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Supplementary Material S.1: The outbreak threshold in a 
homogeneous population

The basic idea is that in a finite host population of size N, an outbreak has occured when enough infected individu-
als are present so that the probability of pathogen extinction due to stochastic loss is essentially zero. As a frame-
work for  investigating this,  we will  use a  basic  ‘susceptible-infected-removed’ (SIR) or  ‘susceptible-infected-
susceptible’ (SIS) type of infection [Anderson and May 1991]. The process of interest is the rate of change of
infected individuals over time, which in both these models is equal to: 
dI

dt
= b

S

N
- d I

Where b is the contact rate, 1/d the mean duration of an infection, and S the total number of susceptible individuals
at time t. If the whole population is susceptible, then S = N, and so the initial growth rate is equal to b/d = R0. This
is the reproductive ratio of the infection, the number of secondary infections caused by a single infected host in a
population that is entirely susceptible [Anderson and May 1991]. 

In a stochastic model, the probability of extinction is equal to d/b = 1/R0 [Grimmett and Stirzaker 2001, Hubbarde
et al. 2007]. Furthermore, if we assume that the population size is large enough so that S > N as the outbreak is
emerging (that is, there are enough susceptible hosts present to carry and spread a potential epidemic), then each
infected individual has a reproductive ratio approximately equal to R0. Therefore, if there are It  infected individu-
als present at time t, the overall probability of extinction of the entire pathogen population approximately equalsH1 êR0LIt  [May et al. 2001, Allen 2008].

We want to find the value of It = T0 so that the probability of extinction drops below a certain threshold, c. To
find this we need to solve H1 êR0LT0 = R0

-T0 = c, which is easily done:
SolveAR0-T0 ä c, T0E
Solve::ifun : Inverse functions are being used by Solve, so some

solutions may not be found; use Reduce for complete solution information. á

::T0 Æ -
Log@cD
Log@R0D >>

This highlights the main result that on the order of 1 ê Log HR0) infected individuals are needed to maintain an
infection in a homogeneous population. 

We are also interested in finding a general result for T0, which does not depend on a cutoff value c. We can show
this asymptotically. Ideally we want to find a solution to R0

-T0 = 0, but a solution does not exist. We can find an
approximate solution by writing T0 = N x, and solving to find the proportion of individuals needed x, if x << 1.
Taking a Taylor series around x = 0:
NormalASeriesAR0-N x, 8x, 0, 1<EE
1 - N x Log@R0D
Solving this equal to zero gives T0 = Nx = 1 êLog HR0), highlighting how at least this many infected individuals
are needed to guarantee an outbreak. Note that this derivation implicitly assumes that N is finite; if N goes to
infinity then it is clear that R0

-Nx  goes to zero, so no solution to x exists. This makes sense, since in such an
infinite population an outbreak will not go extinct if I = 1 and R0 > 1, as in an infinite population the only suffi-
cient condition for emergence is that R0 exceeds 1. Therefore, it would not be possible to solve for x needed to
push the extinction probability below a threshold, as the only solution would be zero [Anderson and May 1991]. 

This  general  result  highlights  that  if  the  number  of  infected individuals  reaches  the  order  of  1 êLog HR0),  the
extinction probability of the pathogenic population becomes low and approaches zero, especially if this limit is
greatly exceeded. Threfore using 1 êLog HR0) as the scaling for the outbreak threshold is appropriate.

This definition of the outbreak threshold has the great advantage of being general (it does not require a specific
cutoff) but that this generality is traded-off against its specificity. The value of the outbreak threshold should
always be seen as an order of magnitude. If one would want to apply the outbreak threshold as a strict threshold,
one would be using an extinction probability equal to c = e-1  > 0.37. This illustrates that once this asymptotic
level has been reached, the pathogen population is likely to persist, but still has a sizeable chance of extinction. As
such, this limit should be considered a ‘lower bound’ for the outbreak threshold in a homogeneous outbreak. If a
more rigorous threshold is desired, then a multiple of 1 êLog HR0) should be adopted, or -LogHcL êLog HR0) should
be used to produce an exact threshold.

