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1 Best linear unbiased prediction, BLUP

Best linear unbiased prediction is a method for calculating EBVs which was
developed to improve upon the family selection index. BLUP was developed
in 1949 by Charles Roy Henderson, an animal breeder by training. Henderson
developed BLUP while he was a professor at Cornell. The proof that BLUP
was optimal came 10 years later thanks to one of his PhD students, Searle,
who was working previously as a statistician. Searle introduced Henderson
to matrix algebra and eventually became a Cornell professor.

1.1 The properties of BLUP

The properties of BLUP are basically described in its name. Its best because
it maximizes the correlation between the true and predicted breeding values
or that it minimizes the Prediction error variance. Its linear because the
predictors are linear functions of observations. Its unbiased because the es-
timation of breeding values and fixed effects are unbiased. Lastly, it involves
prediction of true breeding values.

1.2 Explanation of the model

Consider the following equation for a mixed linear model

y = Xb + Zu + ε (1)

where

• y is a n× 1 vector of observations and n is the number of observations
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Table 1: Phenotypic observations

Individual Yield Location

A 61 Ithaca
B 50 Geneva
C 65 Watkins Glen
A 62 Geneva
B 48 Ithaca

• b is a p× 1 vector of fixed effects and p is the number of levels or fixed
effects.

• u is a q×1 vector of random effects for individual, and q is the number
of levels for random effects.

• ε is a n× 1 vector of random residual effects.

• X is a design matrix with n rows and p columns, which relates the
observations in y to fixed effects.

• Z is a design matrix with n rows and q columns, which relates the
observations in y to the random effects of the genotype (individual).

The mixed model equations are illustrated using the example dataset in table
1.
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Its assumed that the expectation (E) of y, b and ε are E(y) = Xb, E(u) = E(ε) = 0,
and its assumed that the residual effects, which include random environmen-
tal and non-additive genetic effects, are independently distributed with vari-
ance σ2

ε. Due to this assumption: var(ε) = Iσ2
ε = R and var(b) = Aσ2

g = G,
where I and is an identity matrix, and A is the additive relationship matrix
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indicating the coefficient of relationship between each genotype in b. To il-
lustrate for our example lets say that the additive genetic variance is 50, and
the error variance is 65.

var(ε) = cov(y, ε) = R =


65 0 0 0 0
0 65 0 0 0
0 0 65 0 0
0 0 0 65 0
0 0 0 0 65



var(b) = G =

2 1 0
1 2 1.5
0 1.5 1

 25 =

50 25 0
25 50 37.5
0 37.5 25



The phenotypic covariance matrix is V = ZGZ′ + R

V =


50 25 0 50 25
25 50 37.5 25 50
0 37.5 25 0 37.5
50 25 0 50 25
25 50 37.5 25 50

+


65 0 0 0 0
0 65 0 0 0
0 0 65 0 0
0 0 0 65 0
0 0 0 0 65

 =


115 25 0 50 25
25 115 37.5 25 50
0 37.5 115 0 37.5
50 25 0 115 25
25 50 37.5 25 115



The phenotypic covariances among the observations are the same as the
genetic covariances because the covariance between error and the genotype
effects is zero.

The covariance between the observations and the genotype effects are the
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Table 2: Adjusted means

Individual Adjusted mean yield

A 4.3
B -8.2
C 7.8

same as the genotypic covariances.

cov(y, a) = ZG =


50 25 0
25 50 37.5
0 37.5 25
50 25 0
25 50 37.5


And the covariance between the observations and the error reduces to the
matrix R.

The solutions for the BLUPs of u can be solved using

û = GZ′V−1(y − Xb̂) (2)

where b̂ are the ordinary least square solution for b. If you substitute the
ordinary least square solutions into equation 7, or if you have no fixed effects
equation 7 reduces down to the selection index equations.

