ra〉 Command issuing: Exactly one app instance, identified by the
pair (aid, iid), issues command c and the instance set is1 will step to is2 in the process; ra exposes
the return address saved in the issuing instance

iid@ais1 �as 〈c, ais2, ra〉 Command issuing: Exactly one app instance with ID iid issues
command c and the app-instance-set ais1 will step to ais2 in the process; ra exposes the return
address saved in the issuing instance

s 7→ (c, s′) Indicates that immediate next step in running statement s is the execution of
command c followed by s′

IsReady(c) All the arguments of command c are fully evaluated and its ready to be executed

(lm1, is1, pq1)/apps �
CALL

〈dl, aidcallee, n, ra〉 (lm2, is2, pq2) Executing a call from an

instance whose dynamic label is dl to app aidcallee with argument n and return address ra, starting
from state (lm1, is1, pq1) ends with state (lm2,is2,pq2)

lm1 �
RAISE

〈aid, iid, l〉 lm2 Raising the label of app instance (aid, iid) in the label map lm1 to

the label l results in label map lm2

Table 4.1: A description of all judgments used to define the system operational semantics (part 1
of 2).
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(lm, is1, pq1)/apps �
RETURN

〈dl, aidcallee, iidcallee, n〉 (is2, pq2) Starting from state

(lm, is1, pq1) and executing a return call from an app instance whose dynamic label is dl to
the instance (aidcallee, iidcallee) with argument n results in state (lm, is2, pq2)

(lm1, is1, pq1)/apps �
EXIT
〈aid, iid〉 (lm2, is2, pq2) Starting from state (lm, is1, pq1) and

ending app instance (aid, iid) by removing it and reference to it in the system, results in state
(lm, is2, pq2)

(aid, iid)@lm HasLabel (sl, dl) The label map lm assigns app instance (aid, iid) static label
sl dynamic label dl

aid@lm HasAppLabel (alm) The label map lm assigns app aid the app-label-map alm

Update aid@lm1 with (alm) 7→ lm2 Replacing the app-label-map of app aid in label map
lm1 with alm yields label map lm2

iid@dll HasInstanceLabel dl The instance with ID iid is assigned dynamic label dl in the
dynamic-label-list dll

Update iid@dll1 with l 7→ dll2 Updating the dynamic-label-list dll1 to reassign instance ID
iid label to be l result in dll2

BusyApp iid@ais The app instance with ID iid in the app-instance-set ais is still running, i.e.,
has a program statement the is not null

Busy (aid, iid)@is The app instance (aid, iid) in the instances set is is still running, i.e., has a
program statement the is not null

Send 〈n, ra, s〉 ToExisting iid@(ais1) 7→ ais2 Replacing the instance with ID iid program
with statement s and its return address with ra, in ais1 yields ais2

Send 〈n, ra, s〉 ToNew iid@(ais1) 7→ ais2 Adding a new instance with ID iid, empty memory,
program s, and return address ra to ais1 yields ais2

RemoveRA (aid, iid) from is1 7→ is2 Instances set is2 is the result of removing any return
address pointing to (aid, iid) from all instances in is1

RemoveRAas (aid, iid) from ais1 7→ ais2 App-instance-set ais2 is the result of removing any
return address pointing to (aid, iid) from all instances in ais1

RemovePQ (aid, iid) from pq1 7→ pq2 Pending queue pq2 is the result of removing any request
or return address pointing to (aid, iid) from pq1

Table 4.2: A description of all judgments used to define the system operational semantics (part 2
of 2).
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SYS-INTERNAL
is1 =⇒is is2

(apps, lm, is1, pq)
τ

=⇒ (apps, lm, is2, pq)

SYS-PQ
(lm1, is1, pq1)/apps =⇒pq (lm2, is2, pq2)

(apps, lm1, is1, pq1)
τ

=⇒ (apps, lm2, is2, pq2)

SYS-EXE-OUT

(lm1, is1, pq1)/apps
OUT(n,l)
� (lm2, is2, pq2)

(apps, lm1, is1, pq1)
OUT(n,l)
=⇒ (apps, lm2, is2, pq2)

SYS-EXE-TAU

(lm1, is1, pq1)/apps
τ
� (lm2, is2, pq2)

(apps, lm1, is1, pq1)
τ

=⇒ (apps, lm2, is2, pq2)

Figure 4.18: The top-level system steps operational semantics.

queue. Therefore, processing pending requests is always a τ step. Figure 4.18 formalizes

these semantics. Next, we will cover in more details the semantics for internal steps, command

execution, and pending queue processing.

4.2.4.1 Internal steps is1 =⇒is is2

Figure 4.19 encodes the semantics for internal steps. Rules I-IS-STEP and I-IS-CON state that

exactly one app takes an internal step. An app takes an internal step if exactly one of its instances

takes a step; this fact is encoded by rules I-AIS-STEP and I-AIS-CON. Finally, as I-AIS-STEP

states, an app instance takes a step if its program (i.e., statement) takes a step.

4.2.4.2 Command execution (lm1, is1, pq1)/apps
a
� (lm2, is2, pq2)

A command is executed by making specific changes in the instances set, label map, and pending

queue. In addition, a command can optionally produce an output. Thus, we write

(lm1, is1, pq1)/apps
a
� (lm2, is2, pq2) to indicate that an app instance in is1 executed some
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I-AIS-CON
ais1 =⇒as ais2

(inst::ais1) =⇒as (inst::ais2)

I-AIS-STEP
s1/m1 =⇒stm s2/m2

((iid,m1, s1, ra)::ais) =⇒as ((iid,m2, s2, ra)::ais)

I-IS-CON
is1 =⇒is is2

(ais::is1) =⇒is (ais::is2)

I-IS-STEP
ais1 =⇒as ais2

(ais1::is) =⇒is (ais2::is)

Figure 4.19: The operational semantics for internal steps.

command resulting in changing lm1 to lm2, is1 to is2, and pq1 to pq2, and that there was an event

a. Note that a could be τ , meaning that there was no output. In addition, it could be the case that

there were no changes to the label map, lm1 = lm2, or to the pending queue, pq1 = pq2.

The operational semantics for command execution are in Fig. 4.20. The first premise of all

these rules is a command issuing step (�is) where a command is dispatched from the issuing

app instance. Most rules also utilize the (iid, lm)@aid HasLabel (sl, dl) judgment, which

retrieves the static and dynamic labels of the specified app instance. The actual execution

of a command is done using a corresponding execution judgment, with the general format of

((initial state) �command name〈command arguments〉 (resulting state)); for example the judgment

for the execution of the RAISE command is lm1 �RAISE〈aid, iid, l〉 lm2. We define command

issuing and the specific command execution rules below. One detail worth pointing to is the

second premise of the last two rules concerning the EXIT command. These conditions are needed

to make sure that an instance that is exiting, and hence will be removed from the system, will not

return to itself. Because the basic noninterference property requires that no declassification steps

are taken by the system, we exclude the operational semantics for the DECLASSIFY command

from this model (We add them in Sec. 4.4).

Issuing commands �is The first step of executing a command is to extract the command

from the issuing app instance. Exactly one of the app instances must be in a state where the

next statement to be executed is a command, and there is no further evaluation needed for
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getRA(er, aid, iid) =

{
None er = false

Some ((aid, iid)) er = true

EXE-C
(aid, iid)@is1 �is 〈CALL(aidcallee, n, er), is

′, ra〉 (aid, iid)@lm1 HasLabel (sl, dl)
(lm1, is

′, pq1)/apps �
CALL
〈dl, aidcallee, n, getRA(er, aid, iid)〉 (lm2, is2, pq2)

(lm1, is1, pq1)/apps
OUT(n,dl)

� (lm2, is2, pq2)

EXE-RA
(aid, iid)@is1 �is 〈RAISE l, is2, ra〉 lm1 �

RAISE
〈aid, iid, l〉 lm2

(lm1, is1, pq)/apps
τ
� (lm2, is2, pq)

EXE-R1
(aid, iid)@is1 �is 〈RETURN n, is′, Some ((aidcallee, iidcallee))〉

(aid, iid)@lm HasLabel (sl, dl)
(lm, is′, pq1)/apps �

RETURN
〈dl, aidcallee, iidcallee, n〉 (is2, pq2)

(lm, is1, pq1)/apps
OUT(n,dl)

� (lm, is2, pq2)

EXE-R2
(aid, iid)@is1 �is 〈RETURN n, is2, None〉 (aid, iid)@lm HasLabel (sl, dl)

(lm, is1, pq)/apps
OUT(n,dl)

� (lm, is2, pq)

EXE-E1
(aid, iid)@is1 �is 〈EXIT n, is′, Some ((aidcallee, iidcallee))〉

aid 6= aidcallee ∨ iid 6= iidcallee
(aid, iid)@lm1 HasLabel (sl, dl) (lm1, is

′, pq1)/apps �
EXIT
〈aid, iid〉 (lm2, is

′′, pq′)

(lm2, is
′′, pq′)/apps �

RETURN
〈dl, aidcallee, iidcallee, n〉 (lm2, is2)pq2

(lm1, is1, pq1)/apps
OUT(n,dl)

� (lm2, is2, pq2)

EXE-E2
(aid, iid)@is1 �is 〈EXIT n, is′, ra〉 ra = Some ((aid, iid)) ∨ ra = None

(aid, iid)@lm1 HasLabel (sl, dl) (lm1, is
′, pq1)/apps �

EXIT
〈aid, iid〉 (lm2, is2, pq2)

(lm1, is1, pq1)/apps
OUT(n,dl)

� (lm2, is2, pq2)

Figure 4.20: The operational semantics for command execution.
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the command arguments. We write (aid, iid)@is1 �is 〈c, is2, ra〉 to say that exactly one app

instance, identified by the pair (aid, iid) issues command c and the instances set is1 will step to

is2 in the process. ra, which exposes the return address saved in the issuing instance is used for

executing the RETURN and EXIT commands.

Figure 4.21 formalizes these requirements. The last two rules, ISS-IS-CON and

ISS-IS-STEP, define the judgment (aid, iid)@is1 �is 〈c, is2, ra〉 ensuring that exactly one

app-instance-set issues a command. The first five rules in Fig .4.21 define the judgment

iid@ais1 �as 〈c, ais2, ra〉, which state that the app instance in ais1, with instance ID iid and

return address ra, takes a step dispatching the command c. The first four rules define the actual

dispatching of the (�as) commands, i.e., the app instance (at the head of the app-instance-set)

takes a step by removing the command statement leaving only the residual program. The

residual program is just the rest of the app instance code that follows the issued command and

is determined by the s 7→ (c, r) judgment, which states that a program s with an

active command c will step to program r after dispatching the command. For example,

(RAISE l; (s2; s3)) 7→ (RAISE l, (s2; s3)) and RETURN 0 7→ (RETURN 0,null). The

fifth rule, ISS-AIS-CON, completes the definition of this judgment by allowing instances that

are not at the head of list to issue commands.

The RAISE l command This command allows app instances to change their (dynamic)

security label to a more strict label, i.e., a label that is higher in the security lattice. This

operation is always safe, thus we should only need to check if the label is actually higher. That

is, assuming that the current dynamic label is dl, then we need to check that dlv l. However, as

we found out when trying to prove the noninterference theorem for the system, this will lead to

potential leaks in the case of single-instance apps (refer to Sec. 2.3.2). Therefore, for

single-instance apps, we will make sure that we also raise the static label if necessary to prevent

it from ever being lower than the dynamic label. The operational semantics for the RAISE

command execution are defined in Fig. 4.22. We do not define this judgment for nonexistent

80



Define active commands and find residual program

IsReady(c) =


True c is RAISE or DECLASSIFY

True c is CALL, RETURN, or EXIT with fully evaluated arguments
False c is CALL, RETURN, or EXIT with none fully evaluated arguments

s is a command c IsReady(c)

s 7→ (c,null)

s 7→ (c, r)

(s; s2) 7→ (c, (r; s2))

Command issuing

ISS-AIS-RAD
s 7→ (c, r) c is a RAISE or DECLASSIFY command

iid@((iid,m, s, ra)::ais) �as 〈c, ((iid,m, r, ra)::ais), None〉

ISS-AIS-C
s 7→ (CALL(aid, exp, er), r)

iid@((iid,m, s, ra)::ais) �as 〈CALL(aid, exp, er), ((iid,m, r, ra)::ais), ra〉

ISS-AIS-R
s 7→ (RETURN exp, r)

iid@((iid,m, s, ra)::ais) �as 〈RETURN exp, ((iid,m,null, ra)::ais), None〉

ISS-AIS-E
s 7→ (EXIT exp, r)

iid@((iid,m, s, ra)::ais) �as 〈EXIT exp, ((iid, [],null, ra)::ais), None〉

ISS-AIS-CON
iid@ais1 �as 〈c, ais2, ra〉

iid@(inst::ais1) �as 〈c, (inst::ais2), ra〉

ISS-IS-CON
(aid, iid)@is1 �is 〈c, is2, ra〉

(aid+ 1, iid)@(ais::is1) �is 〈c, (ais::is2), ra〉

ISS-IS-STEP
iid@ais1 �as 〈c, ais2, ra〉

(0, iid)@(ais1::is) �is 〈c, (ais2::is), ra〉

Figure 4.21: The operational semantics for issuing commands.
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RA-S1
aid@lm1 HasAppLabel (SingleInstanceLaunched iid sl dl)

dlv l l 6v sl Update aid@lm1 with (SingleInstanceLaunched iid l l) 7→ lm2

lm1 �
RAISE
〈aid, iid, l〉 lm2

RA-S2
aid@lm1 HasAppLabel (SingleInstanceLaunched iid sl dl)

dlv l lv sl Update aid@lm1 with (SingleInstanceLaunched iid sl l) 7→ lm2

lm1 �
RAISE
〈aid, iid, l〉 lm2

RA-S-B
aid@lm HasAppLabel (SingleInstanceLaunched iid sl dl) dl 6v l

lm �
RAISE
〈aid, iid, l〉 lm

RA-M
aid@lm1 HasAppLabel (MultiInstance sl dll1)
iid@dll1 HasInstanceLabel dl dlv l

Update iid@dll1 with l 7→ dll2 Update aid@lm1 with (MultiInstance sl dll2) 7→ lm2

lm1 �
RAISE
〈aid, iid, l〉 lm2

RA-M-B
aid@lm HasAppLabel (MultiInstance sl dll) iid@dll HasInstanceLabel dl dl 6v l

lm �
RAISE
〈aid, iid, l〉 lm

Figure 4.22: The operational semantics for the RAISE command.

instances since only existing instances can issue commands. The rules RA-S* are for

single-instance apps and the rules RA-M* are for multi-instance-apps. Rules RA-S-B and

RA-S-B cover the cases when the raise request is denied because it is not to a label that is

higher in the lattice. Rule RA-S1 is for the case where the new label is not the same as or below

the static label of a single-instance app and we need to raise both the dynamic and static labels.

Rule RA-S2 cover the case where we only need to raise the dynamic label. The simpler case for

multi-instance apps is covered by the rule RA-M.
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app-stm(apps, aid) = appsdaidcnull
Busy app instance

BUS-AIS
s 6= null

BusyApp iid@((iid,m, s, ra)::ais)

BUS-AIS-CON
BusyApp iid@ais

BusyApp iid@(inst::ais)

BUS-IS
BusyApp iid@(isdaidc[])

Busy (aid, iid)@is

Sending an intent

SND-EXT-CON
Send 〈n, ra, s〉 ToExisting iid@(ais1) 7→ ais2

Send 〈n, ra, s〉 ToExisting iid@((inst::ais1)) 7→ (inst::ais2)

SND-EXT

Send 〈n, ra, s〉 ToExisting iid@(((iid,m,null, raold)::ais))
7→ ((iid,m, [n/ARG]s, ra)::ais)

SND-NEW

Send 〈n, ra, s〉 ToNew iid@(ais) 7→ ((iid, [], [n/ARG]s, ra)::ais)

Figure 4.23: Helper definitions for the CALL and RETURN command operational semantics.
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Sending intents and Busy Instances To complete an allowed call or return request, the

argument value needs to be substituted into a fresh copy of the app’s code that will be put in a

new or existing instance. The exact details are encoded in the judgments in Fig. 4.23. The

judgment Send 〈n, ra, s〉 ToExisting iid@(ais1) 7→ ais2 states that the result of sending an

intent, identified by iid with argument n and return address ra, to the app-instance-set ais1 is

ais2. The second judgment is similar except that the intent is sent to a newly created instance

that is added to the app-instance-set. It’s assumed that s is a fresh copy of the app’s code. The

argument value, n, is substituted in place of the ARG variable in the app’s code. If we are

sending an intent to an existing app instance (SEND-EXT and SEND-EXT-CON) we need to

match the instance ID in the request with that of the instance. In this case, the instance’s code

will be replaced by the fresh copy, but its memory will be kept intact. On the other hand, if we

are sending the intent to a new instance (SEND-NEW), we need to add a new entry at the head

of the app-instance-set with the requested instance ID, an empty memory, and the fresh copy of

the code. An important detail to notice here is that, when sending an intent to an existing

instance, we require that this instance be ready to accept new intents, i.e., not busy processing a

previous request. This is achieved by requiring that the instance’s current program be null.

The Busy (aid, iid)@is judgment state that the instance identified by the app ID aid and

instance ID iid in the instance set is is busy processing a request, i.e., its program is not null.

This judgment along with those for sending intents will be used for the operational semantics of

call and return commands below.

The CALL(aid, n, er) command A call request is executed by blocking it, putting it in the

pending queue, or by allowing it and sending the intent to the callee app. The first rule in

Fig. 4.24 (C-NA) deals with unavailable apps. Since we don’t put restrictions on what app IDs

are allowed in the CALL command, they could refer to nonexistent apps. Also, while the NA app

label should not occur in normal operations, it needs to be handled to cover projected systems

where this label could appear (see Sec. 4.3). The next three rules handle calls to already launched
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single-instance apps. If the current instance’s dynamic label allows the call to be made without

violating the security policy (C-S), the execution is handled normally by sending the intent to

the instance and thus updating the instances set. If the call is allowable but the callee’s current

instance is busy, we put the request in the pending queue (C-S-P). We save the caller’s dynamic

label because we need to compare it again with the callee’s when we process the pending request

later, as it could have changed. We ignore, i.e., block, the request if the callee’s dynamic label

does not allow it (C-S-B).3 The last four rules deal with calls to unlaunched single-instance apps

or multi-instance apps. In both cases, we only need to compare the caller’s dynamic label with

the callee’s static label and either allow the request (C-SU and C-M) or block it (C-SU-B and

C-M-B). For single instance apps, we increment the previous instance ID by one to get the ID

for the new instance. But for multi-instance apps, we need to find the maximum ID in the apps

list of active instances and increment it, which is the role of the next-IID(dll) function.

The RETURN n command A return is executed by sending an intent to the specified app

instance (see Fig. 4.25). We need not be concerned with returning to a nonexistent app instance

because once an app instance exits we will remove all pending return requests and all saved

return addresses pointing to the exited instance in the system. Any request that violates the

security policy is blocked (R-S-B and R-M-B). Otherwise, the request is put in the pending

queue if the instance is busy (R-S-P and R-M-P), or processed immediately if it’s not (R-S and

R-M). Note that the label map never changes when processing return requests.