Note that if R0 is approximately just greater than one, i.e. R0 > 1 + n for n << 1, then LogHR0L is approximately
equal to:
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extinction probability of the pathogenic population becomes low and approaches zero, especially if this limit is
greatly exceeded. Threfore using 1 êLog HR0) as the scaling for the outbreak threshold is appropriate.
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one would be using an extinction probability equal to c = e-1  > 0.37. This illustrates that once this asymptotic
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Note that if R0 is approximately just greater than one, i.e. R0 > 1 + n for n << 1, then LogHR0L is approximately
equal to:
Normal@Series@Log@1 + nD, 8n, 0, 1<DD
n

Then the number of infecteds needed for an outbreak to occur is approximately equal to 1/n = 1 ê HR0 - 1) = d/(b-d).
Thus one can make parallels with classic population genetics results demonstrating that a new allele of fitness 1 +
s needs to produce on the order of 1/s copies of itself before it is guaranteed to fix [Kaplan et al. 1989, Barton
2000, Desai and Fisher 2007].

ü Accounting for imperfect samping
If the sampling of an outbreak is imperfect,  then only an average proportion p  of all  infected individuals are
detected at a given time. This factor can be incorporated into the model. 

If  there are It  actual  infected individuals  at  time t,  the probability that  Id  infected individuals  are detected is
sampled from a Binomial distribution with parameters HIt, p). Thus the mean number sampled at a certain time is
equal to p > It. So if the threshold T0 has been reached, then the actual number of infected individuals detected
equals p > T0, which is p êLog HR0) at the lowest limit. 

ü Time taken to reach threshold
If the number of infected hosts is negligible compared to that of susceptible hosts (S > N) for the initial stages of
an epidemic, then we can approximate the epidemic growth rate by:
dI

dt
= Hb - dL I

Therefore the number of infected individuals will grow approximately exponentially, with It  = I0 eHb-dL t, where I0
is the initial number of infected individuals. By setting It = T0, we find that the time that T0 is reached by equals:
Solve@T0 ä I0 Exp@Hb - dL tD, tD
Solve::ifun : Inverse functions are being used by Solve, so some

solutions may not be found; use Reduce for complete solution information. á

::t Æ
LogB T0

‰0
F

b - d
>>

Here, I0 is usually close to 1, and unless R0 is very close to one, LogHT0) is of order 1 as well. Therefore it would
take a duration of the order of 1/(b-d) to reach the threshold limit. 

ü Delayed Sampling
In some cases there can exist a time lag t between an individual becoming infected and that infection becoming
apparent. This delay could arise due to several reasons, such as a delay in the infection being reported, or if there
is a latent period before the infection becomes apparent in a host. In this case, whilst still assuming that there is no
limitation  of  susceptible  hosts  (S  >  N),  the  detected  number  of  infected  individuals  at  time  t  is  equal  to
I0eHb-dL Ht-tL = I0 eHb-dL t e-Hb-dL t= It e-Hb-dL t.

If the actual number of infected individuals It  equals T0, the observed number of individuals equals  T0 e-Hb-dL t,
and so the observed threshold has to be altered accordingly. However, this is still of order 1 êLog HR0), unless the
time lag t is large.
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Supplementary Material S.2: Effect of the limitation in host 
population size

The homogeneous results assume that during the emergence time of the pathogen, there are enough susceptibles
present to transmit a pathogen to, so the overall reproductive rate is always approximately equal to R0. However, if
R0 is close to one, or if the population size is small, then the assumption that the reprodutive rate each generation
will remain constant will no longer be valid. This section explores when this assumption will break down.

