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1 Introduction

Selection based on markers requires that markers are in linkage disequilib-
rium (LD) with genes or quantitative trait loci underlying the trait of interest.
This means that there must be a statistical association between markers and
QTL/genes. Markers in LD with QTL/genes may also be linked physically,
but not necessarily. If a trait is conferred by one gene, and a marker is in
the gene itself then marker is referred to as diagnostic and marker-based
selection in this case is very straightforward. A diagnostic marker genotype
can simply be treated a phenotype for single trait selection or for the eco-
nomic selection index. If the marker is truly diagnostic for a particular trait,
selection based on the marker can replace phenotyping. In practice, this
scenario is rare. For a complex traits, or traits conferred by a a few genes
(’oligogenic traits’) one single marker will not explain much of the variation
in the phenotype, and other approaches are needed.

2 Marker assisted recurrent selection (MARS)

Before genome-wide genotyping was routine, Lande and Thompson (1880
Genetics) proposed using multiple marker genotypes for selection of complex
traits. Their approach was to discover markers associated with the trait
of interest, and then fit those markers in a stepwise regresion model using
a population from a previous generation of breeding (not the same lines
for selection), so that marker effect estimates are unbiased. Those markers
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effects would then be used to estimate a ’net molecular score’, sum of the
additive effects, for each individual in the pool of selection candidates. This
procedure came to be known as marker assisted recurrent selection (MARS)

Lande and Thompson proposed using this marker score in a selection
index along with phenotypes:

I = bzz + bmm (1)

where z is the phenotype and m is the net molecular score. The molecular
score is estiamted by multiplying the marker effects by the marker genotypes.
For example say individual A’s genotype at markers 1-5 is 1,0,1,0,-1 and the
marker effects for markers 1-5 are -0.4, 0.2,-0.3,0, 0.5.

m =
[
1 0 1 0 −1

]

−0.4
0.2
−0.3

0
0.5

 = −0.4 · 1 + 0.2 · 0 + −0.3 · 1 + 0 · 0 + 0.5 · −1 = −1.2

The selection index weights bz and bm in equation 1 are estimated in the
same way as explained previously in the notes about selection indices. m is
not considered to have any economic value.

Lande and Thompson also showed that population sizes for MARS should
be at least 300 individuals in order to be more effective than phenotype
selection alone. This is because with small population sizes there is low
power to detect markers. Then the markers detected will not explain much
of the phenotypic variance. It was later shown by Moreau et al. (1998,
Genetics) that MARS is more effective then the significance threshold for
detection of markers is relaxed. This increases the power of detecting true
positives (although the false positive rate will be greater), which increases the
number of markers detected leading to a greater proportion of the phenotypic
variation explained.

3 Genomic selection (GS)

In genomic selection (GS), markers are used to directly estimate breeding
values, called direct genomic values (DGV) in animals Combination of esti-
mated breeding values based on markers and phenotype are called genomic
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breeding values (GEBV)s. The basic assumption is that all QTL underlying
the trait of interest are in LD with at least one marker, and the marker-
QTL linkage phases are consistent across the population. In GS the main
advantage is that EBVs of individuals can be predicted in generations when
meaningful phenotypic data cannot be recorded or when selection accuracy
is very low. This enables selection of new parents earlier in the breeding cy-
cle and increased selection accuracy when advancing materials. Predictions
based on markers are expected to be more accurate than those based on
pedigree because markers capture the Mendelian sampling term, while pedi-
gree does not. There are two main ways to compute EBVs using markers,
1. estimate marker effects and then use these effects to calculate EBVs of a
new set of individuals, much like the MARS approach and 2. use the markers
to estimate a relationship matrix, and then use that relationship matrix in
place of the pedigree relationship matrix in BLUP.