Removing expired return address and pending requests When an instance exits we need

to clean up the system by removing any references to it. There are two places where we

find such references: the requests in the pending queue and the saved return addresses in the

instances set. We write RemoveRA (aid, iid) from is1 7→ is2 to state that is1 becomes is2

after removing all return address to the app instance identified by aid and iid. Similarly, we

3Basing the decision on the static label will prevent us from proving noninterference.
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C-NA
aid ≥ len(apps) ∨ aid@lm HasAppLabel (NA)

(lm, is, pq)/apps �
CALL
〈dlcaller, aid, n, ra〉 (lm, is, pq)

C-S
aid@lm1 HasAppLabel (SingleInstanceLaunched iid sl dl)

dlcallerv dl Send 〈n, ra, app-stm(apps, aid)〉 ToExisting iid@(is1daidc[]) 7→ aisnew
Update aid@(lm1, is1) with (SingleInstanceLaunched iid sl dl, aisnew) 7→ (lm2, is2)

(lm1, is1, pq)/apps �
CALL
〈dlcaller, aid, n, ra〉 (lm2, is2, pq)

C-S-P
aid@lm HasAppLabel (SingleInstanceLaunched iid sl dl)

dlcallerv dl Busy (aid, iid)@is

(lm, is, pq)/apps �
CALL
〈dlcaller, aid, n, ra〉 (lm, is, ((aid, n, dlcaller, pCall ra)::pq))

C-S-B
aid@lm HasAppLabel (SingleInstanceLaunched iid sl dl) dlcaller 6v dl

(lm, is, pq)/apps �
CALL
〈dlcaller, aid, n, ra〉 (lm, is, pq)

C-SU
aid@lm HasAppLabel (SingleInstanceUnlaunched sl iidprev) dlcallerv sl
Send 〈n, ra, app-stm(apps, aid)〉 ToNew (iidprev + 1)@(is1daidc[]) 7→ aisnew
Update aid@(lm1, is1) with (SIL (iidprev + 1) sl sl, aisnew) 7→ (lm2, is2)

(lm1, is1, pq)/apps �
CALL
〈dlcaller, aid, n, ra〉 (lm2, is2, pq)

C-SU-B
aid@lm HasAppLabel (SingleInstanceUnlaunched sl iidprev) dlcaller 6v sl

(lm, is, pq)/apps �
CALL
〈dlcaller, aid, n, ra〉 (lm, is, pq)

C-M
aid@lm1 HasAppLabel (MultiInstance sl dll) dlv sl iid = next-IID(dll)

Send 〈n, ra, app-stm(apps, aid)〉 ToNew iid@(is1daidc[]) 7→ aisnew
Update aid@(lm1, is1) with (MultiInstance sl ((iid, sl)::dll), aisnew) 7→ (lm2, is2)

(lm1, is1, pq)/apps �
CALL
〈dlcaller, aid, n, ra〉 (lm2, is2, pq)

C-M-B
aid@lm1 HasAppLabel (MultiInstance sl dll) dl 6v sl

(lm, is, pq)/apps �
CALL
〈dlcaller, aid, n, ra〉 (lm, is, pq)

Figure 4.24: The operational semantics for the CALL command.
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R-S
aid@lm HasAppLabel (SingleInstanceLaunched iid sl dl) dlcallerv dl

Send 〈n, None, app-stm(apps, aid)〉 ToExisting iid@(is1daidc[]) 7→ aisnew
Update aid@(lm, is1) with (SingleInstanceLaunched iid sl dl, aisnew) 7→ (lm, is2)

(lm, is1, pq)/apps �
RETURN

〈dlcaller, aid, iid, n〉 (is2, pq)

R-S-P
aid@lm HasAppLabel (SingleInstanceLaunched iid sl dl)

dlcallerv dl Busy (aid, iid)@is

(lm, is, pq)/apps �
RETURN

〈dlcaller, aid, iid, n〉 (is, ((aid, n, dlcaller, pRet iid)::pq))

R-S-B
aid@lm HasAppLabel (SingleInstanceLaunched iid sl dl) dlcaller 6v dl

(lm, is, pq)/apps �
RETURN

〈dlcaller, aid, iid, n〉 (is, pq)

R-M
aid@lm HasAppLabel (MultiInstance sl dll)
iid@dll HasInstanceLabel dl dlcallerv dl

Send 〈n, None, app-stm(apps, aid)〉 ToExisting iid@(is1daidc[]) 7→ aisnew
Update aid@(lm1, is1) with (MultiInstance sl ((iid, sl)::dll), aisnew) 7→ (lm2, is2)

(lm, is1, pq)/apps �
RETURN

〈dlcaller, aid, iid, n〉 (is2, pq)

R-M-P
aid@lm HasAppLabel (MultiInstance sl dll)

iid@dll HasInstanceLabel dl dlcallerv dl Busy (aid, iid)@is

(lm, is, pq)/apps �
RETURN

〈dlcaller, aid, iid, n〉 (is, ((aid, n, dlcaller, pRet iid)::pq))

R-M-B
aid@lm HasAppLabel (MultiInstance sl dll)
iid@dll HasInstanceLabel dl dlcaller 6v dl

(lm, is, pq)/apps �
RETURN

〈dlcaller, aid, iid, n〉 (is, pq)

Figure 4.25: The operational semantics for the RETURN command.
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RRA-AIS-EM

RemoveRAas (aid, iid) from [] 7→ []

RRA-AIS-RM
RemoveRAas (aid, iid) from ais1 7→ ais2

RemoveRAas (aid, iid) from ((iid′,m, s, Some (aid, iid))::ais1) 7→ ais2

RRA-AIS-SKIP
RemoveRAas (aid, iid) from ais1 7→ ais2 aid 6= aid2 ∨ iid 6= iid2

RemoveRAas (aid, iid) from ((iid′,m, s, Some (aid2, iid2))::ais1)
7→ ((iid′,m, s, Some (aid2, iid2))::ais2)

RRA-AIS-NONE
RemoveRAas (aid, iid) from ais1 7→ ais2

RemoveRAas (aid, iid) from ((iid′,m, s, None)::ais1) 7→ ((iid′,m, s, None)::ais2)

RRA-IS-EM

RemoveRA (aid, iid) from [] 7→ []

RRA-IS
RemoveRA (aid, iid) from is1 7→ is2 RemoveRAas (aid, iid) from ais1 7→ ais2

RemoveRA (aid, iid) from (ais1::is1) 7→ (ais2::is2)

Figure 4.26: The rules for removing return addresses to a specific instance from all instances in
an instance set.

write RemovePQ (aid, iid) from pq1 7→ pq2 for removing pending return requests and return

addresses of an app instance from the pending queue. The definitions of these judgments are

listed in Figs. 4.26 and 4.27.

The EXIT n command When an app instance exits, we need to remove it from the instances

set, adjust the app’s label map, and remove all references to it from the system. For single-

instance apps the label map entry is switched from launched to unlaunched and the app-instance-

set is set to an empty list. As for multi-instance apps, the instance’s entry in the app’s dynamic-

label-list and app-instance-set must be removed. Figure 4.28 list the operational semantics rules

for executing an EXIT command. Note that these rules only handle the cleanup, not the return
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RP-EM

RemovePQ (aid, iid) from [] 7→ []

RP-C-NONE
RemovePQ (aid, iid) from pq1 7→ pq2

RemovePQ (aid, iid) from ((aid′, n, dl, pCall None)::pq1) 7→ ((aid′, n, dl, pCall None)::pq2)

RP-C-SKIP
RemovePQ (aid, iid) from pq1 7→ pq2 aid 6= aid2 ∨ iid 6= iid2

RemovePQ (aid, iid) from ((aid′, n, dl, pCall (Some (aid2, iid2)))::pq1)
7→ ((aid′, n, dl, pCall (Some (aid2, iid2)))::pq2)

RP-C-RM
RemovePQ (aid, iid) from pq1 7→ pq2

RemovePQ (aid, iid) from ((aid′, n, dl, pCall (Some (aid, iid)))::pq1)
7→ ((aid′, n, dl, pCall None)::pq2)

RP-R-SKIP
RemovePQ (aid, iid) from pq1 7→ pq2 aid 6= aid2 ∨ iid 6= iid2

RemovePQ (aid, iid) from ((aid2, n, dl, pRet iid2)::pq1) 7→ ((aid2, n, dl, pRet iid2)::pq2)

RP-R-RM
RemovePQ (aid, iid) from pq1 7→ pq2

RemovePQ (aid, iid) from ((aid, n, dl, pRet iid)::pq1) 7→ pq2

Figure 4.27: The rules for removing return addresses and pending return requests of a specific
instance from the pending queue.
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REM-CON
Remove iid@(dll1, ais1) 7→ (dll2, ais2)

Remove iid@((d::dll1), (inst::ais1)) 7→ ((d::dll2), (inst::ais2))

REM

Remove iid@(((iid, l)::dll1), ((iid,m, s, ra)::ais1)) 7→ (dll2, ais2)

E-S
aid@lm HasAppLabel (SingleInstanceLaunched iid sl dl)

RemoveRA (aid, iid) from is1 7→ is′

Update aid@(lm1, is
′) with (SingleInstanceUnlaunched sl iid, []) 7→ (lm2, is2)
RemovePQ (aid, iid) from pq1 7→ pq2

(lm1, is1, pq1)/apps �
EXIT
〈aid, iid〉 (lm2, is2, pq2)

E-M
aid@lm HasAppLabel (MultiInstance sl dll)

RemoveRA (aid, iid) from is1 7→ is′ Remove iid@(dll, is′daidc[]) 7→ (dll′, ais′)
Update aid@(lm1, is

′) with (MultiInstance sl dll′, ais′) 7→ (lm2, is2)
RemovePQ (aid, iid) from pq1 7→ pq2

(lm1, is1, pq1)/apps �
EXIT
〈aid, iid〉 (lm2, is2, pq2)

Figure 4.28: The operational semantics for the EXIT command.

part of the EXIT, which is handled as a normal return (refer to the second to rule EXEC-E1 in

Fig. 4.20).

4.2.4.3 Processing pending queue requests (lm1, is1, pq1)/apps =⇒pq (lm2, is2, pq2)

A pending request, from the pending queue, is processed by invoking the corresponding

command execution semantics detailed in Sec. 4.2.4.2. We define this step, =⇒pq, using an

auxiliary judgment Process (lm1, is1, pq
′
1, pq1)/apps 7→ (lm2, is2, pq2), which states that

exactly one entry in the pending queue pq1 is processed, and that the pending queue composed

of (pq′1 ++ pq1) will step to pq2 as a result of this processing. pq′1 is essentially the portion of

the original pending queue that we skipped before getting to the entry we are processing.4 The

4We had to resort to this indirect approach in order to have the whole pending queue as an input and output
to the command execution judgment. This restriction facilitate the noninterference proof by enabling the reuse of
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PP-NEXT
Process (lm1, is1, (pq

′
1 ++ [p]), pq1)/apps 7→ (lm2, is2, pq2)

Process (lm1, is1, pq
′
1, (p::pq1))/apps 7→ (lm2, is2, pq2)

PP-CALL
(lm1, is1, (pq

′ ++ pq))/apps �
CALL
〈dl, aid, n, ra〉 (lm2, is2, (pq

′ ++ pq))

Process (lm1, is1, pq
′, ((aid, n, dl, pCall ra)::pq))/apps 7→ (lm2, is2, (pq

′ ++ pq))

PP-RET
(lm, is1, (pq

′ ++ pq))/apps �
RETURN

〈dl, aid, n, iid〉 (lm, is2)(pq′ ++ pq)

Process (lm, is1, pq
′, ((aid, n, dl, pRet iid)::pq))/apps 7→ (lm, is2, (pq

′ ++ pq))

PQ
Process (lm1, is1, [], pq1)/apps 7→ (lm2, is2, pq2)

(lm1, is1, pq1)/apps =⇒pq (lm2, is2, pq2)

Figure 4.29: The operational semantics for processing the pending queue.

exact operational semantics are in Fig. 4.29. The first rule (PP-NEXT) simply states that we can

always skip one more entry from the original pending queue by moving it to the skipped queue.

Rules PP-CALL and PP-RET define how the entry at the head of the remaining queue is

processed by invoking the appropriate command execution judgment.

4.3 Noninterference Proof

In order to validate our model, in terms of IFC security, we will prove that it satisfies the

noninterference property. The noninterference property, in general, states that if we start with

two systems that are exactly the same, except that one contains protected secrets not present in

the other system, they should be able to take similar steps such that they remain equivalent as

viewed by an attacker. In other words, the attacker, who can only observe or influence the low

security parts of a system, won’t be able to differentiate between the two systems. Therefore,

when the same attacker interacts with a single system, it won’t be able to know its protected

previously proven lemmas as is.
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secrets or whether these secrets even exists. In our noninterference definition, we start with

an arbitrary system that may or may not contain secrets. Then, we use a special function that

removes the high parts of the system, i.e., the parts that according to the security policy, this

attacker should not be able to access. We call this special function a projection, and we call the

resulting system the projected system.

The attacker We cannot define any security property without defining an attacker model. In

our setting, we need to define the attacker’s security level, i.e., its label k from the security lattice.

When we say that the attacker label is a k, we mean that the attacker can access any secret or

privilege with label l if and only if lv k. We call apps with such labels attacker-accessible apps.

In practice that means the attacker is in control of one or more of these apps. That being said,

and since we allow apps to raise their labels, an attacker could raise the label of one of the apps

under his or her control and access any secret. However, the attacker should never be able to

declassify these secrets and, for example, send them through the Internet APIs.

We will start this section by introducing the projection function in Sec. 4.3.1. Then, in

Sec. 4.3.2, we will describe the well-configured system property, which ensures that a system

instance is configured as expected by the operational semantics and the noninterference proof.

In Sec. 4.3.3, we define the noninterference property and prove it for the simplified model.

4.3.1 The Projection 1k
sys(S)

The goal of the projection function is to purge the system of any parts that should not be

accessible by the attacker.5 It’s a very critical part of the noninterference definition, as we use it

to define the projected system. If ill-defined, the projection function can result in an unsecure or

less flexible property. A projection function that does not remove all attacker-accessible parts of

a system instance will result in a less secure definition. In the extreme, a projection that does not

remove anything will result in a noninterference property that admits any system because any

5It’s often called the purge function in the literature.
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system should be able to simulate itself. On the other hand, a projection function that removes

more parts than necessary might result in a definition that is either secure but not quite useful, as

it might not admit some of the secure systems; or insecure because it misrepresents the attacker

capabilities, i.e., models a weaker attacker model6.

The projection function, 1k
sys(S), which is parametrized with the attacker label k, takes a

system instance as an input and returns the same instant but with all the high parts removed. We

define the projection function in Figs. 4.30 and 4.31. The definitions in these two figures use

pattern-matching where the first pattern to match the arguments is used. For example, when

defining the function 1k
is, the first pattern will be used whenever both the second and third

arguments are not empty lists; otherwise, the second, catch all, pattern will be used. In general,

the projection will remove all high (i.e., not attacker-accessible) instances from the system,

including their label map entries and any references to them in the system. For multi-instance

apps, this means that any instance with a dynamic label dl, where dl 6v k, will be removed from

both the app-instance-set and the dynamic-label-list of the app. For single-instance apps, we look

at the static label of unlaunched apps and the dynamic label of launched ones, say l. If l 6v k, the

app will be removed from the system: its app-instance-set will be emptied, and the its label map

entry will be switched to NA. The helper functions, h1, h2, h3, and h4 are used to transform the

output of underlying functions to the format needed by the calling function. For example, the

function 1k
pq〈lm, lm〉(pq) calls itself and the function 1k

pendR. The helper function h4 is used to

combine the two outputs and return the resulting queue.

The projection function will rename the IDs of all instances of multi-instance apps. This

renaming is needed to unify the IDs when comparing the projected system and the original one

in the simulation lemma proof (Sec. 4.3.3), as the comparison will reapply the projection to both

systems (see the definition of ≈k in Fig. 4.34). Otherwise, if the two systems diverge in terms

of IDs, because of the activity of high instances (i.e., instances that are not accessible to the

attacker), they won’t be able to simulate each other. The IDs are numbered sequentially, starting

6Weaker in the sense that it has access to less parts of the system.
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from 0, and ignoring high instances. For example, if app A, has four instances numbered 1, 2,

4, and 5, with instance 4 being high, they will be renamed as follows: 1 → 0, 2 → 1, 5 → 2.

Instance 4 does not need to be renamed because it will be removed by the projection.

The projection function 1k
sys(apps, lm, is, pq) is defined using the three functions 1k

lm(lm),

1k
is〈lm〉(lm, is), and 1k

pq〈lm, lm〉(pq), which are applied to the label map, the instance set, and

the pending queue, respectively.

The label map projection function, 1k
lm(lm), filters the high label map entries by applying

the function 1k
alm(alm) to each entry. If an entry is not available, i.e, NA, nothing is done. For

unlaunched single-instance apps, the static label is compared to the attacker’s to decide whether

the entry should be removed (by returning NA). The dynamic label is used if the single-instance

app is launched, which is fine because we make sure that the static label is never lower than the

dynamic label (see Sec. 4.3.2). Therefore, it will never be the case that a single-instance app with

a low label is removed by the projection function because its dynamic label is high. For multi-

instance apps, the static label is ignored by the projection function because we never remove

multi-instance apps completely. An individual instance of a multi-instance app is removed if the

instance’s dynamic label is high. The function 1k
dll〈n〉(dll) perform this removal and rename the

instance IDs as discussed above.

The instance set projection function, 1k
is〈 ˆlm〉(lm, is), pairs each app-instance-set with the

corresponding app-label-map and then applies 1k
ais〈

ˆ̂
lm〉(alm, ais) to each pair. The parameter

ˆlm of the function 1k
is〈 ˆlm〉(lm, is), is just a copy of the complete label map that is needed for

the projection return address. It’s treated as separate parameter to keep it whole as the function

recursively breaks down label map. The function 1k
ais〈

ˆ̂
lm〉(alm, ais) projects an app-instance-

set based on the corresponding app-label-map similar to 1k
alm(alm) function discussed above.

If an app-instance-set needs to be removed, an empty list is returned; otherwise the result of

applying the function 1k
inst〈lm〉(ais) to all the instances in it is returned. For multi-instance

apps, the function 1k
ais,mi〈n+ 1, lm〉(dll, ais) is used to filter high instances and both rename

the IDs and apply 1k
inst〈lm〉(ais) to the remaining instances. The function 1k

inst〈lm〉(inst)
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returns the instance after applying 1k
ra〈lm〉(ra) to its return address. The function 1k

ra〈lm〉(ra)

removes the return address (by returning None) if it points to an instance with a high dynamic

label, and rename its instance ID otherwise.

The projection function also filters the pending queue by removing requests destined to low

instances and the return address in call requests if it refers to a high instance. A request made to

a high instance must be removed because such a request either has been blocked, if it originated

from a low instance, or should have never existed if it originated from a high instance. Note that

the label map is passed twice to the 1pq and 1pend functions to facilitate the proof only. One

copy, ˆlm, is only used to project the return addresses, and the other, lm, is used to project the

actual requests. In fact, we could have it as one argument only but with a somewhat longer proof.

4.3.2 Well-Configured System Instances

A well-configured system instance is one that satisfies specific conditions. These conditions

are an invariant of the system. We write |=sys S to state that the system instance S is well-

configured. This invariant is designed such that it will always be satisfied as the system takes

steps according to the operational semantics. While the syntax does restrict the configuration of

the system instances, not all these configurations are valid. For example, a launched single-

instance app must have exactly one instance in its app-instance-set, but this is not enforced

by the syntax rules. In addition, the well-configured invariant, defined in Figs. 4.32 and 4.33,

includes conditions that are not necessary for the stability of the system but needed to ensure the

security of the system, thus allowing us to prove noninterference. For example, we require that

for single-instance apps, in a well-configured system, the static label must never be “lower” than

the dynamic label, i.e, dlv sl.
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getALM(emptyL, aid) = None

getALM((alm::lm), 0) = Some (alm)
getALM((alm::lm), aid) = getALM(lm, aid− 1)

1kiid,dll〈n, []〉(iid) = None

1kiid,dll〈n, ((iid2, l)::dll)〉(iid) = if iid = iid2 then

if lv k then Some (n) else None
else

if lv k then
1kiid,dll〈n+ 1, dll〉(iid)

else

1kiid,dll〈n, dll〉(iid)

1kiid,alm〈SIL iid′ sl dl〉(iid) = if iid = iid′ ∧ dlv k then (Some (iid)) else None

1kiid,alm〈MI sl dll〉(iid) = 1kiid,dll〈0, dll〉(iid)

1kiid,alm〈 〉(iid) = None

h1(None, aid) = None

h1(Some (iid), aid) = Some (aid, iid)
1kiid,lm〈lm〉(aid, iid) = h1(1kiid,alm〈getALM(aid, lm)〉(iid)))

1kra〈lm〉(None) = None

1kra〈lm〉(Some (aid, iid)) = 1kiid,lm〈lm〉(aid, iid)

1kinst〈lm〉((iid,m, s, ra)) = (iid,m, s,1kra〈lm〉(ra))

r((iid,m, s, ra), n) = (n,m, s, ra)
1kais,mi〈n, lm〉(( , l::dll), (r(inst)::ais)) = if lv k then

(1kinst〈lm〉(r(inst, n))::1kais,mi〈n+ 1, lm〉(dll, ais))
else

1kais,mi〈n+ 1, lm〉(dll, ais)
1kais,mi〈n, lm〉( , ) = []

1kais〈lm〉(SIU sl iidprev, ais) = if slv k then map(1kinst〈lm〉, ais) else []
1kais〈lm〉(SIL iid sl dl, ais) = if dlv k then map(1kinst〈lm〉, ais) else []
1kais〈lm〉(MI sl dll, ais) = 1kais,mi〈n, lm〉(dll, ais)
1kais〈lm〉(NA, ais) = []

1kis〈 ˆlm〉((alm::lm), (ais::is)) = (1kais〈 ˆlm〉(alm, ais)::1kis〈 ˆlm〉(lm, is))
1kis〈 ˆlm〉( , ) = []

1kdll〈n〉([]) = []
1kdll〈n〉(((iid, l)::dll)) = if lv k then ((n, l)::1kdll〈n+ 1〉(dll)) else 1kdll〈n〉(dll)
1kalm(SIU sl iidprev) = if slv k then SIU sl iidprev else NA
1kalm(SIL iid sl dl) = if dlv k then SIL iid sl dl else NA
1kalm(MI sl dll) = MI sl 1kdll〈0〉(dll)
1kalm(NA) = NA
1klm(lm) = map(1kalm, lm)

Figure 4.30: The projection function (part 1 of 2).
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h2(None) = None

h2(Some (iid)) = Some (pRet iid)

1k
pend〈 ˆlm〉(SIU sl , pCall ra) = if slv k then Some (pCall 1k

ra〈 ˆlm〉(ra)) else None

1k
pend〈 ˆlm〉(SIL dl , pCall ra) = if dlv k then Some (pCall 1k

ra〈 ˆlm〉(ra)) else None

1k
pend〈 ˆlm〉(MI sl , pCall ra) = if slv k then Some (pCall 1k

ra〈 ˆlm〉(ra)) else None

1k
pend〈 ˆlm〉(SIU , pRet ) = None

1k
pend〈 ˆlm〉(SIL dl iid′, pRet iid) = if iid′ = iid ∧ dlv k then

Some (pRet iid)
else

None

1k
pend〈 ˆlm〉(MI sl dll, pRet iid) = h2(1k

iid,dll〈0, dll〉(iid))