Equivalence with the selection index We will now show the equivalence
of BLUP with the selection index in more detail using our example from
before, but with the environment effect removed. G for the index almost
the same G for BLUP. V reduces to G + R because the Z matrix is now an
identity matrix since each genotype adjusted mean only appears once R is a
diagonal matrix but instead of simply having the error variance (σ2

ε) on the
diagonal it has σ2

ε/n in the diagonal where n id the number of observations
in the original data corresponding to the adjusted mean genotype, for this
example:

R =

65/2 0 0
0 65/2 0
0 0 65
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Then V for this example is G + R

V = P =

50 25 0
25 50 37.5
0 37.5 25

+

65/2 0 0
0 65/2 0
0 0 65

 =

85 25 0
25 82 37.3
0 37.5 90



This V is equivalent to the matrix P from the mixed model equations, and G
for a selection index (GI) contains only one column of G for BLUP (equation
6), for example, if the weights for the first individual are to be calculated
then

GI =

50
25
0



If we go ahead an calculate the weights needed to calculate the EBV for
the first individual from the selection index equation b = P−1G we get

b =

 0.0136 −0.0051 0.0021
−0.0051 0.0168 −0.0070
0.0021 −0.0070 0.0140

50
25
0

 =

 0.55
0.167
−0.07


then

EBV1 =
[
0.55 0.167 0.07

]  4.3
−8.2
7.8

 = 0.49

If we use equation 7,

EBV =

 0.0136 −0.0051 0.0021
−0.0051 0.0168 −0.0070
0.0021 −0.0070 0.0140

50 25 0
25 50 37.5
0 37.5 25

 4.3
−8.2
7.8

 =

 0.49
−1.21
−3.66
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We get all three EBVs, one for each individual, and the EBV for individual
1 is 0.49.

In equation 7 for the BLUP solutions we need to calculate V−1, which can
be computationally demanding or not feasible. To circumvent this inversion,
Henderson developed the mixed model equations (MME) to estimate the
fixed effect solutions for b while simultaneously predicting the random effects
u without the need to compute V−1. The mixed model equations are

[
X′R−1X X′R−1Z
Z′R−1X Z′R−1Z + G−1

] [
b̂
â

]
=

[
X′R−1y
Z′R−1y

]
(3)

If R is an identity matrix times the residual error, which occurs when each
genotype is observed once, then R−1 factors out of the equation and the
MME becomes

[
X′X X′Z
Z′X Z′Z + A−1α

] [
b̂
â

]
=

[
X′y
Z′y

]
(4)

Where α = σ2
ε/σ

2
a = (1 − h2)h2

For ease of solving the MME, often the fixed effect of the mean is excluded
and the mean is ’absorbed’ by the other fixed effects.

1.3 Assumptions of the mixed model equations

The mixed model equations give the solutions for the BLUEs (fixed effect
coefficients), and the BLUPs when certain assumptions are met. These are 1)
The distributions of y, u, and ε are multivariate normal, which implies that
many additive loci are underlying the trait. 2) The variances and covariances
for the base population are assumed to be known or known proportionally.
3) There is no selection on information not included in the data, if this is
violated then bias due to selection will affect the EBVs.
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1.4 Accuracy of the EBVs with BLUP, without fixed
effects

The generalized inverse of the lower right element in the first matrix in the
MME is called C22

C22 = (Z′R−1Z + G−1)−1 (5)

The prediction error variance-covariance matrix can be calculated by multi-
plying this matrix by the error variance.

PEV = C22σ
2
ε (6)

The diagonal elements of the PEV matrix correspond to the PEVs
of the individuals. These can then be used to calculate the reliability and
the accuracy.

1.5 Accuracy of the EBVs with BLUP, with fixed ef-
fects

When there are fixed effects, that will affect the PEV and reliability, because
the more times something is tested, the greater its reliability.

Need to first take the inverse the left hand side

[
X′X X′Z
Z′X Z′Z + A−1α

]−
=

[
C11 C12

C12 C22

]
C22 is the lower right element (after taking the inverse). The PEV can be
calculated by multiplying this matrix by the error variance.

PEV = C22σ
2
ε (7)

The diagonal elements of the PEV matrix correspond to the PEVs
of the individuals. These can then be used to calculate the reliabilities
and the accuracies.
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