4 GS, The general model

The general linear model underlying GS is

y = Xb +
m∑
i

Migi + e (2)

where m is the number of markers across the genome, y is the data vector,
b is the vector for mean or fixed effects, gi is the genetic effect of the ith
marker, and e is the error. X is a matrix of the mean or fixed effects, and
Mi is a design matrix for the ith marker. The matrix M is m×n where m is
the number of markers and n is the number of individuals. The assumption
is that all the additive genetic variance is explained by the marker’s effects
such that the estimate of the individual’s breeding value is

a =
m∑
i

Migi (3)

If its assumed that there is a certain amount of the additive genetic variance
not explained by the markers, then the model can be extended to include a
residual polygenic effect, (u) which is the proportion of additive genetic
variance not captured by the markers which can be captured using pedigree.
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The model is

y = Xb +
m∑
i

Migi + Wu + e (4)

where W is the design matrix linking records to random genotype (individ-
ual) effects

4.1 Coding and scaling markers

The genotype matrix M contains genotypes coded numerically. It is common
to code the alleles as 2 and zero for the two homozygotes and 1 for the
heterozygotes. This coding refers to the dosage of one of the alleles. When
the markers are coded in this way the diagonal elements of MM′ will indicate
the level of inbreeding for each individual, and the off diagonal elements
indicate the number of alleles shared by relatives. Another common coding
is to code one of he homozygotes as -1, the heterozygote as 0, and the other
homozygote as 1.

It is common to scale the markers in M to set the mean values of the
marker effects to zero, and to account for differences in the allele frequencies
of different markers. The mean of a marker can be calculated as

mean(Mj) = 2 · pj (5)

where pj is the frequency of the minor allele. Let P be a matrix where column
j is equal to 2 · pj. The scaled marker matrix Z can be computed as

Z = M − P (6)

Note that the sum of each of the columns of Z is equal zero.
The elements of Z can also be normalized by dividing the column for

marker j by its standard deviation (σj), which

σj =
√

2pj(1 − pj) (7)

This is assuming that the loci are in Hardy-Weinberg equilibrium. Standard-
izing the markers leads to less shrinkage on the markers with lower minor
allele frequency in Ridge-regression.
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4.2 Ridge-regression (RR)

In ridge-regression, marker effect are estimated using the mixed linear model

y = Xb + Zg + e (8)

where g is a vector of additive genetic effects for each marker. (These marker
effects correspond to allele substitution effects). The matrix Z relates marker
effects to phenotypes. The sum of g over all marker loci is assumed to be
equal to the vector of breeding values (a = Zg). The mixed model equations
for formula 8 are:

[
X′R−1X X′R−1Z
Z′R−1X Z′R−1Z + Iα

] [
b̂
ĝ

]
=

[
X′R−1y
Z′R−1y

]
(9)

where
α = σ2

e/σ
2
g (10)

The σ2
g in the denominator of α can be estimated as

σ2
g = σ2

a/m (11)

where m is the number of markers, and σ2
a is the additive genetic variance

in the base population. We will assume that σ2
a is already known. This

definition of α assumes that all the additive genetic variance is captured by
the markers, and that all the marker effects are sampled from a the same
underlying distribution (because the same variance is assumed for each).
The α is what allows us to fit many more marker effects than there are
observations, it introduces ’shrinkage’ of the marker effects. This has the
effect of increasing prediction accuracy when the model is applied to new
data.

Using de-regressed EBVs in y R is a diagonal matrix of weights. The
weights are used to account for differences in reliabilities of the individuals.
This is relevant when fitting the model using BLUPs in y rather than raw
phenotypic values. The BLUPs that will be used in y should be first ’de-
regressed’ and then weights should be added via R. According to Garrick et
al. (2009, Genetics Selection Evolution), if parent information is excluded
from the BLUP estimate then de-regressed BLUPs can be computed as

deregBLUP = EBV/r2 (12)
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where r2 is the reliability of the EBV. This process ”un-shrinks” the BLUPs.
The appropriate weights to be used in the diagonal of R are

wi =
1 − h2

[c+ (1 − r2i )/r
2
i ]h

2
(13)

Where c is the proportion of the genetic variance expected to not be explained
by the markers. The procedure for de-regression and weighting is the same
for the other mixed models that we will discuss in this lesson.

When there there is no need to use weights, R factors out of the equation,
and the mixed model equations become

[
X′X X′Z
Z′X Z′Z + Iα

] [
b̂
ĝ

]
=

[
X′y
Z′y

]
(14)

4.3 Bayesian models

Bayesian models are also marker effect models but they estimate the marker
effects very differently. Bayesian models are also more flexible in that the
assumptions of the underlying marker effect distribution can be specified.
There are several Bayesian models, such as BayesB, BayesianLASSO, and
BayesCπ, which are expected to be better suited for traits where many loci
are not expected to contribute to the total additive genetic variance. Al-
though these models are important they will not be reviewed in detail in this
course. For a good overview of the Bayesian models look to Chapter 11 of
Mrode 2014 ”Linear models for the estimation of animal breeding values”
4th edition.