1k
pend〈 ˆlm〉(NA, ) = None

h3(None, , , ) = None

h3(Some (pt), aid, n, dl) = Some (aid, n, dl, pt)

1k
pendR〈 ˆlm, lm〉((aid, n, dl, pt)) = h3(1k

pend〈 ˆlm〉(getALM(lm, aid), pt))

h4(None, pq) = pq
h4(Some (p), pq) = (p::pq)

1k
pq〈 ˆlm, lm〉([]) = []

1k
pq〈 ˆlm, lm〉((p::pq)) = h4(1k

pendR〈 ˆlm, lm〉(p),1k
pq〈 ˆlm, lm〉(pq))

1k
sys(apps, lm, is, pq) = (apps,1k

lm(lm),1k
is〈lm〉(lm, is),1k

pq〈lm, lm〉(pq))

Figure 4.31: The projection function (part 2 of 2).

iid InDLL ((iid, l)::dll)

iid InDLL dll

iid InDLL (d::dll)

iid InALM (SingleInstanceLaunched sl dl iid)

iid InDLL dll

iid InALM (MultiInstance iid dll)

iid InALM alm

(0, iid) InLM (alm::lm)

(aid, iid) InLM lm

(aid+ 1, iid) InLM (alm::lm) iid NotIn []

iid NotIn dll iid 6= iid′

iid NotIn (iid′, l::dll)

Figure 4.32: Helper definitions for the well-configured system judgments.
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lm |=ra None

(aid, iid) InLM lm

lm |=ra Some (aid, iid)

lm |=ra ra ∃∆ ·∆ `mem m ∧∆; [] `s s
lm |=inst (iid,m, s, ra) lm |=ais []

lm |=inst inst lm |=ais ais

lm |=ais (inst::ais) lm |=is []

lm |=ais ais lm |=is is

lm |=is (ais::is)

|=apps []

[]; [ARG : Tnat] `s s |=apps apps

|=apps (s::apps) |=dll ([], [])

iid NotIn dll |=dll (dll, ais)

|=dll ((iid, l::dll), ((iid,m, s, ra)::ais)) |=alm ((SingleInstanceUnlaunched sl iidprev), [])

dlv sl
|=alm ((SingleInstanceLaunched sl dl iid), [(iid,m, s, ra)])

|=dll (dll, ais)

|=alm ((MultiInstance sl dll), ais) |=alm (NA, []) |=lm ([], [])

|=alm (alm, ais) |=lm (lm, is)

|=lm ((alm::lm), (ais::is)) ˆlm; lm |=pend (aid, n, dl, pCall None)

(aid, iid) InLM ˆlm

ˆlm; lm |=pend (aid′, n, dl, pCall Some (aid, iid))

(aid, iid) InLM lm

ˆlm; lm |=pend (aid, n, dl, pRet iid)

ˆlm; lm |=pq []

ˆlm; lm |=pend p
ˆlm; lm |=pq pq

ˆlm; lm |=pq (p::pq)

|=apps apps |=lm (lm, is) lm |=is is lm; lm |=pq pq len(is) = len(lm)

|=sys (apps, lm, is, pq)

Figure 4.33: Well-configured system.

98



4.3.3 The Noninterference Property

We formally define the noninterference property in Definition 3. The definition essentially states

that for if a well-configured system instance S takes several steps becoming S ′ and producing

trace t, then it must be the case that the projected system, 1k
sys(S), can take similar steps

producing a trace tL that is equivalent to the projection of the original trace t.

Definition 3 (Noninterference). A modelM(−) satisfies noninterfrence if,

for any security lattice L = (L,v), any attacker label k ∈ L, any system instances S, S ′ ∈

M(L), and any trace t:

If |=sys S and S t
===⇒∗ S ′ then

exists S ′L ∈M(L) and tL s.t.,

1k
sys(S)

tL===⇒∗ S ′L and 1k
t (t) ≡ tL.

In order to prove the noninterference theorem, we first define a bisimulation relation

between two system instances. The relation ≈k, defined in Fig.4.34, essentially says that the

two systems are well-configured and appear equivalent to an attacker with security level k.

Fig. 4.34 also defines system traces and the multi-step judgment. A trace t is a list of output and

label pairs produced when a system instance takes some number of steps. Remember that the

label represents the security level of the instance that produced the output at the time of the

output event. We also define a projection function for traces, which filters a trace by omitting

any none attacker-accessible outputs.

We next prove the k-bisimulation lemma (Lemma 1), which states that the ≈k is a weak k-

bisimulation relation in our system [73]. This lemma is critical for our noninterference proof, as

the proof follows easily from it. However, proving it requires the examination of a large number

of cases and sub-cases, which is a long error-prone process. This limitation is the main reason

for our use of the Coq proof-assistant to encode our model and prove this lemma. Note that the

relation ≈k is symmetric, and thus it is enough to prove that it is a k-simulation to prove that it’s
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Traces and their projection and equivalence

TRACE ::= list(N, label)

1k
t ([]) = emptyL

1k
t (((n, l)::t)) = if lv k then (n, l::1k

t (t)) else 1k
t (t)

[] ≡ []

t1 ≡ t2

(a::t1) ≡ (a::t2)

The bisimulation relation and system multi-step

MS-NIL

S
[]

===⇒∗ S

MS-TAU

S1
t

===⇒∗ S ′ S ′
τ

=⇒ S2

S1
t

===⇒∗ S2

MS-OUT

S1
t

===⇒∗ S ′ S ′
a

=⇒ S2

S1
(a::t)

===⇒∗ S2

SIM
|=sys S1 |=sys S2 1k

sys(S1) = 1k
sys(S2)

S1 ≈k S2

Figure 4.34: The bisimulation relation, multi-step, and trace equivalence and projection.

a k-bisumulation. This lemma and other notable lemmas about the behaviour of the projection

function are listed below. We won’t show their proofs here, as they have been proved in Coq.

Lemma 2 states that the projection function preservers well-configuredness. Lemma 3 states that

the projection function is idempotent, i.e., applying it more than once yields the same results as

applying once.

Lemma 1 (Weak k-simulation). For any security lattice (L,v); any attacker label k ∈ L; any

system instances S1,S ′1, and S2; and any trace t1, If S1 ≈k S2 and S1
t1===⇒∗ S ′1 then exists t2

and S ′2 s.t., S2
t2===⇒∗ S ′2 and 1k

t (t1) ≡ t2 and S1 ≈k S2.

Lemma 2 (Projection preservation). For any security lattice (L,v); any attacker label k ∈ L

and any system instance S, if |=sys S then |=sys 1k
sys(S).

Lemma 3 (Idempotent projection). For any security lattice (L,v); any attacker label k ∈ L and

any system instance S, 1k
sys(S) = 1k

sys(1
k
sys(S)).

Now we are ready to state and proof the noninterference theorem.
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Theorem 4 (Noninterference). The system modelM(−) satisfies noninterference.

Proof. Using Lemmas 2 and 3 we get |=sys 1k
sys(S) and 1k

sys(S) = 1k
sys(1

k
sys(S)), respectively.

Then, by the definition of ≈k, we get S ≈k 1k
sys(S). Finally, we can use Lemma 1 to conclude

the theorem.

While the noninterference theorem is based on trace-equivalence, due to how we started our

development, there is no obstacle, other than consistency, preventing it from being based on weak

bisimilarity. In fact, the proof of Lemma 1 can be easily adapted to prove a bimsimulation-based

noninterference theorem. The reason we chose trace-equivalence in Sec. 4.1.2 is to accommodate

floating labels, which are omitted in this simplified model. Moreover, the way we define output

events in the simplified model is slightly different from the pi-Calculus model from Sec. 4.1.

In the simplified model all calls or returns produce output events that are included in the trace.

In the pi-Calculus model only successful calls or returns produce outputs because we only omit

the output when an intent is received. However, this difference is not consequential since, as

we mentioned, we are able to prove the stronger bisimulation-based noninterference, which

compares whole instances instead of just output events.

4.4 The Versioned-Labels Noninterference Property

A shortcoming of (standard) noninterference theorems for systems, like the one we proved for

our enhanced Android run-time in Sec. 4.3, is that they can only be proved for the system

between declassification operations. This shortcoming means that when a declassification

operation is executed, the theorem says nothing about the information flow between the

differently labeled parts of the system before and after the declassification. This lack of

guarantees is true, even if the actual system does provide control for information flows not

affected by declassification. Furthermore, such theorems will not be sufficient for our endeavor

in Ch. 5, since our access control checks happen exactly at the declassification points.
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Fortunately, researchers have suggested alternative definitions for the noninterference property

that can account for declassification [13, 74, 75]. One example is intransitive noninterference,

which treats declassification operations as normal operations but only allows information to

flow from label A to label B if explicitly allowed by the current policy7, as opposed to allowing

any flow as long as it is not to less restricted labels, i.e., up the lattice [74].

The reason we cannot apply regular noninterference when a high app is declassified to low

is that the projected system never had the high app in the first place, and thus cannot simulate

the declassification operation. In general, the solution is to amend the projection function to

not remove the instance (or action in the case of language-level IFC systems) that have been

declassified. However, this amendment is not enough; we need to also keep all the high instances

that affected ,i.e., sent information flows to, the declassified instance. In our approach, we keep

the projection function as is, but modify the lattice such that the needed app instances are not

removed.

In this section, we discuss the different approaches for lattice modification in Sec. 4.4.1. We

then present a motivating example for our approach in Sec. 4.4.2. Next, we give the operational

semantics for the declassification command in Sec. 4.4.3. Section 4.4.4 defines an extended

system model to be used in the proof of the versioned-labels noninterference theorem in

Sec. 4.4.5. Finally, we briefly discuss how to make an even more precise noninterference

property in Sec. 4.4.6.

4.4.1 Morphing the Security Lattice

For our approach, we want to extend our noninterference definition by morphing our security

levels and the partial ordering relation each time a declassification operation is performed. The

morphed relation does not play any role in the execution of the actual system, it is only used

within the noninterference definition. The resulting levels and relation, when used in the

7The policy specification language is modified to allow these explicit flow controls.
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projection function, should allow the declassified instance, and any contributing instance, to

persist in the projected system. Next we discuss three, increasingly stronger (i.e., provide better

security guarantees), lattice morphing strategies.

Tag removal This coarse grained strategy only applies to tag-based lattices. In this strategy,

when an app uses its capability to declassify a certain tag, say s, to change its label’s secrecy

tags set from {s, s1, s2, . . .} to {s1, s2, . . .}, we remove the tag s from all labels in the system.

The intuition behind this strategy is that declassification could potentially reveal any secret from

anywhere in the system that was protected by this tag, and hence, it should be removed from

all labels. This assumption is not precise. For example, if app A, with label ({s, s1}, {}, {−s})

declassified itself to ({s1}, {}, {−s}), then app B, with label ({s, s2}, {}, {}), will be considered

to have a label ({s2}, {}, {}). App B could not have sent any information to the declassified

app, and ideally should not have been affected by this particular declassification. However, this

definition does not prevent app B from calling app C with the label ({s2}, {}, {}) because their

labels are considered the same after the declassification. In other words, a system will satisfy the

noninterference poperty with this strategy even if it allows leaks from B to C after A declassify

its label as above.

Single flow Whenever we declassify label l1 to label l2, we add a single additional flow or

“arrow” in the lattice from l1 to l2. More concretely, we amend the relation v such that l1v l2.

The intuition is that the declassification operation added, albeit temporarily, a flow from all the

apps labeled l1 to those labeled l2. The problem with this approach is that the resulting relation is

not a partial ordering, more specifically, it’s not transitive nor anti-symmetric. One way to cope

with this problem is to use one of the intransitive noninterference definitions. In the tag-based

lattice settings, and compared to the tag removal strategy, this is a more precise definition that

only adds one extra flow to the lattice. For example, if l1 was {s1, s2, s3} and l2 was {s2, s3}, this

strategy will not allow for a flow from {s1} to {}, while the tag removal strategy will allow it
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(because it will be from {} to {}, after removing s1). The problem with this strategy is that once

a certain label is declassified it will remain so indefinitely. In our system, we allow apps to raise

their labels back after declassification. However, with this strategy, the raise operation will be

ignored as far as the noninterference property is concerned because the label is still declassified

in the morphed lattice.

Versioned Labels The versioned lattice approach captures the intuition that, when an app

instance declassifies its label from l1 to l2, the declassification applies to only the current l1

label but not to future instantiations of it. When an app later raises its label from, say, l3 to l1,

the information protected by the new instance of l1 should not flow to l2 anymore. To satisfy this

requirement, a new version of the original lattice is created whenever a declassification occurs.

All labels in the system are upgraded to the new version at the time of declassification. To keep

the connection between versions from the same label, a flow is inserted between the consecutive

versions of a label, i.e., for any label l, there is a flow from version n of l and version n + 1 of

l. Moreover, a flow is inserted between version n of l1 and version n+ 1 of l2, assuming this the

nth declassification operation from the initial state. For example, if the original lattice was the set

{H,M,L} with L ≤ M and M ≤ H , then the morphed lattice will as depicted in Fig. 4.35 after

declassification from H to M then M to L.

In this work we will be using the versioned labels approach.

4.4.2 Motivating Example

In this section, we revisit the scenario from Sec. 2.1 to motivate our versioned labels approach.

Suppose the user requests that secret file A be declassified and forwarded to the email client. The

secret-file manager will retrieve the file, declassify itself from ({secret-file}, {}, {-secret-file})

to ({}, {}, {-secret-file}), and then send the file to the email client. After that, adhering to

the important least-privilege principal, the manger should raise itself back to the original label.

Later the user asks the manager to create a new secret file B. Finally, suppose that a malicious
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H0

M0

L0

H1

M1

L1

H2

M2

L2

decl(M,L)decl(H,M) decl(H,L)

H3

M3

L3

Figure 4.35: An example of a versioned lattice after two declassification operations.

app, which does not have a secret-file tag in its label, tries to retrieve file B and send it through

Internet. A reasonable enforcement mechanism will prevent the malicious app from exfiltrating

file B.

Consider a faulty system that “remembers” any declassification operation from lold to lnew,

and then whenever any app in the system with label lold tries to call another app, it uses

lnew instead of lold to make the enforcement decisions. This system will allow the

malicious app from the scenario above to access file B because it will “remember” that

({secret-file}, {}, {-secret-file}) should be treated as ({}, {}, {-secret-file}). Such a system

does not satisfy the versioned-labels noninterference property that is based on versioned labels

(defined in Sec. 4.4.5) because the new version of the label will be high. Specifically, the

projection function will remove the manager app and file B, both of which now have the high

new version of the label, when comparing the projected and original systems after the

declassification, and the two systems could diverge from each other while still agreeing on the

low parts. Thus, we won’t be able to guarantee that the projected systems will be able to
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simulate the original when the malicious app accessed file B. For example, file B might not have

been created in the projected system.

Previously proposed extensions to noninterference, such as intransitive noninterference [74]

and relaxed noninterference [13], do not guarantee correct policy enforcement for this scenario

probably because they don’t consider label raising operations.

4.4.3 A Model with DeclassificationMd(L)

Here, we define the operational semantics for executing declassification (DECLASSIFY)

commands, which were omitted from the model in Section 4.2. However, we first need to

redefine the syntax and semantics to add declassification capabilities to apps. We do this, in

Fig. 4.36, by redefining the apps’ label map entries, AppLabelMap, to include declassification

capabilities, DeclCap. A declassification capability is just a list of label pairs. Each pair,

(l1, l2), permits the app to declassify itself from l1 to l2. We also add the rule SYS-EXEC-DECL,

which allows for steps with declassification events, to the system step definition in Fig. 4.18.

Now, we can introduce, in Fig. 4.37, the rules to define �DECLASSIFY. The two rules, D-S-

B and D-M-B, cover the cases where a declassification request is denied (or blocked) for the

single-instance and multi-instance apps. A request is denied if either the app does not have the

required declassification capability or if the new label is already below the current label in the

lattice. The first rule, D-S, defines declassification for single-instance apps. It makes sure that

the app has the required capability, i.e., (dl, l) ∈ δ, and updates the app-label-map to have the

new label. Rule D-M does the same but for multi-instance apps. The last two rules augment the

rules in Fig. 4.20 to define the command execution for the case of the DECLASSIFY command

whether the declassification was successful (EXEC-D1) or denied (EXEC-D2).

In addition, we extend the notion of traces to include not just output events but also

declassification events in Fig. 4.38. A declassification event, DECL(l1, l2), is added to the trace

when an app declassifies itself from l1 to l2. Finally, we need to define the projection function
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DeclCap ::= list(label, label)
AppLabelMap ::= SingleInstanceUnlaunched label IID DeclCap |

SingleInstanceLaunched label label IID DeclCap |
MultiInstance label DynamicLabelList DeclCap | NA

SYS-EXEC-DECL

(lm1, is1, pq1)/apps
DECL(lold,lnew)

� (lm2, is2, pq2)

(apps, lm1, is1, pq1)
DECL(lold,lnew)

=⇒ (apps, lm2, is2, pq2)

Figure 4.36: Amending system syntax and semantics to add declassification capabilities.

for traces with declassification events (see Fig. 4.38). For a declassification event, the projection

function will only keep the event if the new label is low (i.e., attacker-accessible). If the new

label is high (i.e., not attacker-accessible), then so is the old label, which means the whole event

should not be accessible to the attacker and must be removed by the projection function.

4.4.4 The Versioned System Model M̌d(Ln)

Here, we introduce a slightly modified system model that incorporates versioned labels. This

modified model serves as temporary representation of the system for the purpose of proving

noninterference only. There are no versioned labels during normal execution. A versioned label,

ln, is a normal label that has been paired with a version number, n in this case. We start by

defining the function ω(L, t), which takes the original lattice and a trace to generate the versioned

lattice (see Fig. 4.39). We also need relabeling functions Θ(Š), which takes a versioned system

instance and advance all its labels to the next version, and Θn(S), which takes a normal system

instance and convert it to a versioned instance with version n labels. Finally, we need to amend

the operational semantics for declassification (from Fig. 4.37) as follows to advance the labels’

version with each successful declassification operation.

V-EXEC-D1

(lm1, is1, pq1)/apps
DECL(lold,lnew)

� (lm2, is2, pq2)

(apps, lm1, is1, pq1)
DECL(lold,lnew)

=⇒ Θ(apps, lm2, is2, pq2)
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D-S
aid@lm1 HasAppLabel (SingleInstanceLaunched iid sl dl δ) l 6v dl

(dl, l) ∈ δ Update aid@lm1 with (SingleInstanceLaunched iid sl l δ) 7→ lm2

lm1

(dl,l)
�

DECLASSIFY
〈aid, iid, l〉 lm2

D-S-B
aid@lm HasAppLabel (SingleInstanceLaunched iid sl dl δ) lv dl ∨ (dl, l) 6∈ δ

lm
τ
�

DECLASSIFY
〈aid, iid, l〉 lm

D-M
aid@lm1 HasAppLabel (MultiInstance sl dll1 δ) iid@dll1 HasInstanceLabel dl

l 6v dl (dl, l) ∈ δ Update iid@dll1 with l 7→ dll2
Update aid@lm1 with (MultiInstance sl dll2 δ) 7→ lm2

lm1

(dl,l)
�

DECLASSIFY
〈aid, iid, l〉 lm2

D-M-B
aid@lm HasAppLabel (MultiInstance sl dll δ)

iid@dll HasInstanceLabel dl lv dl ∨ (dl, l) 6∈ δ

lm
τ
�

DECLASSIFY
〈aid, iid, l〉 lm

EXEC-D1

(aid, iid)@is1 �is 〈DECLASSIFY l, is2, ra〉 lm1

(dl,l)
�

DECLASSIFY
〈aid, iid, l〉 lm2

(lm1, is1, pq)/apps
DECL(dl,l)

� (lm2, is2, pq)

EXEC-D2
(aid, iid)@is1 �is 〈DECLASSIFY l, is2, ra〉 lm1

τ
�

DECLASSIFY
〈aid, iid, l〉 lm2

(lm1, is1, pq)/apps
τ
� (lm2, is2, pq)

Figure 4.37: The operational semantics for the DECLASSIFY command.

