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Mathematical analysis: Implementation of algorithms 
Dynamic systems theory is an area of mathematics focused on understanding and 

describing complex dynamical systems. In general, dynamic systems theory discerns three 
basic types of systems: deterministic, random and chaotic-deterministic systems. By 
observation of past states - provided a sufficient amount of observations are available - one 
can fully predict the behavior of a deterministic system. E.g., observing an ideal pendulum 
over an entire period provides sufficient knowledge about the pendulum’s past states to fully 
predict any future states of the pendulum - it is a deterministic system. In contrast, when 
observing a dice, a random system, no amount of observations would grant the observer 
sufficient information about the behavior of this system – here, knowledge of past states of 
the system would never yield better predictions about future states than an educated guess. 
Chaotic-deterministic systems, although often confused with random systems, are 
essentially deterministic systems, as suggested by their name. Similar to deterministic 
systems, observation of past states allows an observer to make predictions about future 
states of the system. However, due to omnipresent uncertainty combined with a high 
sensitivity to initial states, which is typical for chaotic deterministic systems, prediction 
deteriorates over time until any prediction based on past states is as good as an educated 
guess, i.e. the system appears to behave randomly. A very common example for chaotic-
deterministic systems is the weather: while weather forecasts tend to be reasonably 
accurate over short periods of time, long term predictions tend to deteriorate quickly.  

Here we utilize the so-called method of time-lag embedding, a well-established method 
in dynamic system theory commonly used to characterize mechanical and mathematical 
systems (e.g. [1, 2]). According to Takens’ embedding theorem [3], a dynamic system can 
be fully reconstructed in phase space given a series of observations of the state of the 
dynamic system, i.e. a time-series. In phase space, every degree of freedom or parameter of 
the system is represented as an axis in a multi-dimensional space. The number of degrees 
of freedom then is the minimum number of independent variables necessary to fully describe 
the system. The advantage of the method compared to other modelling approaches is that it 
requires no a priori knowledge of the underlying system like the number of factors involved 
and their specific interactions; instead the methods allow for the creation of a physical model 
of the process using only the recorded data. The method has been rigorously tested in 
mathematical systems where the exact number of degrees of freedom is known [4]; there, 
the number of degrees of freedom is equivalent to the number of terms in the equation. In 
physical/mechanical systems, it is the number of inputs, e.g. in the case of a robot navigating 
in a given environment, it is the number of independent sensors necessary to perform this 
task [2]. The same relationship applies to the pigeon's navigational process, with the 
degrees of freedom, as represented by the correlation dimension, indicating the number of 



independent sensory modalities involved in the navigational process. Applied to tracks of 
pigeons the correlation dimension thus allows us to draw conclusions about the navigational 
strategy used [5].  

The type of information used by the pigeons, i.e. route information, point-like information 
or geophysical gradients, and how this information is used, i.e. landmarks for piloting [6] or 
as elements of a mosaic map [7,8], has direct consequences on the degrees of freedom of 
the underlying navigational process, reflected by the correlation dimension. If pigeons e.g. 
use landmarks for piloting, then the underlying process is rather simple: the information 
provided is merely the path towards the next landmark—this type of information offers only 
one degree of freedom. Navigation based on a mosaic map, in comparison, requires the 
involvement of at least one additional factor, a compass. Hence it can be assumed that 
navigation based on a mosaic map would result in a higher dimensional process with a 
correlation dimension of at least 2. As the mosaic map is assumed to consist of static cues, 
each cue within the mosaic map is equivalent to every other, basically providing the same 
information. Multiple cues of the same type thus may increase certainty and allow pigeons to 
uniquely identify a specific cue, but essentially do not provide more information than a single 
cue alone.  

If pigeons use multiple environmental gradients simultaneously as navigational cues, the 
degrees of freedom of the navigational process depend on the number of gradients involved, 
leading to a corresponding increase in the correlation dimension. Two different factors, one 
providing an equivalent to longitudinal and one providing an equivalent to latitudinal 
information, as well as one compass cue would suffice to allow pigeons to find their way 
home, hence the correlation dimension should be at least 3. The correlation dimension thus 
indicates the type of strategy applied: low correlation dimensions suggest simpler forms of 
navigation, like navigation based on point-like information, while higher correlation 
dimensions suggest navigation based on multiple environmental gradients. A marked 
change in the correlation dimension would then indicate a change in the navigational 
strategy and difference in correlation dimension between untreated control birds and 
experimental pigeons deprived of certain sensory information would indicate involvement of 
specific cues in the navigational process.  
 

Mathematical analysis: Estimation of the Correlation Dimension 
The correlation dimension is estimated by calculating the correlation integral )(rC m  : 
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with  ji ≠ , r  the distance interval, m  the embedding dimension 
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with  τ  the embedding lag, m  the embedding dimension and N  the number of data points 
in the time series, where Θ  denotes the so-called Heaviside step function: 
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and ...  denotes the so-called Euclidean norm, a measurement of distance in Euclidean 

vector space. 



From the correlation integral the correlation dimension 2d  can then be obtained as the 

slope of  
mCln  versus rln : 
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The slope of the curve is thus a direct measurement of the independent degrees of freedom 
or dimension of the system. In case of a navigational process these are the number of 
independent navigational factors used for navigation.  
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