5 Genomic BLUP (GBLUP)

In genomic BLUP (GBLUP), marker effects are not estimated in the process
of estimating breeding values. Instead, a genomic relationship matrix, G is
created using markers, and the inverse of this relationship matrix G−1 is used
in BLUP in the same way that inverse of the pedigree relationship matrix,
A−1 is used in BLUP. It has been shown that GBLUP is equivalent to RR.
The mixed model for GBLUP is

y = Xb + Wa + e (15)
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where y is a vector of observations, a is a vector of EBVs and W is the
design matrix linking the observations in y to the individual in the vector of
EBVs. The genomic relationship matrix is

G =
ZZ′

2
∑
pj(1 − pj)

(16)

G expressed in this way is analogous to the relationship matrix (A). The
genomic inbreeding coefficient for individual i is Gii − 1. The genomic rela-
tionship coefficient between individuals i and j analogous to the coefficient
of relationship in A can be computed by dividing the element Gij by the
square roots of the diagonals of Gii and Gij.

The matrix G is symmetric and usually positive semi-definite. These
two features make it non-singular (possible to invert) G, which is necessary
for the mixed model equations. G can be singular if two individuals have
identical genotypes, or if the number of markers is less than the number of
individuals.

Another method for computing G was developed by (VanRaden, 2008,
Journal of Dairy Science). Involves scaling markers by the reciprocals of the
expected variance of marker loci.

G = ZDZ′ (17)

where D is diagonal with

dii =
1

m[2pj(1 − pj)]
(18)

The G matrix when calculated in this way gives more weight to the
markers with low minor allele frequency. Because Z is mean centered, the
relationship values in G are deviations with respect to an average genotype.

The mixed model equations for GBLUP (equation 14) is

[
X′R−1X X′R−1W
W′R−1X W′R−1W + G−1α

] [
b̂
ĝ

]
=

[
X′R−1y
W′R−1y

]
(19)

where α now equals σ2
e/σ

2
a

GBLUP is equivalent to RR, however GBLUP has some advantages. The
first advantage is that existing software developed for BLUP can be used by
simply replacing A with G, the second is that it is also more computational
efficient than RR when there are fewer individuals than there are markers.
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6 Models including the polygenic effect

Ridge-regression and GBLUP assume that the markers explain all the genetic
variation in the traits of interest. However some have found that including a
residual polygenic effect, (in other words, the pedigree relationship matrix)
in the model improves accuracy. This suggests that the markers are not
capturing all of the genetic variance.

6.1 Marker effect model with a polygenic effect

The marker effect model with polygenic effects is

y = Xb + Wu + Zg + e (20)

Where u is the vector of random residual polygenic effects, W is the design
matrix that relates observations to individuals, and the other terms are the
same as in the ridge regression model (Equation 8). The estimate of breeding
value from this model is

a =
m∑
i

Migi + u (21)

And the mixed model equations for this marker effect model with a poly-
genic effect areX′R−1X X′R−1W X′R−1Z

W′R−1X W′R−1W + A−1α1 W′R−1Z
Z′R−1X Z′R−1W Z′R−1Z + Iα2

b̂
û
ĝ

 =

X′R−1y
W′R−1y
Z′R−1y


(22)

where
α1 = σ2

e/σ
2
u (23)

with σ2
u equal to the chosen portion of the additive genetic variance fitted as

the polygenic effect. and

α2 =
σ2
e

(σ2
a − σ2

u)/m
(24)
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6.2 Genomic BLUP with a polygenic effect

If A polygenic effect is fitted in G-BLUP then the model is

y = Xb + Wu + Wa + e (25)

where a is a vector of the genomic breeding values and all other terms are
the same as those in the GBLUP model (equation 13).