EV ENT ::= OUT(N, label) | DECL(label, label)
TRACE ::= listEV ENT

1k
t ([]) = []

1k
t ((OUT(n, l)::t)) = if lv k then (OUT(n, l)::1k

t (t)) else 1k
t (t)

1k
t ((DECL(lold, lnew)::t)) = if lnewv k then (DECL(lold, lnew)::1k

t (t)) else 1k
t (t)

Figure 4.38: Extending traces to include declassification events.
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θn(L) = {ln|l ∈ L}

Ω((L,v), ((Ln,vn), n), lold, lnew) = ((θn+1(L) ∪ Ln, Ω̂(v,vn, lold, lnew, n)), n+ 1)

ω((L,v), []) = ((θ0(L),v), 0)
ω(L, (OUT(n, l)::t)) = ω(L, t)
ω(L, (DECL(lold, lnew)::t)) = Ω(L, ω(L, t), lold, lnew)

Θt([], n) = []
Θt((OUT(n, l)::t), n) = Θt(t, n)
Θt((DECL(lold, lnew)::t), n) = (DECL(lnold, l

n
new)::Θt(t, n− 1))

where Ω̂(v,vn, lold, lnew, n) is defined as the transitive closure of vn+1, which is defined by
• lm1

1 vn+1 lm2
2 ⇐⇒ lm1

1 vn lm2
2 for any m1,m2 ≤ n

• ln+1
1 vn+1 ln+1

2 ⇐⇒ l1v l2
• lnvn+1 ln+1

• lnoldvn+1 ln+1
new

Figure 4.39: Generation of versioned lattices.

Note that for a versioned system model, the attacker label should be kn, where n is the number

of declassification operations in the trace and k is the original attacker label.

4.4.5 The Versioned-Labels Noninterference Theorem and Proof

At a high level, the versioned-labels noninterference property requires that we first look at all the

declassification events in the system trace and generate the versioned lattice based on this trace.

The second step is to use this versioned lattice to define the versioned model (i.e., M̌d(Ln)).

In the versioned model, the initial system instance with version zero labels can takes the exact

same steps as in the original model. The next step is to use the projection function, with the

last version of the attacker label, to obtain the projected system. The projection will compare last

version of the attacker label with version zero of the instances labels. Therefore, any app instance

in the initial system with possible information flow, through declassification or otherwise, to the

attacker at the end of the trace will be kept in the in the projected system. Finally, the projected

system is required to simulate the original system by producing a trace that is equivalent in the
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low events to the trace produced by the original system.

This definition means that if a high instance declassifies to low, it will be included in the

projected system. Moreover, if the same instance raises it label after the declassification back

to high, it will remain in the projected system but will no longer be required to simulate, i.e.,

produce the same events as or be equivalent at each step to, the corresponding instance in the

original system. As an example, consider if this instance that just became high, call it A, receives

a call from a newly created high instance in the original system, say B. The projected system

does not include B, and thus won’t be able to simulate the this call. This is perfectly fine, since

A is now high and does not need to match the corresponding instance in the projected system.

Next, A in the original system tries to call a low instance, say C, sending the value A received

from B. The call will be blocked, and projected system does not need to simulate it (since A is

now high). However, if due to faulty enforcement A’s call to C is allowed. The projected system

will not be able to simulate this call, since its copy of A does not have the value received from B.

We formally define the versioned-labels noninterference property in Definition 4. The

definition essentially states that for if a well-configured system instance S takes several steps

becoming S ′ and producing trace t with n declassification operations, then it must be the case

that 1) S relabeled to version zero, Θ0(S), can take the exact same steps to the S ′ relabeled to

version n, Θn(S ′) and produce the relabeled version of the trace t; 2) the projection of Θ0(S)

using version n of the attacker label, 1kn

sys(Θ
0(S)), can take similar steps producing a trace ť;

and 3) ť is equivalent to the projection of the relabeled trace Θt(t, n− 1). This analogous to the

basic noninterference theorem, except that simulation is in the versioned model of the system.

Definition 4 (Versioned-Labels Noninterference). A model Md(−) satisfies noninterfrence if,

for any security lattice L = (L,v), any attacker label k ∈ L, any system instances

S, S ′ ∈Md(L), and any trace t:

If |=sys S and S t
===⇒∗ S ′ then exists Š ∈ M̌d(ω(L, t)) and ť s.t.,
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1. Θ0(S)
Θt(t,n-1)
===⇒∗ Θn(S ′)

2. 1kn

sys(Θ
0(S))

ť
===⇒∗ Š, and

3. 1Kn

t (Θt(t, n− 1)) ≡ ť.

Before we prove our versioned-labels noninterference theorem, we need some lemmas.

First, Lemma 5 states that the ordering relation of all versioned lattices is transitive. Lemma 6

states that a label must be high if it is above a high label. Lemma 7 states that executing the

versioned system is equivalent to executing the original system, and that we can get the final

versioned system instance by simply versioning the original final instance. Finally, Lemma 8

states that for any declassification operation in the execution of the original system, a

corresponding declassification operation will appear in the trace of the versioned system and

that the declassified and new labels are either both low or both high in the final versioned lattice.

Lemma 5 (Transitivity of versioned ordering relation). For any lattice L and any trace t, if

((Ln,vn), n) = ω(L, t), then vn is transitive.

Proof. The proof proceeds by induction on the number of declassification operations in t and

using the definition of Ω̂.

Lemma 6. For any lattice (L,v) and any labels k, l1, l2 ∈ L, if l1v l2 and l1 6v k then l2 6v k

Proof. Assume that l2v k, then by transitivity we get that l1v k, which contradicts our premise.

Therefore it must be the case that l2 6v k

Lemma 7. For any lattice L, system instances S, S ′ ∈ Md(L) and any trace t, if S t
===⇒∗ S ′

and ((Ln,vn), n) = ω(L, t) then Θ0(S)
Θt(t,n-1)
===⇒∗ Θn(S ′).

Proof. The proof proceeds by induction on the number of declassification operations in t. We

need to only consider declassification steps since the only difference between S and the

relabeled system is the versioned labels, which have no effect on other operations. Thus, let

us assume that t has only declassification events. The base case, where there is no
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declassification operation, is trivial since there are no steps to be taken. In the inductive case,

we are adding one more declassification step, say DECL(lold, lnew) to the trace. The only

difference between S ′ and Θ(n)S ′ is the versioned labels. From the definition of ω,

we know that lnoldvn lnnew ⇐⇒ loldv lnew. Therefore, we can execute the similar

DECL(lnold, l
n
new) step in Θn(S ′). In addition, it is trivial to prove that Θ(Θn(S ′)) = Θn+1(S ′) and

Θt((DECL(lold, lnew)::t), n) = (DECL(lnold, l
n
new)::Θt(t, n− 1)).

Lemma 8. For any lattice L and any trace t, let ((Ln,vn), n) = ω(L, t) and ť = Θt(t, n− 1)

then if DECL(lold, lnew) ∈ t then DECL(lmold, l
m
new) ∈ ť, for some m < n, and Either

• lmold vn kn and lmnew vn kn (both are low) , or

• lmold 6v
n kn and lmnew 6vn kn (both are high)

Proof. By induction on t. The base case, t = [], is trivial. The inductive case has two subcases.

The first subcase, when we add an output event, follows easily from the definition of ω and Θt.

The second subcase is when we add a declassification event DECL(l′old, l
′
new). If m < n + 1 then

we can use the inductive hypotheses plus the fact that vn ⊂ vn+ 1.

Otherwise, if m = n, then we can easily show that DECL(l′old
n, l′new

n) ∈ Θ(DECL(l′old,l
′
new)::t)(n)

from the definition of Θt. In addition, from the definition of ω, we know that (1) lnoldvn+1 ln+1
new

and (2) lnnewvn+1 ln+1
new . There two cases here:

Case: (3a) ln+1
new vn+1 kn+1

• ln+1
new vn+1Kn+1, By transitivity from (3a) and (1)

• ln+1
new vn+1Kn+1, By transitivity from (3a) and (2)

Case: (3b) ln+1
new 6vn+1kn+1]

• ln+1
new 6vn+1Kn+1, By Lemma 6 from (3b) and (1)

• ln+1
new 6vn+1Kn+1, By Lemma 6 from (3b) and (2)

Now, we are ready for the main theorem.

112



Theorem 9 (Versioned-Labels Noninterference). The model Md(−) satisfies versioned-labels

noninterference.

Proof. (1) follows directly from Lemma 7. The rest of the proof will follow the proof of

Theorem 4, except for the case of executing DECLASSIFY, which was not defined. The proof for

DECLASSIFY will closely follow the proof for the RAISE case with the following considerations.

If the issuing app instance is low ,i.e., attacker-accessible, then this is similar to a raise from low

to low, i.e., both are a change from a low label to another low label. If, on the other hand, the

issuing app instance is high, i.e., not attacker-accessible or lold 6vnkn, we have three subcases:

1. If the declassification is blocked, there is no need for simulation, the projected system can

simply take no steps.

2. If the declassification is to a high label, the projected system can simply take no steps as

the whole operation will be projected out.

3. If the declassification is to a low label, i.e., lmnewvn kn, then, from Lemma 8, it must be the

case that the old label is low too, i.e., lmoldvn kn. But this contradicts our assumption, and

thus this subcase is not valid.

4.4.6 Tracking the call chains

Another way to make the definition more precise is to observe that not all apps with the

declassified label communicate with each other. Some apps do not affect or send information,

directly or indirectly, to the declassified app. Thus, we do not need to declassify the information

from those apps. Instead we can track all the call chains throughout the execution of the system,

up to the point of declassification, and only declassify the information from those apps within

call chains that end with the declassifying app.
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However, we think that this enhancement is not needed. IFC requires that the apps are isolated

by the system, and that the only communication channel between apps is monitored, i.e. the inter-

app calling API. In android, isolation is provided by the underlying Linux kernel. We conjecture

that the isolation property along with a noninterference property is enough to guarantee that only

apps in the call chain could have contributed information to the declassifying app.

4.5 Related Work

In Sec. 2.4 we discussed works on Android security and IFC. In this section we will focus works

related to formal security definitions for IFC systems.

Pioneered by Denning [5] as a principled form of controlling the flow of information among

processes, (lattice-based) IFC has been widely studied in the information security field. IFC

has been applied to sequential and parallel programs [6, 76]. While these earlier systems were

understood to be secure there was no formal definition of their security. Formal definitions of

security appeared later, and generally fall into two categories: noninterfernce and knowledge-

based (or epistemic).

4.5.1 Noninterference Definitions of IFC Security

Goguen and Meseguer introduced the notion of noninterference to define the guarantees of an

IFC scheme [7]. Several enhanced definitions, which account for declassification operations,

have been proposed by researchers since then. One of the first such definitions is intransitive

noninterference, where information are only allowed to flow from one security level to another if

it’s explicitly allowed by the policy [12]. Thus, a declassification operation D, say from A to B,

can be described by allowing flows from A to D and from D to B. Chong and Myers developed a

generalization of noninterference that accommodates declassification and erasing of information

[15].

114



Because Flume has no floating labels, a stronger noninterference can be proved for it than

can be proved for our system: Flume’s definition of noninterference is based on a stable failure

model, which is a simulation-based definition. Our definition is trace-based, and does not capture

information leaks due to a high process stalling.

A rich body of work has focused on noninterference in process calculi [68, 69]. Recently,

researchers have re-examined definitions of noninterference for reactive systems [77, 78]. In

these systems, each component waits in a loop to process input and produce one or more outputs

(inputs to other components). These works propose new definitions of noninterference based

on the (possibly infinite) streams produced by the system. Our definition of noninterference is

weaker, since we only consider finite prefixes of traces. These reactive models are similar to ours,

but do not consider shared state between components, and assume the inputs and outputs are the

only way to communicate, which is not the case for Android. Further, to model the component-

based Android architecture more faithfully, we extend pi-calculus with a label context construct,

which also enables formal analysis of our enforcement mechanism in the presence of Android

components’ ability to change their labels at run time. To our knowledge, such dynamic behavior

has rarely been dealt with in the context of process calculus.

4.5.2 Knowledge-Based Definitions of IFC Security

Beside noninterference, researchers proposed knowledge-based properties to define the security

of IFC systems [14, 79, 80, 81, 82]. These proposals construct a model of the attacker’s

knowledge and define the security property based on the change of this knowledge in response

to enforcement events. For example, a declassification event can result in an increase of the

attacker knowledge. The first such definition was introduced by Askarov and Sabelfeld for their

work on gradual release. They modeled the attacker knowledge based on what the attacker can

observe of the initial memory contents [14]. There are two main difficulties in applying a

similar condition to our model. First, we need a way to represent the attacker knowledge. One
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way to do this is to consider the initial memory of all instances in the system. However, this

does not account for user inputs or the inherit nondeterminism in our model, both of which can

produce values (or knowledge) not entirely derived from the initial system state. Askarov and

Sabelfeld also introduced an extension to gradual release that models user input channels as

streams of values [83]. In addition, recent work by McCall et al. proposes another solution for

representing user inputs in a knowledge-based definition [84]. Second, we still need a way to

further restrict knowledge increase after a raise operation that otherwise would have been

permissible. While these difficulties dissuaded us from further pursing this direction, we do

think that a knowledge-based security definition could be a viable alternative to our

noninterference approach. Indeed, if we assume that the attacker knowledge is defined by the

set of app instances that the attacker could have received information from, then we would be

able to define a security condition similar to gradual release [14]. In our case, the attacker

knowledge can only increase upon a declassification event (which corresponds to a new label

version), where we need to add the declassified instance and any instance that it have received

calls from, directly or indirectly, to the attacker’s knowledge set. We believe it should be

possible to show that the versioned-labels noninterference implies this definition of security.

Knowledge-based definitions are more intuitive in terms of understanding their implications on

the security of the system because they relate directly to what an attacker can know. On the

other hand, noninterference-based definitions of security are usually easier to prove for a system

model because they are defined directly in terms of the model semantics.

Another knowledge-based definition was introduced in the work of Banerjee et al. [16], which

we discuss more in the context of controlled declassification in Sec. 5.6. The security condition

in their work, called conditioned gradual release, is based on gradual release but adapted to

include conditional declassification. A more recent work by Askarov and Chong introduces

a knowledge-based security condition for a language-based model that allows dynamic update

of policies [82]. They consider both static and run-time enforcement of their policies. However,

similar to gradual release, they only consider initial inputs for modeling the attacker’s knowledge.
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Flow Locks, an IFC policy specification language introduced by Broberg and Sands, was

initially developed with a bisimulation based security property [85], but a knowledge-based

formulation was developed for it in a later work [80]. Paralocks is a successor language of

Flow Locks that adds RBAC (Role-based access control) inspired features [81]. In both Flow

Locks and Paralocks, information flow policies are specified based on actors. An actor can be,

for example, a specific security level in a conventional IFC policy or a principal in an RBAC-like

policy. The information flow to actors is guarded by locks, which can be opened and closed.

The attacker knowledge in both works is specified as the set of all possible initial memories

given the attacker-observable outputs. As specifically stated in the Flow Locks paper, these two

approaches are strictly static and cannot handle systems with run-time enforcement, like ours,

where actual permissions (or labels) are only known at run time [85]. However, for the sake of

comparison, let us assume that there is version of our model where all labels and inputs, and the

execution schedule, are deterministic. We should be able to encode this restricted model using a

language like the one in Flow Locks and Paralocks. In such an encoding, declassification would

be implemented as one or more open-lock operations and a raise operation will be based on one

more close-lock operations. However, even then, we suspect that the security condition, flow

lock security, used to define the security of the Flow Lock language, would not be sufficient to

imply our versioned-label noninterference definition. The reason is that the apps in our model, or

even instances of the same app, can open or close the same lock at the same time. We could have

all the code between the declassify and raise operations be atomic, but such a solution could be

expensive both in term of performance and the complexity of modeling and verification (given

the added synchronization constructs).
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Chapter 5

Controlled Declassification
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This chapter explores our approach for controlled declassification. The goal is to increase

the expressiveness of our security policies to provide for more useful scenarios while retaining

our proved security properties. This goal supports our thesis statement that IFC mechanisms

with controlled declassification can provide more expressive and provable security guarantees

for Android. In the previous chapters, the declassification requests are always granted as long

as the app has the required capability. However, we want to enable more expressive policies

by generalizing this check to be more than a simple lookup. Ideally, we want to be able to

implement traditional access control mechanisms to control declassification. In order to support

such implementations, we need the declassification decision to not only be based the app’s

declassification capabilities, but also on instance-specific state, app-specific state, global state,

and app-specific policy specification. Researchers have proposed many approaches to control

declassification [11, 13, 16, 17]. The closest proposal to meet our requirements is stateful

declassification by Vanhoef et al. [17]. Stateful declassification controls declassification via an

information release function that takes a state along with a high input value and outputs the next

state and the value, if any, to be released to a low observer. However, stateful declassification does

not explicitly support global state, app-specific state, or app-specific policies that are separate

from the information release function implementation. Global state, which is accessible to

both high and low apps, needs careful treatment to prevent it from being used, maliciously or

accidentally, to violate the IFC policy. The first example in Sec. 5.4 illustrates the need for either

global or local state based on the required policy.

We will start this chapter with some motivating examples in Sec. 5.1. Sec. 5.2 describes our

approach in more details. Then we augment our model to implement controlled declassification

in Sec. 5.3. After that, we give some example instantiations of the controlled declassification

model in Sec. 5.4. In Sec. 5.5, we discuss an example of security properties that take advantage

of controlled declassification and present a general proof for similar properties. We conclude this

chapter with a discussion of related work in Sec. 5.6.
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5.1 Motivating Scenarios

The following examples are scenarios where regular information flow control, with uncontrolled

declassification, is not sufficient or adequate to implement the desired policy. In each scenario,

the desired policy is informally stated, and then the possibility of enforcement using regular

IFC systems is discussed. The purpose of listing the scenarios below is to show that there are

policies that cannot be implemented easily, if at all, with regular IFC schemes. We also want

to show that some proposed extensions to IFC declassification are either too specific, like robust

declassification [86] and delimited release ([75]), or too general, like trusted declassification [87]

(see Sec. 5.6).

Scenario 1: NSA analyst

Policy: Files labeled as “classified” can only be declassified by an analyst with the

role “senior”

This is a classic example of a role-based access control (RBAC) policy. There is no

straightforward way to implement such policies as regular IFC (with declassification) policies.

One complex way is to add labels for each role and only assign a role label to an object if the

object is accessible by the role. However, associating roles with principals or manage role

hierarchies can be a challenge. We would need separate mechanisms to manage these relations.

Also, there is no obvious way to consider “principals” that are not apps or processes. A

language like Jif 1, with explicit principals and an “acts for” mechanism, might help with this

specific issue.

On the other hand, implementing such policy using trusted declassifiers would not be

1http://www.cs.cornell.edu/jif/
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different from using a stand alone RBAC implementation. This similarity is because we will

need a whole separate infrastructure for the roles hierarchy (and maybe permissions and their

associations to roles) and for policy specifications, which cannot be embedded in the IFC labels

without considerable complexity.

RBAC has been formalized and studied extensively [88, 89, 90]. Thus, instead of trying to

impractically specify the policy using IFC labels, we can use regular RBAC policy specifications

to implement the RBAC parts of the policy. These RBAC parts of the policy will be enforced

when declassifying the relevant labels (“the classified” label in this case). In addition, we can

use a logic-based formalization, such as [91], to more easily reason about the properties that can

be enforced using RBAC.

Scenario 2

Policy: Certain contents are secret and can only be declassified if they are

declassified by the user and a specified application. The user approval (i.e.,

declassification) and the declassification by the application need to be within a

specified short period of each other.

This policy could apply to scenarios where decisions are based on changing or otherwise

time-sensitive inputs. Consider this scenario: Pictures taken using the eye-glasses mounted

camera, which is connected to the phone, are to remain in the phone. A social media application

can automatically select some of these pictures as candidates for posting online. The application

will only declassify these pictures after checking that they don’t infringe on other people’s

privacy using an AI algorithm that is frequently updated. In addition, the user must approve

the posting of any of these pictures online. Because of the frequent updates to the AI algorithm,

the checked pictures need to be rechecked if they are not approved by the user within 10 minutes.
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A regular IFC scheme cannot be used to implement such a policy. However, one could tweak

the labels to have the ability to attach timestamps to them. Both the declassification mechanisms

and the policy specification language, will also need to be modified so that certain labels can only

be declassified if their timestamp is recent enough. This way we can have two secrecy tags for

each user, S1, D1[t], S2, D2[t], such that the first user can only declassify S1 to D1[t] and only

declassify D2[t] if recent enough. A similar restriction applies to the second user. Moreover, we

need to have the ability to define different IFC policies for different users of the system.

We think that a better approach is to integrate an access control scheme with timing

constraints support (such as [92, 93, 94]). There will only be one label S (secret), and the IFC

will be user-neutral. When an app asks for S to be declassified, an authorization is generated on

behalf of the current user. The declassification will fail unless the other user’s authorization is

also present, and it has been generated within the specified time window.

Scenario 3

Policy: A certain set of documents are to remain secret (i.e., within the phone).

However, any of these documents can be declassified if the user declassifies it

through application A, followed by declassifying it using application B (in that

order).

For example, this scenario manifests in a setting where highly sensitive documents can

only be declassified after the document has been sanitized by an application (A). The sanitized

document can then be reviewed by the user, using another application (B), and it will only be

declassified if the user approves.

Such a policy can be implemented with multiple labels, say S-PS-NS (secret, partial-secret,

non-secret), so that the first user is only allowed to declassify from H to M, and the second user
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is allowed to declassify from M to L. This might not work in systems where it’s not possible

to specify such declassification abilities—most systems cannot, including Jif/JFlow, Flume, and

ours [8, 18, 95]. We can implement such policy with trusted declassification ([87]) by only

applying the declassification of the second user if the first user already declassified its label

(some extra bookkeeping will be required though to keep of track who declassified which label).

This logic and extra bookkeeping will be part of the policy, which will make policy verification

more difficult.

