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1 Phenotypic selection

Last time we derived the general formula for gain from selection for selection
based on an criteria for selection I. Now we will define another general formula
which is relevant for phenotypic selection schemes even where the individuals
that are evaluated are not the same individuals used for intermating. First
we start with the prediction equation for the breeding value of an individual
x based on the phenotype of individual s.

ay = a+ byp(Ps — P) (1)

Where P; is the phenotype of individual s, @ is the mean breeding value of
individuals in the population, and P is the mean phenotype of the individuals
in the population that is being evaluated, and b, p is the regression of breeding
values on phenotypic values.

We want to know the average genetic value of the group of selected in-
dividuals because that is the genetic superiority S. If we are predicting the
average genetic value of a group of selected individuals, we get

a* = ay + byp(P* — P) (2)
By re-arrangement we can see that
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S:

" —a=b,p(P" - P) (3)
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S =bep(P" — P) (4)



Using the deviation of the phenotypic values of selected individuals from
the mean phenotypic value of all individuals in the population, (P* — P) in
standard deviation units.

i=(P"—P)/op (5)

where op is the standard deviation of index values. By rearrangment:

(P* — P) = iop (6)

By substituting (P* — P) with iop

S = b,piop (7)

From standard regression theory we know that

OaP
bap = o2 (8)
Thus o
S=-"iop (9)
P
Which reduces to o
S == (10)
op

Then say we are predicting the breeding value of individual x with the phe-
notypic value of individual s

Cov(a,, Ps) = Cov(a,,as + ¢)

Cov(ay, Ps) = Cov(ay, as) + Cov(as, )
Cov(ay, Ps) = Cov(ay, as)

Then

A o
S == 11
i (11)

Where o,,,, is the additive genetic covariance between z and s. From lecture
4, we said that the additive genetic covariance between any two relatives is



equal their coefficient of relationship times the additive genetic variance in

the base population. Then:
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S =gy (12)
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And because R = %(Sm + S¢) we get the expected response per generation:
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R=( im + if) (13)
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If selection is only on one sex then

rs7a; 14
5 X o ! (14)

2 Examples for different breeding methods

2.1 Half-sib/S1 family selection

In the case of half-sib/S1 selection, individuals are allowed to open pollinate
but at least one ear/flower is forced to self-pollinate. This produces half-sib
and S1 families from the same plant. The half-sib families are evaluated
phenotypically, and the S1 families are used for intermating. Figure 1 shows
the pedigree relationship between the phenotyped individuals and the inter-
mated individuals for this method of selection. To estimate the expected
response to selection in this case we can use equation 12.
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And since in this scenario selection is the same on both males and females:
R=2S8

The coefficient of kinship between Q and P is 1/4, therefore the coefficient
of relationship between ) and P is 1/2, then:
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Figure 1: Q are the selection units, P are the 'recombination units’ used for
intermating, and X are the individuals in the improved population

X

Because we can replicate half-sib families within and across environment,
then the phenotypic variance in the case of half-sib selection is the variance
among half-sib family means which is

0p =07+ 07, /e+0l]er (15)

Now lets compare with the half-sib selection that we described previously.
In this case the half-sib seed is used for intermating;:

2.2 Half-sib family selection

In half-sib family selection, individuals are allowed to open-pollinate. The
seed harvested from each plant represents a half-sib family. Some of the seeds
are planted for evaluation, and some are reserved. Phenotypic values, relative
to the total population mean, is then used for selecting the best families. The
reserved seed of the selected families are used for intermating, giving rise to
the improved population. In this case we want to predict the breeding value
of the selected family using the the phenotype of that family. We can use
equation 10
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Then put o,p in terms of additive genetic variance in the base population

Cov(ays, Pr) = Cov(as,ar +¢€)



Cov(ay, Py) = Cov(ag,ar) + Cov(ay,e)
Cov(ay, Pr) = Cov(ay,ay)

Cov(ay, Py) = 0%

Then a]% =r; X 02

Where 7 is the relationship coefficient between individuals in family used
for among family selection. Equation 10 then becomes:

S=—L (16)

Substituting o,p with 7y X o2 in equation 16 we get:
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Since the coefficient of relationship between half-sibs is 1/4 and selection is
imposed equally for males and females:

§=17

op

1.2
a -
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Because we can replicate half-sib families within and across environment,
then the phenotypic variance in the case of half-sib selection is the variance
among half-sib family means which is

ob = o} + 03, e+ o2 er (17)

where o in this case is due to half sib family, o ¢, is due to half sib family-by-
environment interaction, and o, is due residual error, where e is the number
of environments, and r is the number of replicates of families within envi-
ronment. In the case of half-sibs the genetic covariance is entirely due to to
additive effects and so the family-mean heritability in this case can be used
in formula 14.



Table 1: Additive genetic Variance at different levels of inbreeding

Generation Inbreeding coefficient Additive genetic variance among families

F3(S1) : 1xo?2
F4(S2) 3 3 x o2
F5(S3) I I'x o2
F6(S4) 2 2 xo?

Foo 1 2 X o2

3 Inbred family selection

Lastly, we will look inbred family selection, also called selection among lines.
This is commonly used in self-pollinated crops. In this method, lines devel-
oped by are inbreeding to a high level of homozygosity and then lines are
evaluated. The best lines are then recombined. The additive genetic variance
among families depends on the level of inbreeding (Table 1).

Using the variance among families and equations 16 and 17 we can get
the response for selection among families. We must assume that there is no
non-additive genetic covariance. As an example, response to selection when
selection is among S6 lines is
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where
op = \/Ufc—i—aj%xe/e—l—ag/er (18)

If selection is imposed equally on males and females then the expected re-
sponse to selection per breeding cycle is equal to S We can also write this in
terms of line mean heritability:
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Where hy in this case is equal to the line mean heritability and oy is equal

to the square root of the additive genetic variance among lines. In this case

of = 1—8502 where o2 is the additive genetic variance in the base population.

4 Multi-stage selection and the Bulmer effect

In multiple stage selection, two or more selection events occur before new
parents are selected for intermating. The overall gain from each selection is
the sum of the gain from the individual selection events.

R=> R (19)

It is important to take into account the effect of selection on the variance.
Take the example of lines being evaluated across multiple environments. In
the first year, 1000 lines are evaluated, and in the second year 200 lines are
evaluated (20% selected, corresponding to a 1.4 selection intensity). The
phenotypic variance among the 200 lines selected is

0% = (1 K)oh,_, (20)
where
k=i(i—x) (21)
where x is the deviation of the truncation point from the mean in standard
deviation units, which can be found by the table in figure 2. For our example
of 20% selected, x is equal to 0.842.
The additive genetic variance among lines selected is
oo, = (1 —krip)ol (22)

at ar—1
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where 7,p is the is the selection accuracy on the estimated breeding values.
In the simple case of phenotypic selection this reduces to

ol = (1—kh*o2 _, (23)

a

As you can see the reduction in additive genetic variance is stronger as the
accuracy of selection increases. This reduction in additive genetic variance
occurs due to the creation of linkage disequilibrium (LD) between loci. Link-
age disequilibrium defined as the non-random association between alleles.
This phenomenon is referred to as the Bulmer effect. After selected parents
are intermated, recombination reduces the linkage disequilibrium by half so
the additive genetic variance among the progeny of the selected parents after
intermating is

g = (1= 1/2/“;13)‘7;—1 (24)

and the phenotypic variance is
op, = (1= 1/2kryp)ap, (25)

When the selected parents are from an inbred population the linkage
disequilibrium is not reduced by half. It will be reduced by

1/2-¢ (26)

where ¢ is the effective recombination rate which is shown in table 2
Equations 24 and 25, then become

1
o2 = (1= (1= Sekrtp)o? (27)

and 1
7 = (1= (1= Skrip)ot (25)

Over cycles of selection, eventually a balance is achieved between reduc-
tion in genetic variance due to LD and increase in genetic variance due to
recombination.