The mixed model equations to be solved areX′R−1X X′R−1W X′R−1W
W′R−1X W′R−1W + A−1α1 W′R−1W
W′R−1X W′R−1W W′R−1W + G−1α2

b̂
û
â

 =

X′R−1y
W′R−1y
W′R−1y


(26)

where
α1 = σ2

e/(σaσ
2
u (27)

and
α2 = σ2

e/(σ
2
a − σ2

u) (28)

6.3 A single step approach using the H matrix

In animal breeding, genomic predictions of breeding value are usually com-
bined with some measure of conventional breeding values. This combined
value is referred to as genotypic breeding values (GEBV). The genomic pre-
dictions and conventional breeding values are usually combined in a sort of
selection index, where the genomic and conventional breeding vales are given
selection index weights.

Misztal et al. (2010, Journal of Dairy Science) presented a method called
the single step approach which combines conventional and genomic breeding
value estimation in one step. This enables prediction of EBVs for individuals
that are not genotyped, and GEBVs (using both family and/or own pheno-
type information in addition to maker information) for individuals that are
genotyped.

This single step method involves the use of a matrix H, which blends
the pedigree and genomic relationship matrix. Aguilar et al. (2010, Jour-
nal of Dairy Science) and Christensen and Lund (2010, Genetics Selection
Evolution) found that the inverse of H could be computed as

H−1 = A−1 +

[
0 0
0 G−1 − A−122

]
(29)
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Where A−122 is the inverse of the relationship matrix for the genotyped
individuals. Then H−1 can be used in the GBLUP model (equation 15) and
solved using the GBLUP mixed model equations (equation 19).

To include a resiudal polygenic effect, G−1 is replaced with G−1w where w
is the relative weight of the polygenic effect.

7 Cross-validation and genomic reliabilities

The accuracy of predictions of breeding value should be estimated by us-
ing the models to predict a set of individuals that has not contributed any
phenotypic information to the model. This is typically done using cross-
vaidation. The accuracies from cross-validation may also be referred to as
realized reliabilities.

Cross-validation involves randomly assigning individuals to sets, usually
5 or 10. In the first round of prediction, set 1 phenotypic data is excluded
from model fitting, and predictions of set 1 are made. Then the correlation is
computed between the predicted values for set 1 and the actual values. This
process is repeated for each set, and then the average of the correlations is
computed. To estimate the prediction accuracy, the mean correlation across
all rounds of the cross-validation is then dived by the square root of the
heritability, h, in the validation set.

The random assignment of individuals to folds creates some variability
between different cross-validation experiments conducted on the same data.
A good way to cope with this variability is to use the same set assignment
every time. This is useful when comparing models, because sometimes the
variability due to the set assignment is much greater than the differences
between the models of interest, making it difficult to detect any trends.

Bootstrapping is another method for estimating accuracy. The advantage
to bootstrapping is it enables you to test for significant differences between
models or reference datasets used to fit the model. To perform bootstrap
significance testing you first need to divide your dataset into a validation
set and model training set. Then 1. for your first model of interest, select
n individuals and m markers from the training set with replacement, where
n and m are the number of individuals and markers in the training set.
2. Using this resampled data, fit the model to predict the individuals in
the validation set. 3. Then compute the correlation between the predicted
and actual values, and save the value. Repeat steps 1-3 1000 times. This
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procedure will give you the empirical distribution of accuracy values, which
can then be used to estimate the confidence interval around the mean value.
If the confidence intervals for the accuracies from two models don’t overlap,
they can be said to be significantly different.

8 Factors that affect accuracy

The size of the with phenotypic data used for model fitting relative to the rate
of linkage disequilibrium decay (LD) in the genome, the number of markers
relative to the rate of LD decay, and the heritability of the trait of interest
are the key factors affecting accuracy from genomic selection. The rate of
LD decay is a function of the effective population size, Ne. If Ne is large, LD
will decay rapidly and there will be many more independently segregating
segments of the genome. This in turn will require a greater marker density
which will in turn require us to have a larger population size to estimate the
marker effects more accurately.

According to Daetwyler et al. (2010, Genetics), genomic selection accu-
racy using GBLUP and RR, rgs can be predicted by

rgs =

√
NPh

2

NPh2 +Me

(30)

where Me is the number of independent chromosome segments

Me = 2NeL/log(4NeL) (31)

where Ne is the effective population size, and L is the genome length in Mor-
gans. This assumes that the model training and validation populations are
sampled from the same overall population. In practice this is often violated.
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