The same approach, using access control schemes with time-constraint support, mentioned

in Scenario 2 can be used here. This approach dictates that the declassification will fail unless

the current user is user B and user A’s authorization has been previously presented for the same

file.

Scenario 4

Policy: Certain modifications must be endorsed by at least n applications from the a

set of m, where n < m, for them to apply.

An example of this is the approval of nontrivial payments in a corporate setting, where the

approval of two executives is required (the so called “four eyes principle” or “two-man rule”).

A similar requirement exists for nonprofit organizations who mandates two signatures on every

check (e-signatures in our case, through a mobile app).2 Another example includes situations

where we don’t want to trust only one viewer to accurately display a sensitive document to

the user. Consequently, we require the document to be declassified using at least two separate

viewers (e.g., from different vendors) from a list of available viewers before releasing online.

Similar to scenario 3, we might be able to craft special label lattices and give each application

2https://www.councilofnonprofits.org/tools-resources/internal-controls-nonprofits
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the ability to only declassify certain labels to satisfy the policy. However, this not supported in

current IFC schemes, and extending them as such will potentially increase the complexity of

enforcement, policy specification, and verification. In addition, such policy specification can be

unreadable, unless it’s abstracted by higher level specification.

We believe a more suitable approach is to utilize, along with IFC, access control schemes that

support threshold-functions, such as SecPAL and DKAL [96], to easily describe such constraints.

Access control schemes that build on threshold cryptography, such as the work by Alsulaiman

et al. [97] can also be used here.

Scenario 5

Policy: An app developer wants only a certain set of pre-approved applications to

access the information the app generates, and only a certain number of accesses.

Each app has a different cap.

An example could be any social media app, like Facebook or Twitter, which already have

similar restrictions on their online APIs 3 4.

This policy cannot be enforced immediately by regular IFC systems. It could, however, be

enforced through some tweaks to the implementation of the reference monitor to count the

number of accesses and additions to the policy specification language. Similarly, trusted

declassification [87] can be used to implement such policies, but would need some additional

constructs included to identify sending (or receiving) apps and keep track of the number of

accesses; and all that will be part of the policy. Instead, we can use access control schemes that

limit the number of times credentials can be used (e.g., [98]).

3dev.twitter.com/rest/public/rate-limiting
4developers.facebook.com/docs/graph-api/advanced/rate-limiting
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5.2 Approach

We propose the following approach to extend IFC. A declassification operation would only be

successful if it’s allowed by the IFC policy and an access control policy; otherwise it’s

disallowed.5 The access control policy can be either 1) a global policy specified by the system

administrator, 2) a distributed policy where each declassification capability will include an

app-specific piece of policy specified by the app developer or the system administrator, or 3) a

combination of both approaches. The effective policy for the whole system will be the

combination of the IFC policy, represented by the security labels, and the access control policy.

We insert an additional check into all declassification operations. This check is implemented

by a function that implement the access control scheme. This function inputs will be the access-

control policy, the current security lattice, the current and final labels, and some state. The output

will be a boolean decision and the updated state. There could different access control schemes,

for different labels. However, we will restrict our discussion to one access control scheme in this

work.

The state to which we give the check function access can be global, app-specific, instant-

specific, or a combination of the above. For a general framework, we include all three kinds

of states. For both global and app-specific state, we need to be careful of potential violations

of IFC policy. Therefore, access to these state for each declassification request must be based

on the requesting instance’s dynamic label. There are two possible solutions for this issue. We

could assign the specific label on these states. For example, the global state can be assigned an

empty secrecy and integrity label, i.e., ({},{}), and app-specific state could be assigned the app’s

static label. Another approach that works better for the global state would be to partition it into

multiple states, one for each possible label.6 Then, whenever a declassification request is made,

the access control function will only have write access to the partition with the exact label as the

5One could imagine an implementation where the declassification occurs if it’s allowed by the access control
policy or the IFC policy. However, we will not consider such implementation, as we suspect it will weaken the
security properties that can be proved.

6An efficient implementation would allocate these partitions on demand; however, we will keep it simple here.
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requesting instance and read access to the partitions with same label or any label below it in the

lattice. We could allow write access to partitions with labels that are above the instance’s in the

lattice, but we doubt that it will be useful without read access.

Many extensions to regular IFC have been proposed [13, 16, 17, 75, 86, 87]. These proposals

extend the expressiveness of the enforceable policies. The policies in many of the scenarios

discussed above can be implemented by one or more of these extensions. However, some of

these extensions are usually limited to a specific set of scenarios. Some closely related works do

provide general conditions for declassification [16, 17], but lack explicit support for both global

and local state as we do. In addition, we believe that the specification languages, if specified,

of such extensions are not as practical as those for regular access control schemes. On the other

hand, we explicitly separate policy and enforcement of the declassification conditions to support

regular access control schemes.

For example, the policies in a couple of the scenarios above can be enforced using

quantitative information flow control [99]. However, quantitative IFC can be expensive,

performance-wise, to implement (see [100]). Another extension is the notion of trusted

declassification discussed before [87]. While potentially arbitrary logic can be included in those

trusted declassifiers, this approach is too flexible to aid in verification and will increase the size

of the policy, which is almost always not desirable (see Sec. 5.6 for more details).

We believe that our approach can offer a good compromise between the extremely flexible

trusted declassification approach and the limited schemes, such as delimited release [75], that

provide useful and provable security properties for specific scenarios. However we do not claim

that our approach is fundamentally better than the other IFC extensions, but instead it is another

alternative to be considered.
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5.3 A Model with Controlled Declassification

Mcd(L, fAC,Σpol)

In this section we extend our model to include the controlled declassification checks and state.

First we redefine parts of the syntax and semantics in Secs. 5.3.1 and 5.3.2, respectively. Then,

in Sec. 5.3.3, we will amend the versioned-labels noninterference proof to accommodate these

changes.

Note that the model is parameterized by the language for the declassification policy labels

Σpol and the access control function fAC, which we will use to define the syntax and semantics,

respectively, of the model.

5.3.1 Syntax

For the syntax changes, we need to add the states and the declassification policy labels. We use

a key-value store, i.e., dictionary, data structure for the instance and app states. As for the global

state, we need a data structure that can be indexed with labels, where each entry is a Key-value

store. Figure 5.1 summarizes the notation and valid operations for both data structures. The

required syntax changes are listed in Fig. 5.2. For generality, we do not specify the syntax for

the declassification policy labels.

5.3.2 Semantics

The system’s operational semantic are amended by adding the access control checks and making

sure that the state stores are updated, whether the check succeeds or fails. We modify the system

semantics, specifically those for declassification, in Figs. 5.3 and 5.4. The rules in Fig. 5.4 are

updated to make sure that the global store changes are propagated.

The most important addition to the semantics is the access control function fAC that is used to

control declassification (Fig. 5.3). It takes as inputs the state stores, the declassification capability
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Key-Value Store

2 The empty key-value store
addKV(st, k, v) Add a the key-value pair (k, v) to st
updKV(st, k, v) Update the entry indexed by k in st with the value v
rmKV(st, k) Remove the entry indexed by k from st
getKV(st, k) Retrieves the value indexed by k in st

Global Store

filterGS(gst, l) Remove all entries in st with label l′ where l′ 6v l
updGS(gst, l, st) Update the entry indexed by l in gst with the store st

A new entry will be created if necessary
getGS(gst, l) Retrieves the key-value store indexed by l in gst

Returns 2 if the entry does not exist

Figure 5.1: Summary of the notation and operations for key-value and global stores. All store
modifying operations will return the modified copy of the store.

Policy ::= 〈any policy p, s.t., p ∈ Σpol〉
DeclCap ::= list(label, label, Policy)
KV S ::= 〈Key-value store data structure〉
DynamicLabelList ::= list(IID, label,KV S)
AppLabelMap ::= SingleInstanceUnlaunched label IID DeclCap KV S

| SingleInstanceLaunched label label IID DeclCap KV S KV S
| MultiInstance label DynamicLabelList DeclCap KV S | NA

GKV S ::= 〈Global store data structure〉
Sys ::= (Apps, IS, LM,PQ,GKV S)

Figure 5.2: Amending system syntax to enable controlled declassification.
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that includes the local policy, the global policy, the system model security lattice, the current

label, and the new label. The lattice is part of the model, but making it an explicit argument

to the access control function will help with the proof in Sec. 5.5.1. The output of the function

is the updated stores and a boolean value to indicate if the declassification should be allowed

or not. Notice that the state stores are updated even if the declassification was denied, which

is fine because these stores are accessible from the current instance label anyway. The instance

store, sti1, is passed as is to the access control function, and the updated store, sti2 is saved to

the label map. The app store, sta, is passed to the access control function only if the app’s label

is below the instance’s, and updated only if the labels agree. The access control function will

only get the entries in the global store, gst1, with labels that are at or below the instance’s. The

access control function output, st, replaces the global entry with the same label as the instance’s.

Also, the operator ∈∗ in these rules works like ∈, except that it will ignore the policy label, i.e.,

(l1, l2) ∈∗ δ ⇐⇒ ∃pol · (l1, l2, pol) ∈ δ. Note that the reset of the operational semantics

will need trivial modification to account for those changes. These modifications are mainly to

account for the extra fields in the apps’ label map entries, which will be just ignored.

5.3.3 The Versioned-Labels Noninterference Proof

We need to ensure that the modifications made to the system model to add controlled

declassification did not compromise the security guarantees. We do this by adapting the

noninterference theorem to the new model. We first need to modify the projection function to

account for the global store. The rest of the projection function definition from Figs. 4.30 and

4.31 stays the same, ignoring the addition of local stores. The projection function simply

removes all entries with high labels from the global store (see Fig. 5.5). This works because the

global store returns an empty store for nonexistent labels and allows update operations to create

entries if necessary.

Theorem 10 (Versioned-Labels Noninterference). The model Mcd(−, fAC,Σpol) satisfies
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aid@lm1 HasAppLabel (SingleInstanceLaunched iid sl dl δ sta1 sti1)
l 6v dl (dl, l) ∈∗ δ sta,in = if slv dl then sta1 else 2

fAC(filterGS(gst1, dl), sta,in, sti1, δ,L, dl, l) = (st, sta,out, sti2, true)
sta2 = if sl = dl then sta,out else sta1

Update aid@lm1 with (SingleInstanceLaunched iid sl l δ sta2 sti2) 7→ lm2

gst2 = updGS(gst1, dl, st)

(lm1, gst1)
(dl,l)
�

DECLASSIFY
〈aid, iid, l〉 (lm2, gst2)

aid@lm1 HasAppLabel (SingleInstanceLaunched iid sl dl δ sta1 sti1)
sta,in = if slv dl then sta1 else 2

fAC(filterGS(gst1, dl), sta,in, sti1, δ,L, dl, l) = (st, sta,out, sti2, b)
lv dl ∨ (dl, l)6∈∗δ ∨ b sta2 = if sl = dl then sta,out else sta1

Update aid@lm1 with (SingleInstanceLaunched iid sl dl δ sta2 sti2) 7→ lm2

gst2 = updGS(gst1, dl, st)

(lm1, gst1)
τ
�

DECLASSIFY
〈aid, iid, l〉 (lm2, gst2)

aid@lm1 HasAppLabel (MultiInstance sl dll1 δ sta1)
iid@dll1 HasInstanceLabel (dl, sti1)

l 6v dl (dl, l) ∈∗ δ sta,in = if slv dl then sta1 else 2

fAC(filterGS(gst1, dl), sta,in, sti1, δ,L, dl, l) = (st, sta,out, sti2, true)
sta2 = if sl = dl then sta,out else sta1 Update iid@dll1 with (l, sti2) 7→ dll2

Update aid@lm1 with (MultiInstance sl dll2 δ sta2) 7→ lm2

gst2 = updGS(gst1, dl, st)

(lm1, gst1)
(dl,l)
�

DECLASSIFY
〈aid, iid, l〉 (lm2, gst2)

aid@lm1 HasAppLabel (MultiInstance sl dll1 δ sta1)
iid@dll1 HasInstanceLabel (dl, sti1) sta,in = if slv dl then sta1 else 2

fAC(filterGS(gst1, dl), sta,in, sti1, δ,L, dl, l) = (st, sta,out, sti2, b) lv dl ∨ (dl, l)6∈∗δ ∨ b
sta2 = if sl = dl then sta,out else sta1 Update iid@dll1 with (dl, sti2) 7→ dll2

Update aid@lm1 with (MultiInstance sl dll2 δ sta2) 7→ lm2

gst2 = updGS(gst1, dl, st)

(lm1, gst1)
τ
�

DECLASSIFY
〈aid, iid, l〉 (lm2, gst2)

Figure 5.3: Amending the operational semantics for DECLASSIFY to add access control checks.
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(lm1, is1, pq1, gst1)/apps
DECL(lold,lnew)

� (lm2, is2, pq2, gst2)

(apps, lm1, is1, pq1, gst1)
DECL(lold,lnew)

=⇒ (apps, lm2, is2, pq2, gst2)

(aid, iid)@is1 �is 〈DECLASSIFY l, is2, ra〉 (lm1, gst1)
(dl,l)
�

DECLASSIFY
〈aid, iid, l〉 (lm2, gst2)

(lm1, is1, pq, gst1)/apps
DECL(dl,l)

� (lm2, is2, pq, gst2)

(aid, iid)@is1 �is 〈DECLASSIFY l, is2, ra〉 (lm1, gst1)
τ
�

DECLASSIFY
〈aid, iid, l〉 (lm2, gst2)

(lm1, is1, pq, gst1)/apps
τ
� (lm2, is2, pq, gst2)

Figure 5.4: Amending system semantics to add controlled declassification state stores.

1k
gst(gst) = filterGS(gst, k)

1k
sys(apps, lm, is, pq, gst) = (apps,1k

lm(lm),1k
is〈lm〉(lm, is),1k

pq〈lm, lm〉(pq),1k
gst(gst))

Figure 5.5: The projection function modified to account for global stores.

versioned-labels noninterference.

Proof. In order for the versioned-labels noninterference proof to stay valid, we only need to

verify that all the declassification steps can be simulated by the projected system. Other system

steps won’t be affected. From the proof of Theorem 9, we know that in the versioned system

simulation, all successful declassification operations will either declassify from high to high or

low to low. In the first case, the projected system does not need to take any steps, as all the

changes are projected out. In the second case, we know that the low parts of the global store will

be the same between the projected and original system. The same applies to the app’s local store

if the static label was low. If it was high, the store won’t be used because the dynamic label,

which is low, cannot be higher or equal to the static label. Therefore, all the inputs and outputs to

the access control functions will be the same. Thus, the projected system will be able to simulate

the same operation.

As for blocked declassification operations, the requesting instance can be either low or high.

The same reasoning from the unblocked case above applies here too.
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5.4 Examples

In this section we introduce some example instantiations of the modelMcd(L, fAC,Σpol).

5.4.1 Declassification Count

We start with a simple example policy that requires each instance to use certain declassification

capabilities only a specific number of times. Here, the policy syntax for the declassification

labels is defined as an integer, i.e., Σpol ::= N . The access control function will first check if

there is a counter, say count, in the instance’s store. If count does not exist, the function will add

one with an initial value of zero. Then it will only allow the declassification if count ≤ limit,

where limit is the integer from the policy. It will finally increment count by one. If we need

to enforce the policy for different declassification capabilities, we would use a uniquely named

counter for each capability. This scheme can be used to implement Scenario 5 from Sec. 5.1.

If we require the limit to be global instead of a per app instance, then we need to use the global

store. For a declassification capability from lold to lnew, we would store the counter in the entry

of lold in the global store. This will work because regardless of the ultimate decision, the counter

will always be accessible when declassifying from lold. Such policy cannot be implemented, in

a provably secure way, in systems which do not support declassification conditions based on a

global state.

5.4.2 Declassification Chains

This policy requires an instance to only be able to declassify its label along a certain chain (i.e.,

sequence) of labels in the lattice. For example, if the chain is l1, l2, l3, then the app instance

will need to declassify its label from l1 to l2 before it’s able to declassify from l2 to l3. The

policy syntax is a list of labels from the lattice, i.e., Σpol ::= list label. The access control

function will maintain a list, or history, of approved declassification in the instance store. For
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each declassification request, it will check whether the history matches the policy chain.

This scheme can be used to implement Scenario 3 from Sec. 5.1 by giving the individual

declassification capabilities to the respective apps, and specifying a chain of length three as the

declassification label policy for the app that must declassify last.

5.5 Lattice-Based Properties

In this section we focus on a special type of properties for IFC systems that are based on the

versioned lattice. The goal is to give an example of properties that can be provably enforced

using our controlled declassification system.

The versioned lattice, in a way, encodes the effects of declassification on the original lattice.

Thus, we can use it to describe certain properties about the overall system behavior with regard

to declassification. For example, by looking at the versioned lattice we can determine the

number of declassification operations between specific labels. These properties can be captured

with a predicate that takes a versioned lattice as an input, i.e., P(Ln). For example, the

predicate P((Ln,vn)) = ∃m1,m2 · lm1
1 vn lm2

2 captures the condition of whether the

declassification operations in this specific execution allowed information flows from label l1 to

l2, which otherwise could not have happened.

It is important to note that these lattice-based properties do not provide any guarantees, unless

the system also satisfies noninterference. Otherwise, the policy that is specified by the lattice is

not provably enforced, and thus we cannot conclude anything based on the lattice. An example

of this lack of guarantee is if a lattice-based property says that there was no declassification from

l1 to l2, where l1 6v l2. One would expect that any app with l1 will not be able to send information

to an app with l2. However, this is not guaranteed if noninterference does not hold for the system.
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5.5.1 General Proof Strategy for Lattice-Based Properties

In order to prove that a system instance, with a specific access control scheme, satisfies a lattice-

based predicate we need to show that for all possible system executions the predicate will be true

given the resulting versioned lattice. We define this notion concretely in Definition 5 below. Note

that t could be empty or contain no declassification, which means the predicate must be valid for

the lattice of the initial instance S, i.e., P(L0).

Definition 5. We say that a system instance S ∈ Mcd(L, fAC,Σpol) satisfies lattice-based

predicate P if, for any trace t, and system instances S ′ ∈ Mcd(L, fAC,Σpol), if S t
===⇒∗ S ′

then P(ω(L, t)).

In general, to prove that a system instance satisfies a property, it is sufficient to show that it

is true for L0, and that if it is true for Ln then it will be true for Ln+1 given the access control

function of the system model. Theorem 11 codifies this inductive proof strategy for lattice-based

properties. Note that the choice of the predicate Φ depends on the specific property and access

control scheme.

Theorem 11 (Lattice-Based Properties). For any system modelMcd(L, fAC,Σpol) and any initial

system instance S ∈Mcd(L, fAC,Σpol), S satsifies P if we can show that

• P(L0)

• for any app instance in S, Φ(gst, sta, sti) is true, where gst is the global store of S, sta

and sti are the app and local stores of this instance, and Φ is a predicate we chose over

those stores

• for any trace t, system instance S ′ ∈Mcd(L, fAC,Σpol), s.t., S t
===⇒∗ S ′, and any labels

lold, lnew, s.t., lnew 6v lold, if

− P(Ln), and

− Φ(gst1, sta,in, sti1), and

− fAC(filterGS(gst1, lold), sta,in, sti1, δ,L, lold, lnew) = (st, sta,out, sti2, true)
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then

P(Ln+1), and

Φ(updGS(gst1, lold, st), sta,out, sti2)

where Ln = ω(L, t) and Ln+1 = ω(L, (DECL(lold, lnew)::t)).

Proof. The proof is a straightforward induction proof once we note that only declassification

operations change the state stores, and if successful, advance the lattice version. One key

observation we need is that

fAC(filterGS(gst1, lold), sta,in, sti1, δ,L, lold, lnew) = (st, sta,out, sti2, true)

if and only if

fAC(filterGS(gst1, l
n
old), sta,in, sti1, δ,Ln+1, lnold, l

n
new) = (st, sta,out, sti2, true)

This is because ln1 vn+1 ln2 ⇐⇒ l1v l2. The same applies for denied declassifications.

Theorem 11 allows us to easily prove that a lattice-based predicate is satisfied by some system

instance. In essence, we only need to show that the access control function will maintain the

predicate after a successful declassification operation.

5.5.2 The Lattice-Based Chinese Wall Policy

Here we present our adaption of the Chinese Wall policy [101], slightly modified for our setting.

Given two labels, the lattice-based Chinese wall policy states that there should never be an

information flow between any two app instances with those two labels. This policy should hold

regardless of the declassification operation in the system. There could be more than two labels;

however, for simplicity, we will focus on the case of two labels. If two labels satisfy this policy,

we say that they are separated.
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In order for the policy to make sense, the lattice should not allow information flows between

the two labels to begin with. Such labels are called incomparable. Two labels, l1 and l2, are

incomparable if l1 6v l2 and l2 6v l1. In other words, information should not flow from l1 to l2 or

from l2 to l1.

In order to facilitate our discussion, we need a way to describe what labels can send

information to and from a specific label. We define the operators ↑ and ↓, which take a label and

calculate the set of all labels that are below it and above it, respectively, in the lattice. We call

these two sets the up set and down set of the label.