5 Correlated response to selection

Selection for one trait ¢ will create a selection response in other traits it
is correlated with. Response in trait j due to selection on trait 7 is called
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Table 2: Effective recombination rates different levels of inbreeding

Generation Inbreeding coefficient ¢ within families

F3(S1) 1/2 1/2
F4(S2) 3/4 1/4
F5(S3) 7/8 1/8
F6(S4) 15/16 1/16
Feo 1 0

correlated response from selection and it will be referred to as Rj; (direct
response will be denoted by R;). Similarly, genetic superiorities of parents
selected on trait ¢ will be denoted by \S; and superiorities for trait j by .S;;.
The genetic superiority of parents for trait 2 as a result of selection on an
index for trait 1 I; can be obtained by

S2.1 = ’L.’I"a2a17“a1[10'a2 (29>

Where 7y, 1, is the correlation of the genetic value for trait 1 with the selection
criteria, I; In the case of phenotypic selection where an individuals own
phenotype is the selection criteria ry ;, = h Formula 29 can be rearranged
using the relationship between correlation and regression coefficients to show
that

S2.1 = baga; St (30)

Thus o
R2.1 - ba2a1Rl = 71(12(11£R1 (31>
g

al



Figure 2: Q are the selection units, P are the 'recombination units’ used for
intermating, and X are the individuals in the improved population

P X d p% x i % x i
001 3719  3.960 075 2432 2761 10 1282 1755
002 3.540 3790 0.80 2409  2.740 11 1227 1.709
003 3432 3.687 0.85 2387  2.720 12 1.175  1.667
004 3353 3613 090 2366 2701 13 1126  1.627
005 3291  3.554 095 2346  2.683 14 1.080  1.590
006 3239  3.507 1.00 2326  2.665 15 1036  1.554
007 3195 3464 16 0994 1521
008 3156  3.429 1.0 2326 2,665 17 0954  1.489
009 3021 3.397 12 2257  2.603 18 0915 1458
010 3090  3.367 14 2197  2.549 19 0878 1428
1.6 2144 2502 20  0.842  1.400
1.8 2097  2.459 21 0.806 1372
010 3.090  3.367 20 2054 2421 22 0772 1.346
012 3.036  3.317 22 2014 2.386 23 0739 1320
014 2.989 3273 24 1977 2353 24 0706 1295
016 2948  3.234 26 1943 2323 25 0674 1271
018 2911  3.201 28 1911 2295 26 0643 1.248
020 2878  3.170 3.0 1.881  2.268 27 0613 1.225
022 2.848  3.142 32 1852 2243 28 0583 1202
024 2820  3.117 34 1825 2219 29 0553 1.180
026 2794  3.093 36 1799 2197 30 0524 1.159
028 2770  3.070 38 1774 2175 31 0.496  1.138
030 2748  3.050 40 1751 2154 32 0468 1.118
032 2727  3.030 42 1728 2135 33 0.440  1.097
034 2706  3.012 44 1706 2116 34 0412 1.078
036  2.687  2.994 46 1685  2.097 35 0.385  1.058
038 2669 2978 48 1665  2.080 36 0358 1039
040 2652 2962 50 1.645 2063 37 0332 1.020
342 2636 2947 38 0305  1.002
0-44 2620 2932 39 0279 0984
G':E 2605 2918 50 1645 2.063 40 0.253  0.966
b 250 2905 55 1598 2023 41 0228  0.948
2576  2.892 60 1555  1.985 42 0202  0.931
65 1514 1951 43 0.176  0.913
050 257 70 1476 1918 4 0151 0.89%
055 357 52 75 1440 1.887 45 0126 0880
060 35, 362 80 1405  1.858 46 0100 0863
05 5332 2.834 85 1372  1.831 47 0.075 0.846
000 Ju5; 2808 90 1341 1804 48 0050 0830
5 24 3% 95 1311 1779 49 0025 0814
T2 2761 100 1282  1.755 50  0.000 0.798
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