(L,v) ↑ l = {l′ : l′ ∈ L ∧ lv l′}

(L,v) ↓ l = {l′ : l′ ∈ L ∧ l′v l}

Next, we formally define when two labels are separated. Definition 6 makes sure that

regardless of the label version, there must not be an information flow to any version of the

separated label. A system satisfies the lattice-based chinese wall policy for two labels if the

labels are separated in all versioned lattices that can possibly result from the system execution.

Definition 6 (Separated Labels). The two incomparable labels l1 and l2 are separated in a

versioned lattice Ln if for any m1,m2 ≤ n,

• Ln ↑ lm1
1 ∩ Ln ↓ lm2

2 = {}, and

• Ln ↓ lm1
1 ∩ Ln ↑ lm2

2 = {}

There are multiple ways we can enforce this policy depending on how flexible we want to

be. In the extreme, we can disallow all declassification requests. However, we would want to be

more flexible. Label separation requires that the up and down sets of the labels do not intersect.

This implies that, ideally, we should allow any declassification that does not change these sets

or change them without making them intersect. The fact that these sets can dynamically grow,

similar to how new users are dynamically assigned to a class in the original Chinese Wall model,

is why we called this policy “lattice-based Chinese Wall”. However, when we tried to implement
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this enforcement in our model, we discovered that it’s not possible due to the restriction on

global state access. We found that implementing such enforcement would result in IFC policy

violation. An attacker who controls an app with the capability to declassify between two high

labels can control the outcome of a declassification between two low labels. This scenario occurs

when there is a path between one of the low labels and one of the high ones, such that allowing

both declassifications leads to a violation of the separation policy. Below, we introduce a more

conservative approach to enforcing label separation. The fact that we were unable to implement

this enforcement mechanism, which violates the IFC policy, in our model, shows the importance

of having proven secure models.

One way to implement label separation enforcement in our model is to allow all

declassifications, unless they are declassifying to one of the two labels down set, i.e., if

lnew ∈ L ↓ lmi for any m. This strategy will ensure that new information flows to these labels

are never introduced. This is true because (1) the down set for the label will never change in this

case as we do not allow any new labels to be below it, and (2) the up set might acquire new

labels, but never ones from the down sets. Thus, the intersection from the separation property

will always be the empty set. One can visualize this enforcement as a “wall” surrounding the

down sets and preventing any new flow or “arrow” added to the lattice from crossing inside.

The up sets, which do not have such restrictions, are allowed to “grow”. In fact, we could also

enforce label separation by having the “wall” around the two up sets (allowing the down sets to

grow) or around the down and up set of one of the labels (allowing the sets of the other label to

grow).

We implement the enforcement above with the following scheme. We don’t need the policy

labels, thus Σpol can be set to any value since it will be ignored. The system will be initialized,

possibly by some privileged app, such that the unversioned down sets of labels l1 and l2 are listed

in the global store with the no secrets label, making them readable by any app. The access control

function will only allow declassification requests if lnew, ignoring label version, is not in any of

those down sets.
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The proof strategy from Sec. 5.5.1 can be used here to prove that the label separation property

will always hold. The invariant predicate Φ will not depend on the lattice version and will only

require that the unversioned down sets are in the global store. Thus, Φ will always be true. The

inductive step follows directly from the discussion above. That is the down sets will not change7,

and the up sets (which need to be recalculated after the declassification) will never include a label

from the down sets. Therefore, the predicate from Definition 6 will always be true.

5.6 Related Work

Researchers have proposed several approaches to control declassification. Hicks et al.

introduced the notion of trusted declassification, where declassification can only happen

through a set of trusted functions that are part of the policy [87]. The problem with this

approach is that policies are not declarative but specify the enforcement mechanism itself,

which complicates both verification and policy management. The policy size will increase

because one need to include not just declarative policy requirements, but the actual enforcement

mechanism in the policy. For example, a declarative piece of policy could be “declassify once,”

while an enforcement mechanism would need to maintain some state and check the state each

time a declassification is requested.

Another approach is robust declassification, which ensures that declassification operations

cannot be controlled by the attacker [86, 102]. Delimited release esures that any variable that is

later declassified is not controlled by the attacker [75]. Both of these works, while representing

important security properties, do not allow for the specification of general conditions on

declassification.

Banerjee et al. proposed a policy framework that allows the specification of logical conditions

for declassification [16]. The conditions in their work can look at past events, which approximate

7New versions of the same label will be added to those down sets. However, we are ignoring label versions for
the purpose of our proof.

138



state. Stateful declassification by Vanhoef et al. allows conditions in the form of information

release functions that take a state variable as an input, which is similar to our instance state store,

but they don’t explicitly support global state with label-guarded paritions [17]. Our work and

both of these works share the same goal of increasing the expressiveness of policies through

conditional declassification and the use of some kind of state. In our work we focus on Android

and explicitly allow conditions to be based on label-guarded global state, which enable even

more expressive policies (see Sec. 5.4.1).

5.6.1 Logic-Based Access Control

Logic-based access control grants access based on formal proofs. These proofs are based on

both a set of credentials and a policy written in formal language. A large number of logic-based

access control schemes have been proposed in the last 20 years. The earliest work on designing

a logic-based access control policy specification language was done by Abadi et al. [103]. Their

work was the foundation for many of the later works in this area. SD3 was the first of a series of

logic-based languages that are based on Datalog. Other notable works in this series are Binder

[104], Cassandra [105], and SecPal [106]. Binder supported distributed policies and is more

expressive than SD3 [104]. Cassandra was based on Datalog with constraints and it allowed for

adjusting the expressiveness (and performance) by leaving the choice of the constraint domain to

the implementation and by only requiring that the domain be constraint compact [105]. SecPal’s

syntax is closer to the natural language and admits more constraint domains by only requiring

that the constraint be ground (i.e., no variables) at run-time [106]. DKAL builds on SecPal;

however, instead of using Datalog, it uses existential fixed-point logic (EFPL) for its formalism,

which supports even more expressive policies. DKAL also supports distributed knowledge: each

assertion is qualified with the principal who knows (or is the recipient of) the fact in question

[96]. While each newer scheme provided more expressiveness, none of these schemes, as far

as we know, enabled expressing properties that are similar to IFC’s noninterference in terms of
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controlling information throughout a closed system with multiple apps running together.
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Chapter 6

Conclusion

141



We conclude this dissertation by summarizing the contributions and discussing potential

future works.

6.1 Summary

We began this dissertation with the thesis that IFC polices and enforcement mechanisms can

provide expressive, practically useful, and provable security guarantees for Android. To support

this thesis we used an IFC approach to enhance the security the Android OS, as an example of

modern application platforms.

We started by presenting our approach of using run-time enforcement of IFC policies in

Android. In this approach we proposed a tag-based policy specification scheme, where each tag

represents a certain confidential piece of information, such as GPS location data, or a certain

permission to access a sensitive resource, such as Internet or SMS access. These tags are

assigned to apps and app components, and their assignments form the security policy that we

must enforce. A run-time monitor enforces the policy by intercepting all communications

between apps, or app components, and only allowing the communication to proceed if it does

not, potentially, lead to policy violation, such as leaking of confidential information or access to

a sensitive resource. In addition, we support declassification capabilities and floating labels,

which provide for expressive and flexible policies. We demonstrated, via example, that this

approach can provide security for reasonable scenarios that are unsecure in the regular Android

OS. Furthermore, in a parallel work, it has been show that implementing this scheme in Android

is feasible and has no user discernible effects on the system performance [95].

The approach above relies on the fact that apps are isolated by the Android OS, and only

allowed to communicate through system APIs. However, within an app, app components are not

completely isolated and can communicate directly. Thus, component-level policy enforcement

is not robust, and relies on developers choosing to strictly use Android APIs for component to

component communication. To bridge this gap, we developed a static analysis too that can detect
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potential direct, i.e., unmonitored, communications between components. We then used this tool

to study the feasibility of robust component-level enforcement for more than 2,500 apps from

the Google Play Store. Our findings suggest that for the majority of existing apps, retrofitting

component-level enforcement is unfeasible. However, the tool can still be used by developers to

avoid direct communication in their apps, especially when using third-party code.

Next, and based on our believe that formal verification is essential to provide assurance in

any security mechanism or protocol, we formally proved that our enforcement mechanism

will correctly enforce the desired security policy. We first built a faithful π-calculus

model of the Android OS and our enforcement mechanism and prove that it satisfies the

noninterference property. The noninterference property guarantees, in the absence of

declassification, that security policy will never be violated. Second, we developed a simplified,

labeled-transition-system (LTS), model of our system and used the Coq proof assistant to prove

that it satisfies noninterference. We then introduced a novel versioned-labels noninterference

property definition that provide security guarantees even when declassification and raise

operations are used, and proved that the simplified model satisfies this property.

Finally, we studied the addition of traditional access-control schemes to control the

declassification operations within the IFC scheme. We present several useful scenarios whose

desired policy can be practically enforced with access-controlled declassification, but not with

basic IFC approach. We then augmented our simplified Android model to add access-control

checks and policy specification for declassification. Our model explicitly provide global, app,

and local states for implementing these access-control schemes, which provide for quite

expressive policies. We also proved that the augmented model still satisfies the versioned-labels

noninterference definition for any declassification access-control scheme. Finally, we present

lattice-based properties as an example of a class of properties that relies on controlled

declassification can be proved, along with noninterference, for our augmented model.

We disscus possible future work next.
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6.2 Future Work

One of our immediate future works is to complete the model from Sec. 4.2 to include the missing

features from the more complete π-calculus model. We also would like to have the whole

versioned-labels noninterference proof in Coq. Another future work is to convert the Coq model

into executable code and try to run it with some sample apps and policies that approximate what

is typically in Android. This testing will increase the confidence in the accuracy of this Android

model. Finishing these few pieces of work will increase the assurance in our models and proofs.

We also would like to apply our approach to other platforms, such as web browsers and

the Internet-of-Things (IoT). Web browsers, while different from mobile OSs, share similar

characteristics. For example, both platforms run code that is sourced from different vendors;

though the level of isolation is somewhat weaker in web browsers. The IoT platform also

has apps from different vendors, but these apps usually run widely different software stacks

on separate devices, which makes policy specification and enforcement quite an interesting

challenge.

In another direction, we would like to explore fine-grained policy enforcement at levels

other than components. For example, it could be possible to enforce policies at the Java class

level or at the level of Java packages. It should be interesting to have insight into the

comparative advantages and disadvantages of each approach in terms of practicality, ease of

policy enforcement, impact on performance, and complexity of verification.

Finally, we want to study the instantiation of the declassification policy in the model from

Ch. 5 with different established access-control policy specification schemes. For example, we

might want to instantiate the model with DKAL or SecPAL as the policy scheme for

declassification [96, 106]. In particular, we would like to discover the limitations of our model

in terms of allowing for the different access-control schemes. Maybe it need some extra features

or tweaks to support some of the schemes. In addition, we are interested in what kind of

properties that can be proved about the enforcement of such concrete policy schemes in our
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model. For example, can we prove that our enforcment satisfies non-occlusion for all schemes,

some of the schemes, or none [107].
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A Coq Model

lattice.v
1 Require Import Coq.Bool.Bool.
2 Require Import Coq.Arith.Arith.
3 Require Import Coq.Lists.List.
4 Require Import Coq.Program.Equality.
5 Require Import Coq.omega.Omega.
6

7 Module SecurityLattice.
8

9 Import ListNotations.
10

11 (* The set of labels for the security lattice *)
12 Inductive label : Set :=
13 | H : label
14 | L : label.
15

16

17 (* The partial order relation between labels *)
18 Definition lte_bool (l1:label) (l2:label) : bool := match (l1,l2) with | (H,L) =>

false | (_,_) => true end.
19 Definition lte (l1:label) (l2:label): Prop := lte_bool l1 l2 = true.
20 Definition nlte (l1:label) (l2:label): Prop := lte_bool l1 l2 = false.
21

22

23 End SecurityLattice.

labelmap.v
1 Require Import Coq.Bool.Bool.
2 Require Import Coq.Arith.Arith.
3 Require Import Coq.Lists.List.
4 Require Import Coq.Program.Equality.
5 Require Import Coq.omega.Omega.
6 Require Export lattice.
7

8 Module LabelMap.
9

10

11 Import ListNotations.
12 Import SecurityLattice.
13

14 (* App id *)
15 Definition aid : Type := nat.
16

17 Definition beq_aid := beq_nat.
18

19 (* Instance id *)
20 Inductive iid : Type :=
21 | Iid : nat -> iid.
22

23 Definition beq_iid ii1 ii2 :=
24 match ii1,ii2 with
25 | Iid n1, Iid n2 => beq_nat n1 n2
26 end.
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27

28 Inductive app_label_map : Type :=
29 | Single_Instance_App_Unlaunched (sl :label) (prev_ii : iid)
30 | Single_Instance_App_Launched (sl : label) (dl : label) (ii: iid)
31 | Multi_Instance_App (sl : label) (dl_list : list (iid * label))
32 | NA.
33

34 Definition default_alm := Single_Instance_App_Unlaunched TOP (Iid 0).
35

36 (* The Label Map maps apps and instances into labels *)
37 Definition label_map : Type := list app_label_map.
38

39

40 (** Utility Functions *)
41 Fixpoint update_label_map_app (lm : label_map) (ai:aid) (rep_alm : app_label_map):

label_map :=
42 match lm with
43 | nil => nil
44 | alm :: tl => match ai with
45 | O => rep_alm :: tl
46 | S n => alm :: (update_label_map_app tl n rep_alm)
47 end
48 end.
49

50

51 Fixpoint next_iid_nat (dll : list (iid * label)) : nat :=
52 match dll with
53 | nil => O
54 | (Iid n,_) :: tl => S (max n (next_iid_nat tl))
55 end.
56 Definition next_iid (dll : list (iid * label)) : iid := Iid (next_iid_nat dll).
57 Definition increment_iid (ii : iid) : iid := match ii with | Iid n => Iid (n+1) end.
58

59 Definition get_app_label_map (lm: label_map) (ai: aid) : option app_label_map :=
60 nth_error lm ai.
61

62 Definition get_inst_label (dll : list (iid * label)) (ii:iid) : option label :=
63 option_map snd (find (fun a => beq_iid (fst a) ii) dll).
64

65 Definition get_label (alm: app_label_map) (ii: iid) : option label :=
66 match alm with
67 | Single_Instance_App_Launched sl dl ii2 => if beq_iid ii ii2 then Some dl else

None
68 | Multi_Instance_App sl dll => get_inst_label dll ii
69 | _ => None
70 end.
71

72 (** Label Map Operations**)
73

74 Inductive has_app_label_map :
75 label_map ->
76 aid ->
77 app_label_map -> Prop :=
78 | halm_next lm ai alm alm2:
79 has_app_label_map lm ai alm ->
80 has_app_label_map ( alm2 :: lm ) (S ai) alm
81 | halm_get lm alm:
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82 has_app_label_map ( alm :: lm ) O alm.
83

84 Inductive has_inst_label:
85 list (iid * label) ->
86 iid -> option label -> Prop :=
87 | hil_next dll ii l ii2 l2:
88 beq_iid ii ii2 = false ->
89 has_inst_label dll ii l ->
90 has_inst_label ((ii2,l2) :: dll) ii l
91 | hil_nil ii: has_inst_label nil ii None
92 | hil_get dll ii l:
93 has_inst_label ( (ii,l) :: dll) ii (Some l).
94

95 Inductive has_label:
96 label_map ->
97 aid -> iid ->
98 option (label * label) -> Prop :=
99 | hl_sl lm ai ii sl dl:

100 has_app_label_map lm ai (Single_Instance_App_Launched sl dl ii) ->
101 has_label lm ai ii (Some (sl,dl))
102 | hl_sl_none lm ai ii ii’ sl dl:
103 has_app_label_map lm ai (Single_Instance_App_Launched sl dl ii’) ->
104 beq_iid ii ii’ = false ->
105 has_label lm ai ii None
106 | hl_m lm ai ii sl dll dl:
107 has_app_label_map lm ai (Multi_Instance_App sl dll) ->
108 has_inst_label dll ii (Some dl) ->
109 has_label lm ai ii (Some (sl,dl))
110 | hl_m_none lm ai ii sl dll:
111 has_app_label_map lm ai (Multi_Instance_App sl dll) ->
112 has_inst_label dll ii None ->
113 has_label lm ai ii None.
114

115

116 Inductive update_inst_label:
117 list (iid * label) ->
118 iid -> label ->
119 list (iid * label) -> Prop :=
120 | uil_next dll ii l ii2 l2 dll2:
121 beq_iid ii ii2 = false ->
122 update_inst_label dll ii l dll2 ->
123 update_inst_label ((ii2,l2) :: dll) ii l ((ii2,l2) :: dll2)
124 | uil_update dll ii l l_old:
125 update_inst_label ( (ii,l_old) :: dll) ii l ( (ii,l) :: dll).
126

127 Inductive update_app_label_map :
128 label_map ->
129 aid ->
130 app_label_map ->
131 label_map -> Prop :=
132 | ualm_next lm lm2 ai alm alm2:
133 update_app_label_map lm ai alm lm2 ->
134 update_app_label_map ( alm2 :: lm ) (S ai) alm ( alm2 :: lm2)
135 | ualm_get lm alm alm_old:
136 update_app_label_map ( alm_old :: lm ) O alm (alm :: lm).
137

138
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139 End LabelMap.

core.v
1 Require Import Coq.Bool.Bool.
2 Require Import Coq.Arith.Arith.
3 Require Import Coq.Lists.List.
4 Require Import Coq.Program.Equality.
5 Require Import Coq.omega.Omega.
6

7 Require Export labelmap.
8 Require Export lattice.
9

10 Module CoreLanguage.
11

12 Import ListNotations.
13

14 Import LabelMap.
15 Import SecurityLattice.
16

17 (* id for variables*)
18 Inductive id : Type :=
19 | Id : nat -> id
20 | ARG.
21

22 Hint Constructors id.
23

24 Definition beq_id id1 id2 :=
25 match id1,id2 with
26 | Id n1, Id n2 => beq_nat n1 n2
27 | ARG, ARG => true
28 | _,_ => false
29 end.
30

31 Inductive tp : Type :=
32 | Tbool
33 | Tnat
34 | Tref (t : tp).
35

36 Definition loc := nat.
37

38 Inductive val : Type :=
39 | v_bool (b:bool)
40 | v_nat (n: nat)
41 | v_loc (l: loc).
42

43

44 Inductive exp : Type :=
45 | e_var (x: id) : exp
46 | e_val (v:val) : exp
47 | e_eq : exp->exp->exp
48 | e_deref : exp -> exp.
49

50 Definition e_bool (b: bool) : exp := e_val (v_bool b).
51 Definition e_nat (n: nat) : exp := e_val (v_nat n).
52 Definition e_loc (l: loc) : exp := e_val (v_loc l).
53

54 Definition mem : Type := list val.
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55 Definition empty_mem : mem := nil.
56

57 Fixpoint update_mem (m:mem) (l:loc) (v:val) : mem :=
58 match m with
59 | nil => nil
60 | h :: t => match l with
61 | O => v :: t
62 | S n => h :: (update_mem t n v)
63 end
64 end.
65

66 Definition lookup_mem (m:mem) (l:loc) : val :=
67 nth l m (v_bool false).
68

69 Inductive value : exp -> Prop :=
70 | Value v : value (e_val v).
71

72

73 Inductive cmd : Type :=
74 | Raise (l:label)
75 | Decl (l:label)
76 | Call (ai : aid) (e : exp) (expect_return: bool)
77 | Return (e : exp)
78 | Exit (e : exp).
79

80 Inductive stm : Type :=
81 | s_seq (s1 s2 : stm)
82 | s_if (e:exp) (s1 s2:stm)
83 | s_null
84 | s_assign (e1 e2: exp)
85 | s_let (x:id) (e: exp) (s:stm)
86 | s_new (x:id) (e: exp) (s:stm)
87 | s_cmd (c : cmd).
88

89 Fixpoint subst_exp (x:id) (v:val) (e:exp) : exp :=
90 match e with
91 | e_var y => if beq_id x y then (e_val v) else e
92 | e_eq e1 e2 => e_eq (subst_exp x v e1) (subst_exp x v e2)
93 | e_val v => e
94 | e_deref e => e_deref (subst_exp x v e)
95 end.
96

97 Definition subst_cmd (x:id) (v:val) (c:cmd) : cmd :=
98 match c with
99 | Call ai e er => Call ai (subst_exp x v e) er

100 | Return e => Return (subst_exp x v e)
101 | Exit e => Exit (subst_exp x v e)
102 | Raise _ => c
103 | Decl _ => c
104 end.
105

106

107 Fixpoint subst_stm (x:id) (v:val) (s:stm) : stm :=
108 match s with
109 | s_seq s1 s2 => s_seq (subst_stm x v s1) (subst_stm x v s2)
110 | s_if e s1 s2 => s_if (subst_exp x v e) (subst_stm x v s1) (subst_stm x v s2)
111 | s_null => s_null
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112 | s_assign e1 e2 => s_assign (subst_exp x v e1) (subst_exp x v e2)
113 | s_let y e s =>
114 if beq_id x y then s_let x (subst_exp x v e) s else s_let y (subst_exp x v e) (

subst_stm x v s)
115 | s_new y e s =>
116 if beq_id x y then s_new x (subst_exp x v e) s else s_new y (subst_exp x v e) (

subst_stm x v s)
117 | s_cmd c => s_cmd (subst_cmd x v c)
118 end.
119

120 Inductive step_exp : mem -> exp -> exp -> Prop :=
121 | se_eq1 m b1 b2 : step_exp m (e_eq (e_bool b1) (e_bool b2) ) (e_bool (eqb b1 b2))
122 | se_eq2 m n1 n2 : step_exp m (e_eq (e_nat n1) (e_nat n2) ) (e_bool (beq_nat n1 n2

))
123 | se_eq3 m l1 l2 : step_exp m (e_eq (e_loc l1) (e_loc l2) ) (e_bool (beq_nat l1 l2

))
124 | se_eq4 m v e2 e2’ : step_exp m e2 e2’ -> step_exp m (e_eq (e_val v) e2 ) (e_eq (

e_val v) e2’ )
125 | se_eq5 m e1 e1’ e2 : step_exp m e1 e1’ -> step_exp m (e_eq e1 e2 ) (e_eq e1’ e2

)
126 | se_deref1 m e e’: step_exp m e e’ -> step_exp m (e_deref e) (e_deref e’)
127 | se_deref2 m l v : lookup_mem m l = v -> step_exp m (e_deref (e_loc l)) (e_val v).
128

129 Inductive step_cmd : mem -> cmd -> cmd -> Prop :=
130 | sc_call m e e’ ai er: step_exp m e e’ -> step_cmd m (Call ai e er) (Call ai e’ er

)
131 | sc_return m e e’: step_exp m e e’ -> step_cmd m (Return e) (Return e’)
132 | sc_exit m e e’: step_exp m e e’ -> step_cmd m (Exit e) (Exit e’).
133

134 Inductive step_stm : mem -> stm -> mem -> stm -> Prop :=
135 | ss_seq1 m s: step_stm m (s_seq s_null s) m s
136 | ss_seq2 m m’ s1 s1’ s2: step_stm m s1 m’ s1’ -> step_stm m (s_seq s1 s2) m’ (

s_seq s1’ s2)
137 | ss_if1 s_true s_false m :
138 step_stm m (s_if (e_bool true) s_true s_false) m s_true
139 | ss_if2 s_true s_false m :
140 step_stm m (s_if (e_bool false) s_true s_false) m s_false
141 | ss_if3 s_true s_false m e e’ :
142 step_exp m e e’ -> step_stm m (s_if e s_true s_false) m (s_if e’ s_true

s_false)
143 | ss_assign1 l m v: step_stm m (s_assign (e_loc l) (e_val v)) (update_mem m l v)

s_null
144 | ss_assign2 m e e1 e’: step_exp m e e’ -> step_stm m (s_assign e e1) m (s_assign e

’ e1)
145 | ss_assign3 m l e e’: step_exp m e e’ -> step_stm m (s_assign (e_loc l) e) m (

s_assign (e_loc l) e’)
146 | ss_let1 m x v s : step_stm m (s_let x (e_val v) s) m (subst_stm x v s)
147 | ss_let2 m x e e’ s : step_exp m e e’ -> step_stm m (s_let x e s) m (s_let x e’ s)
148 | ss_new1 m x v s: step_stm m ( s_new x (e_val v) s) (m ++ [v]) (subst_stm x (

v_loc (length m)) s)
149 | ss_new2 m x e e’ s : step_exp m e e’ -> step_stm m (s_new x e s) m (s_new x e’ s)
150 | ss_cmd m cm cm’ : step_cmd m cm cm’ -> step_stm m (s_cmd cm) m (s_cmd cm’).
151

152 Definition cntx := id -> option tp.
153 Definition empty_cntx : cntx := fun _ => None.
154

155 Definition update_cntx : cntx -> id -> tp -> cntx := fun c x t =>
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156 fun y => if beq_id x y then Some t else c y.
157

158 Definition default_cntx : cntx := update_cntx empty_cntx ARG Tnat.
159

160

161 Definition mem_tp := list tp.
162 Definition lookup_mem_tp (mt: mem_tp) (l: loc) : tp :=
163 nth l mt Tbool.
164

165 Inductive extends : mem_tp -> mem_tp -> Prop :=
166 | extends_nil mt’ : extends mt’ nil
167 | extends_cons v mt’ mt : extends mt’ mt -> extends (v::mt’) (v::mt).
168

169 Inductive wt_exp : cntx -> mem_tp -> exp -> tp -> Prop :=
170 | wte_var c mt x t: (c x) = Some t -> wt_exp c mt (e_var x) t
171 | wte_bool c mt b: wt_exp c mt (e_bool b) Tbool
172 | wte_nat c mt n: wt_exp c mt (e_nat n) Tnat
173 | wte_loc c mt l: l < length mt -> wt_exp c mt (e_loc l) (Tref (lookup_mem_tp mt l)

)
174 | wte_eq c mt e1 e2 t: wt_exp c mt e1 t -> wt_exp c mt e2 t -> wt_exp c mt (e_eq e1

e2) Tbool
175 | wte_deref c mt e t: wt_exp c mt e (Tref t) -> wt_exp c mt (e_deref e) t.
176

177 Inductive wt_cmd : cntx -> mem_tp -> cmd -> Prop :=
178 | wtc_raise c mt l: wt_cmd c mt (Raise l)
179 | wtc_decl c mt l: wt_cmd c mt (Decl l)
180 | wtc_call c mt ai e er: wt_exp c mt e Tnat -> wt_cmd c mt (Call ai e er)
181 | wtc_return c mt e: wt_exp c mt e Tnat -> wt_cmd c mt (Return e)
182 | wtc_exit c mt e: wt_exp c mt e Tnat -> wt_cmd c mt (Exit e).
183

184 Hint Constructors wt_cmd.
185

186 Inductive wt_stm : cntx -> mem_tp -> stm -> Prop :=
187 | wts_seq c mt s1 s2 : wt_stm c mt s1 -> wt_stm c mt s2 -> wt_stm c mt (s_seq s1 s2

)
188 | wts_if c mt e s1 s2 : wt_exp c mt e Tbool -> wt_stm c mt s1 -> wt_stm c mt s2 ->
189 wt_stm c mt (s_if e s1 s2)
190 | wts_assign c mt e1 e2 t: wt_exp c mt e1 (Tref t) -> wt_exp c mt e2 t -> wt_stm c

mt (s_assign e1 e2)
191 | wts_let c mt x e s t: wt_exp c mt e t -> wt_stm (update_cntx c x t) mt s ->

wt_stm c mt (s_let x e s)
192 | wts_new c mt x e s t: wt_exp c mt e t -> wt_stm (update_cntx c x (Tref t)) mt s

-> wt_stm c mt (s_new x e s)
193 | wts_null c mt : wt_stm c mt s_null
194 | wts_cmd c mt cm: wt_cmd c mt cm -> wt_stm c mt (s_cmd cm).
195

196 Definition wt_mem (m:mem) (mt:mem_tp) : Prop :=
197 length m = length mt /\
198 (forall (l:loc), wt_exp empty_cntx mt (e_val (lookup_mem m l)) (lookup_mem_tp mt l)

).
199

200 Inductive free_in_exp : id -> exp -> Prop :=
201 | fie_var x : free_in_exp x (e_var x)
202 | fie_eq1 x e1 e2 : free_in_exp x e1 -> free_in_exp x (e_eq e1 e2)
203 | fie_eq2 x e1 e2 : free_in_exp x e2 -> free_in_exp x (e_eq e1 e2)
204 | fie_deref x e : free_in_exp x e -> free_in_exp x (e_deref e).
205
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206 Inductive free_in_cmd : id -> cmd -> Prop :=
207 | fic_call x e ai er: free_in_exp x e -> free_in_cmd x (Call ai e er)
208 | fic_return x e: free_in_exp x e -> free_in_cmd x (Return e)
209 | fic_exit x e: free_in_exp x e -> free_in_cmd x (Exit e).
210

211 Inductive free_in_stm : id -> stm -> Prop :=
212 | fis_seq1 x s1 s2 : free_in_stm x s1 -> free_in_stm x (s_seq s1 s2)
213 | fis_seq2 x s1 s2 : free_in_stm x s2 -> free_in_stm x (s_seq s1 s2)
214 | fis_ifc x s1 s2 e : free_in_exp x e -> free_in_stm x (s_if e s1 s2)
215 | fis_if1 x s1 s2 e : free_in_stm x s1 -> free_in_stm x (s_if e s1 s2)
216 | fis_if2 x s1 s2 e : free_in_stm x s2 -> free_in_stm x (s_if e s1 s2)
217 | fis_assign1 x e1 e2 : free_in_exp x e1 -> free_in_stm x (s_assign e1 e2)
218 | fis_assign2 x e1 e2 : free_in_exp x e2 -> free_in_stm x (s_assign e1 e2)
219 | fis_lete x y e s : free_in_exp x e -> free_in_stm x (s_let y e s)
220 | fis_lets x y e s : x <> y -> free_in_stm x s -> free_in_stm x (s_let y e s)
221 | fis_newe x y e s : free_in_exp x e -> free_in_stm x (s_new y e s)
222 | fis_news x y e s : x <> y -> free_in_stm x s -> free_in_stm x (s_new y e s)
223 | fis_cmd x cm: free_in_cmd x cm -> free_in_stm x (s_cmd cm).
224

225 End CoreLanguage.

system.v
1 Require Import Coq.Bool.Bool.
2 Require Import Coq.Arith.Arith.
3 Require Import Coq.Lists.List.
4 Require Import Coq.Program.Equality.
5

6 Require Export core.
7 Require Export labelmap.
8 Require Export lattice.
9

10 Module System.
11

12 Import ListNotations.
13

14 Import CoreLanguage.
15 Import LabelMap.
16 Import SecurityLattice.
17

18 Definition ret_addr : Type := option (aid * iid).
19

20 Definition get_ret_addr (expect_ret : bool) (ai: aid) (ii: iid) : ret_addr :=
21 if expect_ret then Some (ai, ii) else None.
22

23

24 (* An app is a statement *)
25 Definition app : Type := stm.
26

27 (* An app_set is a list of apps *)
28 Definition app_set : Type := list app.
29

30 (* instance is an app instance that consist of a the instance id, a memory
31 a (running) copy of an app, and a return address *)
32 Inductive instance : Type :=
33 | Inst (id: iid) (m: mem) (a: app) (ret: ret_addr).
34
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35 (* An app_inst_set is a list of running instances of a particular app *)
36 Definition app_inst_set : Type := list instance.
37

38 (* An inst_set is a list of instances running in parallel *)
39 Definition inst_set : Type := list app_inst_set.
40

41 Inductive pendingType : Type :=
42 | pCall (ra : ret_addr)
43 | pReturn ( callee_ii : iid).
44

45 Inductive pending : Type :=
46 | Pend (callee : aid) (n : nat) (caller_dl : label) (pt : pendingType).
47

48 Definition pqueue : Type := list pending.
49

50 Inductive sys : Type :=
51 | Sys ( apps: app_set ) (lm: label_map) (insts: inst_set) (queue : pqueue).
52

53

54

55 Fixpoint not_a_command (s : stm) : Prop :=
56 match s with
57 | s_cmd (Call _ (e_val _) _ ) | s_cmd (Return (e_val _))
58 | s_cmd (Exit (e_val _)) | s_cmd (Raise _) | s_cmd (Decl _) =>
59 False
60 | s_seq s1 s2 => not_a_command s1
61 | _ => True
62 end.
63

64 (* retrieve original statement/code of an app *)
65 Definition app_stm (apps: list app) (ai : aid): stm :=
66 nth ai apps s_null.
67

68

69 (* An instance in an instance list takes a step *)
70 Inductive app_is_step :
71 app_inst_set ->
72 app_inst_set -> Prop :=
73 | aiss_next inst ais1 ais2 : app_is_step ais1 ais2 -> app_is_step (inst :: ais1) (

inst :: ais2)
74 | aiss_step ii m1 m2 s1 s2 ret ais:
75 not_a_command s1 -> step_stm m1 s1 m2 s2 -> app_is_step ((Inst ii m1 s1 ret) ::

ais) ((Inst ii m2 s2 ret) :: ais).
76

77 Inductive is_step :
78 inst_set ->
79 inst_set -> Prop :=
80 | iss_next h is1 is2 : is_step is1 is2 -> is_step (h :: is1) (h :: is2)
81 | iss_step ais1 ais2 is: app_is_step ais1 ais2 -> is_step (ais1 :: is) (ais2 :: is

).
82

83 Definition is_ready (c : cmd) : Prop :=
84 match c with
85 | Raise _ | Decl _ | Call _ (e_val _) _
86 | Return (e_val _) | Exit (e_val _ ) => True
87 | _ => False
88 end.
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89

90 (* Decide wether a stament represent an active command
91 and compute the residual command left after executing*)
92 Inductive is_command:
93 stm ->
94 cmd -> stm -> Prop :=
95 | iscom_c c :
96 is_ready c -> is_command (s_cmd c) c s_null
97 | iscom_seq s c residual s2:
98 is_command s c residual -> is_command (s_seq s s2) c (s_seq residual s2).
99

100 (* An instance in an instance set dispatches a command c *)
101 Inductive app_is_cmd :
102 iid ->
103 cmd ->
104 app_inst_set ->
105 app_inst_set -> ret_addr -> Prop :=
106 | aisc_next ii c inst ra ais1 ais2 :
107 app_is_cmd ii c ais1 ais2 ra ->
108 app_is_cmd ii c (inst :: ais1) (inst :: ais2) ra
109 | aisc_call ii s callee e er residual m ra ais:
110 is_command s (Call callee e er) residual ->
111 app_is_cmd ii (Call callee e er) ((Inst ii m s ra) :: ais) ((Inst ii m residual

ra) :: ais) ra
112 | aisc_raise ii s l residual m ra ais:
113 is_command s (Raise l) residual ->
114 app_is_cmd ii (Raise l) ((Inst ii m s ra) :: ais) ((Inst ii m residual ra) ::

ais) None
115 | aisc_decl ii s l residual m ra ais:
116 is_command s (Decl l) residual ->
117 app_is_cmd ii (Decl l) ((Inst ii m s ra) :: ais) ((Inst ii m residual ra) ::

ais) None
118 | aisc_return ii s e residual m ra ais:
119 is_command s (Return e) residual ->
120 app_is_cmd ii (Return e) ((Inst ii m s ra) :: ais) ((Inst ii m s_null ra) ::

ais) None
121 | aisc_exit ii s e residual m ra ais:
122 is_command s (Exit e) residual ->
123 app_is_cmd ii (Exit e) ((Inst ii m s ra) :: ais) ((Inst ii nil s_null ra) ::

ais) None.
124

125 Inductive is_cmd:
126 aid -> iid -> cmd -> inst_set -> inst_set -> ret_addr -> Prop :=
127 | isc_next ai ii c is1 is2 ra ais:
128 is_cmd ai ii c is1 is2 ra ->
129 is_cmd (S ai) ii c (ais :: is1) (ais :: is2) ra
130 | isc_cmd ii c is ra ais1 ais2:
131 app_is_cmd ii c ais1 ais2 ra ->
132 is_cmd O ii c (ais1 :: is) (ais2 :: is) ra.
133

134 Inductive app_send_intent_existing:
135 app_inst_set -> iid -> stm -> nat -> ret_addr -> app_inst_set -> Prop :=
136 | asie_next ais1 ii s n ra ais2 inst:
137 app_send_intent_existing ais1 ii s n ra ais2 -> app_send_intent_existing (inst::

ais1) ii s n ra (inst::ais2)
138 | asie_send ais ii s n old_ra ra m:
139 app_send_intent_existing ((Inst ii m s_null old_ra) :: ais) ii s n ra
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140 ((Inst ii m (subst_stm ARG (v_nat n) s) ra) ::
ais).

141

142 Inductive app_send_intent_new:
143 app_inst_set -> iid -> stm -> nat -> ret_addr -> app_inst_set -> Prop :=
144 | asin_send ais ii s n ra:
145 app_send_intent_new ais ii s n ra ((Inst ii empty_mem (subst_stm ARG (v_nat n) s)

ra) :: (ais)).
146

147 Inductive update_app_label_map_and_inst_set:
148 label_map -> inst_set ->
149 aid -> app_label_map -> app_inst_set ->
150 label_map -> inst_set -> Prop :=
151 | upd_next lm1 is1 ai new_alm new_ais lm2 is2 alm ais:
152 update_app_label_map_and_inst_set lm1 is1 ai new_alm new_ais lm2 is2 ->
153 update_app_label_map_and_inst_set
154 (alm :: lm1) (ais :: is1) (S ai) new_alm new_ais (alm :: lm2) (ais :: is2)
155 | upd_update lm is old_alm new_alm old_ais new_ais:
156 update_app_label_map_and_inst_set
157 (old_alm :: lm) (old_ais :: is) O new_alm new_ais (new_alm :: lm) (new_ais ::

is).
158

159 Inductive app_remove_instance:
160 list (iid*label) -> app_inst_set -> iid -> list (iid*label) -> app_inst_set -> Prop

:=
161 | are_next dll1 dll2 ais1 ais2 ii inst_l inst:
162 (* beq_iid ii i2 = false -> *)
163 app_remove_instance dll1 ais1 ii dll2 ais2 ->
164 app_remove_instance ( inst_l :: dll1) (inst :: ais1) ii ( inst_l :: dll2) (inst

:: ais2)
165 | are_remove dll ais ii l m s ra:
166 app_remove_instance ( (ii,l) :: dll) ((Inst ii m s ra) :: ais) ii dll ais.
167

168 Inductive Busy_ais : iid -> app_inst_set -> Prop :=
169 | busya_busy ii m s ra ais:
170 s <> s_null -> Busy_ais ii (Inst ii m s ra::ais)
171 | busya_next ii ais inst:
172 Busy_ais ii ais -> Busy_ais ii (inst::ais).
173

174 Inductive Busy : aid -> iid -> inst_set -> Prop :=
175 | busy_busy ii is ais:
176 Busy_ais ii ais -> Busy O ii (ais::is)
177 | busy_next ai ii is ais:
178 Busy ai ii is -> Busy (S ai) ii (ais::is).
179

180 (* Execute a Call command *)
181 Inductive execute_call :
182 app_set ->
183 label_map -> inst_set -> pqueue ->
184 label ->
185 aid -> nat -> ret_addr ->
186 label_map -> inst_set -> pqueue -> Prop :=
187 | ecall_none apps lm is pq caller_dl ai n ret:
188 ai >= length apps \/ has_app_label_map lm ai NA ->
189 execute_call apps lm is pq caller_dl ai n ret lm is pq
190 | ecall_sl apps lm is pq caller_dl ai n ra lm2 is2 sl dl ii new_ais:
191 has_app_label_map lm ai (Single_Instance_App_Launched sl dl ii) ->
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192 lte caller_dl dl ->
193 app_send_intent_existing (nth ai is []) ii (app_stm apps ai) n ra new_ais ->
194 update_app_label_map_and_inst_set lm is ai
195 (Single_Instance_App_Launched sl dl ii) new_ais lm2 is2 ->
196 execute_call apps lm is pq caller_dl ai n ra lm2 is2 pq
197 | ecall_sl_pending apps lm is pq caller_dl ai n ra sl dl ii:
198 has_app_label_map lm ai (Single_Instance_App_Launched sl dl ii) ->
199 lte caller_dl dl ->
200 Busy ai ii is ->
201 execute_call apps lm is pq caller_dl ai n ra lm is (Pend ai n caller_dl (pCall

ra) :: pq)
202 | ecall_sl_block apps lm is pq caller_dl ai n ret sl dl ii:
203 has_app_label_map lm ai (Single_Instance_App_Launched sl dl ii) ->
204 nlte caller_dl dl ->
205 execute_call apps lm is pq caller_dl ai n ret lm is pq
206 | ecall_su apps lm is pq caller_dl ai n ra lm2 is2 sl prev new_ais:
207 has_app_label_map lm ai (Single_Instance_App_Unlaunched sl prev) ->
208 lte caller_dl sl ->
209 app_send_intent_new (nth ai is []) (increment_iid prev) (app_stm apps ai) n ra

new_ais ->
210 update_app_label_map_and_inst_set lm is ai
211 (Single_Instance_App_Launched sl sl (increment_iid prev) ) new_ais lm2 is2

->
212 execute_call apps lm is pq caller_dl ai n ra lm2 is2 pq
213 | ecall_su_block apps lm is pq caller_dl ai n ret sl prev:
214 has_app_label_map lm ai (Single_Instance_App_Unlaunched sl prev) ->
215 nlte caller_dl sl ->
216 execute_call apps lm is pq caller_dl ai n ret lm is pq
217 | ecall_m apps lm is pq caller_dl ai n ra lm2 is2 sl dll ii new_ais:
218 has_app_label_map lm ai (Multi_Instance_App sl dll) ->
219 lte caller_dl sl ->
220 next_iid dll = ii ->
221 app_send_intent_new (nth ai is []) ii (app_stm apps ai) n ra new_ais ->
222 update_app_label_map_and_inst_set lm is ai
223 (Multi_Instance_App sl ( (ii,sl) :: dll) ) new_ais lm2 is2 ->
224 execute_call apps lm is pq caller_dl ai n ra lm2 is2 pq
225 | ecall_m_block apps lm is pq caller_dl ai n ret sl dll:
226 has_app_label_map lm ai (Multi_Instance_App sl dll) ->
227 nlte caller_dl sl ->
228 execute_call apps lm is pq caller_dl ai n ret lm is pq.
229

230 (* Execute a return call *)
231 Inductive execute_return :
232 app_set ->
233 label_map -> inst_set -> pqueue ->
234 label ->
235 aid -> iid -> nat ->
236 inst_set -> pqueue -> Prop :=
237 | ereturn_sl apps lm is pq caller_dl ai ii n is2 sl dl new_ais:
238 has_app_label_map lm ai (Single_Instance_App_Launched sl dl ii) ->
239 lte caller_dl dl ->
240 app_send_intent_existing (nth ai is []) ii (app_stm apps ai) n None new_ais ->
241 update_app_label_map_and_inst_set lm is ai
242 (Single_Instance_App_Launched sl dl ii) new_ais lm is2 ->
243 execute_return apps lm is pq caller_dl ai ii n is2 pq
244 | ereturn_sl_pending apps lm is pq caller_dl ai ii n sl dl:
245 has_app_label_map lm ai (Single_Instance_App_Launched sl dl ii) ->
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246 lte caller_dl dl ->
247 Busy ai ii is ->
248 execute_return apps lm is pq caller_dl ai ii n is (Pend ai n caller_dl (pReturn

ii) :: pq)
249 | ereturn_sl_block apps lm is pq caller_dl ai ii n sl dl:
250 has_app_label_map lm ai (Single_Instance_App_Launched sl dl ii) ->
251 nlte caller_dl dl ->
252 execute_return apps lm is pq caller_dl ai ii n is pq
253 | ereturn_m apps lm is pq caller_dl ai ii n is2 sl dll dl new_ais:
254 has_app_label_map lm ai (Multi_Instance_App sl dll) ->
255 has_inst_label dll ii (Some dl) ->
256 lte caller_dl dl ->
257 app_send_intent_existing (nth ai is []) ii (app_stm apps ai) n None new_ais ->
258 update_app_label_map_and_inst_set lm is ai
259 (Multi_Instance_App sl dll) new_ais lm is2 ->
260 execute_return apps lm is pq caller_dl ai ii n is2 pq
261 | ereturn_m_pending apps lm is pq caller_dl ai ii n sl dll dl:
262 has_app_label_map lm ai (Multi_Instance_App sl dll) ->
263 has_inst_label dll ii (Some dl) ->
264 lte caller_dl dl ->
265 Busy ai ii is ->
266 execute_return apps lm is pq caller_dl ai ii n is (Pend ai n caller_dl (pReturn

ii) :: pq)
267 | ereturn_m_block apps lm is pq caller_dl ai ii n sl dll dl:
268 has_app_label_map lm ai (Multi_Instance_App sl dll) ->
269 has_inst_label dll ii (Some dl) ->
270 nlte caller_dl dl ->
271 execute_return apps lm is pq caller_dl ai ii n is pq.
272

273 (* Execute a Raise command *)
274 Inductive execute_raise :
275 label_map ->
276 aid -> iid ->
277 label ->
278 label_map -> Prop :=
279 | eraise_s lm ai ii l lm2 sl dl sl2:
280 has_app_label_map lm ai (Single_Instance_App_Launched sl dl ii) ->
281 lte_bool dl l = true ->
282 (nlte l sl /\ sl2 = l \/ lte l sl /\ sl2 = sl) ->
283 update_app_label_map lm ai (Single_Instance_App_Launched sl2 l ii) lm2 ->
284 execute_raise lm ai ii l lm2
285 | eraise_s_block lm ai ii l sl dl:
286 has_app_label_map lm ai (Single_Instance_App_Launched sl dl ii) ->
287 lte_bool dl l = false ->
288 execute_raise lm ai ii l lm
289 | eraise_m lm ai ii l lm2 sl dll dl dll2:
290 has_app_label_map lm ai (Multi_Instance_App sl dll) ->
291 has_inst_label dll ii (Some dl) ->
292 lte_bool dl l = true ->
293 update_inst_label dll ii l dll2 ->
294 update_app_label_map lm ai (Multi_Instance_App sl dll2) lm2 ->
295 execute_raise lm ai ii l lm2
296 | eraise_m_block lm ai ii l sl dll dl:
297 has_app_label_map lm ai (Multi_Instance_App sl dll) ->
298 has_inst_label dll ii (Some dl) ->
299 lte_bool dl l = false ->
300 execute_raise lm ai ii l lm.

167



301

302 Inductive remove_ra_ais:
303 app_inst_set -> aid -> iid -> app_inst_set -> Prop :=
304 | rrais_nil ai ii: remove_ra_ais [] ai ii []
305 | rrais_skip ai ii ai2 ii2 ais1 ais2 ii’ m s:
306 remove_ra_ais ais1 ai ii ais2 ->
307 (beq_aid ai2 ai = false \/ beq_iid ii2 ii = false) ->
308 remove_ra_ais (Inst ii’ m s (Some (ai2,ii2)) :: ais1) ai ii
309 (Inst ii’ m s (Some (ai2,ii2)) :: ais2)
310 | rrais_remove ai ii ais1 ais2 ii’ m s:
311 remove_ra_ais ais1 ai ii ais2 ->
312 remove_ra_ais (Inst ii’ m s (Some (ai,ii)) :: ais1) ai ii
313 (Inst ii’ m s None :: ais2)
314 | rrais_none ai ii ais1 ais2 ii’ m s:
315 remove_ra_ais ais1 ai ii ais2 ->
316 remove_ra_ais (Inst ii’ m s None :: ais1) ai ii
317 (Inst ii’ m s None :: ais2).
318

319

320 Inductive remove_ra_is:
321 inst_set -> aid -> iid -> inst_set -> Prop :=
322 | rris_nil ai ii: remove_ra_is [] ai ii []
323 | rris_con ai ii is1 is2 ais1 ais2:
324 remove_ra_ais ais1 ai ii ais2 ->
325 remove_ra_is is1 ai ii is2 ->
326 remove_ra_is (ais1 :: is1) ai ii (ais2 :: is2).
327

328 Inductive remove_pending:
329 pqueue -> aid -> iid -> pqueue -> Prop :=
330 | rmp_nil ai ii: remove_pending [] ai ii []
331 | rmp_call_skip_none ai ii pq1 pq2 ai’ n caller_dl:
332 remove_pending pq1 ai ii pq2 ->
333 remove_pending (Pend ai’ n caller_dl (pCall None) :: pq1) ai ii
334 (Pend ai’ n caller_dl (pCall None) :: pq2)
335 | rmp_call_skip_some ai ii pq1 pq2 ai’ n caller_dl ai2 ii2:
336 remove_pending pq1 ai ii pq2 ->
337 (beq_aid ai2 ai = false \/ beq_iid ii2 ii = false) ->
338 remove_pending (Pend ai’ n caller_dl (pCall (Some (ai2,ii2))) :: pq1) ai ii
339 (Pend ai’ n caller_dl (pCall (Some (ai2,ii2))) ::

pq2)
340 | rmp_call_remove ai ii pq1 pq2 ai’ n caller_dl:
341 remove_pending pq1 ai ii pq2 ->
342 remove_pending (Pend ai’ n caller_dl (pCall (Some (ai,ii))) :: pq1) ai ii
343 (Pend ai’ n caller_dl (pCall None) :: pq2)
344 | rmp_return_skip ai ii pq1 pq2 ai2 n caller_dl ii2:
345 remove_pending pq1 ai ii pq2 ->
346 (beq_aid ai2 ai = false \/ beq_iid ii2 ii = false) ->
347 remove_pending (Pend ai2 n caller_dl (pReturn ii2) :: pq1) ai ii
348 (Pend ai2 n caller_dl (pReturn ii2) :: pq2)
349 | rmp_return_remove ai ii pq1 pq2 n caller_dl:
350 remove_pending pq1 ai ii pq2 ->
351 remove_pending (Pend ai n caller_dl (pReturn ii) :: pq1) ai ii pq2.
352

353

354 Inductive execute_exit:
355 label_map -> inst_set -> pqueue ->
356 aid -> iid ->
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357 label_map -> inst_set -> pqueue -> Prop :=
358 | eexit_s lm lm’ ai ii is is’ is’’ pq pq’ sl dl :
359 has_app_label_map lm ai (Single_Instance_App_Launched sl dl ii) ->
360 remove_ra_is is ai ii is’ ->
361 update_app_label_map_and_inst_set lm is’ ai
362 (Single_Instance_App_Unlaunched sl ii) [] lm’ is’’ ->
363 remove_pending pq ai ii pq’ ->
364 execute_exit lm is pq ai ii lm’ is’’ pq’
365 | eexit_m lm lm’ ai ii is is’ is’’ pq pq’ sl dll dll’ new_ais:
366 has_app_label_map lm ai (Multi_Instance_App sl dll) ->
367 remove_ra_is is ai ii is’ ->
368 app_remove_instance dll (nth ai is’ []) ii dll’ new_ais ->
369 update_app_label_map_and_inst_set lm is’ ai
370 (Multi_Instance_App sl dll’) new_ais lm’ is’’ ->
371 remove_pending pq ai ii pq’ ->
372 execute_exit lm is pq ai ii lm’ is’’ pq’.
373

374

375 Definition out : Type := (nat * label).
376

377 (* Execute a comand *)
378 Inductive execute :
379 app_set ->
380 label_map -> inst_set -> pqueue ->
381 option out ->
382 label_map -> inst_set -> pqueue ->
383 Prop :=
384 | exec_call apps lm1 lm2 is1 is2 pq1 pq2 callee ai ii n expect_ret ra sl dl is’:
385 is_cmd ai ii (Call callee (e_nat n) expect_ret) is1 is’ ra ->
386 has_label lm1 ai ii (Some (sl,dl)) ->
387 execute_call apps lm1 is’ pq1 dl callee n ra lm2 is2 pq2 ->
388 execute apps lm1 is1 pq1 (Some (n,dl)) lm2 is2 pq2
389 | exec_raise apps lm1 is1 pq ai ii l lm2 is2 ra:
390 is_cmd ai ii (Raise l) is1 is2 ra ->
391 execute_raise lm1 ai ii l lm2 ->
392 execute apps lm1 is1 pq None lm2 is2 pq
393 | exec_return apps lm is1 is2 pq1 pq2 ai ii n callee callee_ii sl dl is’:
394 is_cmd ai ii (Return (e_nat n)) is1 is’ (Some (callee,callee_ii)) ->
395 has_label lm ai ii (Some (sl,dl)) ->
396 execute_return apps lm is’ pq1 dl callee callee_ii n is2 pq2 ->
397 execute apps lm is1 pq1 (Some (n,dl)) lm is2 pq2
398 | exec_return_no_ra apps lm is1 is2 pq ai ii n sl dl:
399 is_cmd ai ii (Return (e_nat n)) is1 is2 None ->
400 has_label lm ai ii (Some (sl,dl)) ->
401 execute apps lm is1 pq (Some (n,dl)) lm is2 pq
402 | exec_exit apps lm1 lm2 is1 is2 pq1 pq2 ai ii n callee callee_ii sl dl is’ is’’ pq

’:
403 is_cmd ai ii (Exit (e_nat n)) is1 is’ (Some (callee,callee_ii)) ->
404 beq_aid callee ai = false \/ beq_iid callee_ii ii = false ->
405 has_label lm1 ai ii (Some (sl,dl)) ->
406 execute_exit lm1 is’ pq1 ai ii lm2 is’’ pq’ ->
407 execute_return apps lm2 is’’ pq’ dl callee callee_ii n is2 pq2 ->
408 execute apps lm1 is1 pq1 (Some (n,dl)) lm2 is2 pq2
409 | exec_exit_no_return apps lm1 lm2 is1 is2 pq1 pq2 ai ii n sl dl is’ ra:
410 is_cmd ai ii (Exit (e_nat n)) is1 is’ ra ->
411 ra = (Some (ai,ii)) \/ ra = None ->
412 has_label lm1 ai ii (Some (sl,dl)) ->
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413 execute_exit lm1 is’ pq1 ai ii lm2 is2 pq2 ->
414 execute apps lm1 is1 pq1 (Some (n,dl)) lm2 is2 pq2.
415

416

417 Inductive process_pending’:
418 app_set ->
419 label_map -> inst_set -> pqueue -> pqueue ->
420 label_map -> inst_set -> pqueue -> Prop :=
421 | pp_next apps lm1 lm2 is1 is2 pq1 pq2 p pq’:
422 process_pending’ apps lm1 is1 pq1 (pq’ ++ [p]) lm2 is2 pq2 ->
423 process_pending’ apps lm1 is1 (p :: pq1) pq’ lm2 is2 pq2
424 | pp_call apps lm1 lm2 is1 is2 pq pq’ caller_dl callee n ra:
425 execute_call apps lm1 is1 (pq’ ++ pq) caller_dl callee n ra lm2 is2 (pq’ ++ pq)

->
426 process_pending’ apps lm1 is1 (Pend callee n caller_dl (pCall ra) :: pq) pq’
427 lm2 is2 (pq’ ++ pq)
428 | pp_return apps lm is1 is2 pq pq’ callee callee_ii n caller_dl:
429 execute_return apps lm is1 (pq’ ++ pq) caller_dl callee callee_ii n is2 (pq’ ++

pq) ->
430 process_pending’ apps lm is1 (Pend callee n caller_dl (pReturn callee_ii) :: pq)

pq’
431 lm is2 (pq’ ++ pq).
432

433 Definition process_pending apps lm1 is1 pq1 lm2 is2 pq2 :=
434 process_pending’ apps lm1 is1 pq1 [] lm2 is2 pq2.
435

436 Inductive step_type : Type :=
437 | tau
438 | output (o : out).
439

440 (* The whole system takes a step if either an app instance takes an internal step or
441 a command is executed *)
442 Inductive sys_step: sys -> sys -> step_type -> Prop :=
443 | ss_tau_iss apps lm is1 is2 pq:
444 is_step is1 is2 ->
445 sys_step (Sys apps lm is1 pq) (Sys apps lm is2 pq) tau
446 | ss_tau_cmd apps lm1 lm2 is1 is2 pq1 pq2:
447 execute apps lm1 is1 pq1 None lm2 is2 pq2 ->
448 sys_step (Sys apps lm1 is1 pq1) (Sys apps lm2 is2 pq2) tau
449 | ss_tau_pend apps lm1 lm2 is1 is2 pq1 pq2 :
450 process_pending apps lm1 is1 pq1 lm2 is2 pq2 ->
451 sys_step (Sys apps lm1 is1 pq1) (Sys apps lm2 is2 pq2) tau
452 | ss_output_cmd apps lm1 lm2 is1 is2 pq1 pq2 v l:
453 execute apps lm1 is1 pq1 (Some (v,l)) lm2 is2 pq2 ->
454 sys_step (Sys apps lm1 is1 pq1) (Sys apps lm2 is2 pq2) (output (v,l)).
455

456 Definition trace := list out.
457

458 End System.

projection.v
1 Require Import Coq.Bool.Bool.
2 Require Import Coq.Arith.Arith.
3 Require Import Coq.Lists.List.
4 Require Import Coq.Program.Equality.
5 Require Import Omega.
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6 Require Import Coq.Program.Tactics.
7 Require Export Coq.Structures.Equalities.
8

9 Require Export labelmap.
10 Require Export lattice.
11 Require Export core.
12 Require Export system.
13 Require Export sys_preservation.
14

15 Module Projection.
16

17

18 Import ListNotations.
19

20 Import LabelMap.
21 Import SecurityLattice.
22 Import CoreLanguage.
23 Import System.
24 Import Preservation.
25

26

27 Fixpoint proj_dll (n: nat) (k : label) (dll : list (iid * label) ) : list (iid *
label) :=

28 match dll with
29 | [] => []
30 | (ii, l) :: dll => if lte_bool l k then
31 (Iid n , l) :: proj_dll (S n) k dll else proj_dll n k dll
32 end.
33

34 Fixpoint proj_ii_dll (n: nat) (k: label) (dll : list (iid * label)) (ii:iid) : option
iid :=

35 match dll with
36 | [] => None
37 | (ii2,l) :: dll =>
38 if beq_iid ii ii2 then
39 if lte_bool l k then Some (Iid n) else None
40 else
41 if lte_bool l k then proj_ii_dll (S n) k dll ii else proj_ii_dll n k dll ii
42 end.
43

44 Definition proj_ii_alm (k: label) (alm : option app_label_map) (ii:iid) : option iid
:=

45 match alm with
46 | Some (Single_Instance_App_Launched sl dl ii2) =>
47 if (beq_iid ii2 ii) && (lte_bool dl k) then Some ii else None
48 | Some (Multi_Instance_App _ dll) => proj_ii_dll 0 k dll ii
49 | _ => None
50 end.
51

52 Definition proj_ii_lm (k: label) (lm: label_map) (ai: aid) (ii:iid) : option (aid*iid
) :=

53 match proj_ii_alm k (get_app_label_map lm ai) ii with
54 | None => None
55 | Some ii’ => Some (ai,ii’)
56 end.
57

58 Definition proj_ra (k: label) (lm: label_map) (ra : ret_addr) : ret_addr :=
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59 match ra with
60 | None => None
61 | Some (ai,ii) => proj_ii_lm k lm ai ii
62 end.
63

64 Fixpoint proj_ais_m (n: nat) (k: label) (lm: label_map) (dll : list (iid * label))
ais : app_inst_set :=

65 match dll, ais with
66 | (_,l) :: dll, Inst _ m s ra :: ais =>
67 if lte_bool l k then
68 Inst (Iid n) m s (proj_ra k lm ra) :: proj_ais_m (S n) k lm dll ais
69 else proj_ais_m n k lm dll ais
70 | _ , _ => []
71 end.
72

73

74 Definition proj_alm (k : label) (alm : app_label_map) : app_label_map:=
75 match alm with
76 | Multi_Instance_App sl dll => Multi_Instance_App sl (proj_dll 0 k dll)
77 | Single_Instance_App_Unlaunched sl prev => if lte_bool sl k then
78 alm else NA
79 | Single_Instance_App_Launched sl dl ii => if lte_bool dl k then
80 alm else NA
81 | NA => NA
82 end.
83

84

85 Definition proj_ra_inst (k : label) (lm : label_map) (inst : instance) : instance :=
86 match inst with
87 | Inst ii m s ra => Inst ii m s (proj_ra k lm ra) end.
88

89 Definition proj_ais (k : label) (lm : label_map) (alm : app_label_map) ais :
app_inst_set:=

90 match alm with
91 | Single_Instance_App_Unlaunched sl prev => if lte_bool sl k then
92 map (proj_ra_inst k lm) ais else []
93 | Single_Instance_App_Launched sl dl ii => if lte_bool dl k then
94 map (proj_ra_inst k lm) ais else []
95 | Multi_Instance_App sl dll => (proj_ais_m 0 k lm dll ais)
96 | NA => []
97 end.
98

99

100 Definition proj_lm (k : label) (lm: label_map) : label_map :=
101 map (proj_alm k) lm.
102

103 Definition proj_is (k: label) (LM: label_map) (lm: label_map) (is : inst_set) :
inst_set :=

104 map (fun a => proj_ais k LM (fst a) (snd a)) (combine lm is).
105

106 Definition proj_pend (k: label) (LM: label_map)
107 (alm : option app_label_map) (pt: pendingType) : option pendingType :=
108 match pt with
109 | pCall ra => match alm with
110 | Some (Single_Instance_App_Unlaunched l _)
111 | Some (Single_Instance_App_Launched _ l _)
112 | Some (Multi_Instance_App l _) =>
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113 if lte_bool l k then Some (pCall (proj_ra k LM ra) ) else None
114 | _ => None
115 end
116 | pReturn ii => match alm with
117 | Some (Single_Instance_App_Launched _ dl ii2) =>
118 if beq_iid ii ii2 && lte_bool dl k then Some pt else None
119 | Some (Multi_Instance_App _ dll) =>
120 match proj_ii_dll 0 k dll ii with
121 | Some ii’ => Some (pReturn ii’) | None => None end
122 | _ => None
123 end
124 end.
125

126 Definition proj_pending (k: label) (LM: label_map) (lm: label_map) (p: pending) :
option pending :=

127 match p with
128 | Pend callee n dl pt =>
129 match proj_pend k LM (get_app_label_map lm callee) pt with
130 | None => None
131 | Some pt => Some (Pend callee n dl pt)
132 end
133 end.
134

135 Fixpoint proj_pq (k : label) (LM:label_map) (lm: label_map) (pq: pqueue) : pqueue :=
136 match pq with
137 | [] => []
138 | p :: pq =>
139 match proj_pending k LM lm p with
140 | None => proj_pq k LM lm pq
141 | Some p => p :: proj_pq k LM lm pq
142 end
143 end.
144

145

146 Definition proj (k : label) (s: sys) : sys :=
147 match s with (Sys apps lm is pq) =>
148 (Sys apps (proj_lm k lm) (proj_is k lm lm is) (proj_pq k lm lm pq))
149 end.
150

151 Definition proj_trace (k : label) (t: trace) : trace :=
152 filter (fun a => lte_bool (snd a) k) t.
153

154 End Projection.
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