In an SIR infection, the rate of change of the susceptible population is:

dS
dt
= -b S

N

Combined with the term for dI/dt as above, we can create a term for the change in the number of infected individu-
als as a function of the susceptible population, by diving the two derivatives:

dI
dS
= N d

S b
- 1 = N

S R0
- 1

From this we can see that the rate of change equals zero at S = N êR0, which is the point when the outbreak would
reach its maximum peak and would start dying out. If this maximum value is less than the outbreak threshold, then
it is clear that our previous assumptions are violated. By solving the above differential equation we find that:

DSolveB:Inf'@SD == N d

S b
- 1, Inf@ND ä 0>, Inf@SD, SF

::Inf@SD Æ
N b - S b - N d Log@ND + N d Log@SD

b
>>

Therefore the maximum number of infecteds that arises over an SIR epidemic is equal to this function, evaluated
at S = N d/b:
N b - S b - N d Log@ND + N d Log@SD

b
ê. S Æ

N d

b

N b - N d - N d Log@ND + N d LogB N d

b
F

b

This simplifies to:

MaxI@ND_, R_D := ND 1 -
H1 + Log@RDL

R

For R = b/d. By plotting the minimum threshold 1 êLogHR0L against this maximum value of the infection, we can
see when R0 becomes large enough so that this minimum threshold can be reached in theory. The following plot is
for N = 10,000:
EmergeHom@R_D := 1 ê Log@RD
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Plot@8EmergeHom@RD, MaxI@10000, RD<, 8R, 1.02, 1.1<,
PlotStyle Æ 8Thickness@0.01D, Thickness@0.01D<,
AxesLabel Æ 8R0, "Infected Individuals"<D
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The red section denotes the values of R0  for which the maximum number of infecteds is less than the outbreak
threshold 1 êLog@R0]. In theory, this means that the pathogen will go extinct before it reaches enough copies to
guarantee not going extinct by stochastic drift alone, so the threshold cannot be reached due to a violation of the
assumption that there are enough susceptibles at the start of an outbreak. The orange section denotes where the
maximum number of infecteds exceeds the outbreak threshold, so the occurence of an outbreak can be detected
using this threshold. For this particular case, R0 needs to exceed 1.06 for the drift threshold to be reached (this of
course depends on the value of N, the host population size).

For very small population sizes, R0 needs to be rather large in order for an outbreak to be detected in a homoge-
neous population. If we repeat the plot for N = 100, for example:
Plot@8EmergeHom@RD, MaxI@100, RD<, 8R, 1.02, 1.5<,
PlotStyle Æ 8Thickness@0.01D, Thickness@0.01D<,
AxesLabel Æ 8R0, "Infected Individuals"<D
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In this case, R0 needs to exceed around 1.34 for the threshold to be reached.

Supplementary Material S.3: Finding a numerical approximation for 
the threshold in a heterogeneous population
ü Deriving the formulae

In a heterogeneous population, the probability of extinction is the solution s to the following:

1 +
R0

k
H1 - sL -k

= s

Unfortunately, this is unsolveable for general k:
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SolveB 1 +
R

k
H1 - sL -k

- s ä 0, sF
Solve::nsmet : This system cannot be solved with the methods available to Solve. á

SolveB 1 +
R H1 - sL

k

-k

- s ä 0, sF
So instead we set up a function to numerically compute how many infected individuals are needed to equate the
extinction probability to a threshold c.
FR3@R_, k_, c_D :=

Inf ê. FindRootB s ê. FindRootB0 ä 1 +
R

k
H1 - sL -k

- s, 8s, 0<F Inf

- c ä 0, 8Inf, Log@RD<F
By plotting this function for a range of k-values (corresponding to those found by maximum-likelihood analysis
for several epidemics in Lloyd-Smith et al. [2005]), we see the general behaviour that the threshold decreases with
increased R0, and increases with lower k as the probability of extinction becomes higher, and thus more individu-
als are needed to guarantee an outbreak (see also Figure 1B in the main text).
LogPlot@8FR3@R, 0.16, Exp@-1.0DD, FR3@R, 0.25, Exp@-1.0DD, FR3@R, 0.35, Exp@-1.0DD,

FR3@R, 0.65, Exp@-1.0DD, FR3@R, 1, Exp@-1.0DD<, 8R, 1.01, 5<,
AxesOrigin Æ Automatic, PlotStyle Æ Thickness@0.005D, AxesLabel Æ 8R0, Threshold<D
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To proceed with finding an approximation, we first note that the ratio of the heterogeneous threshold with the
homogeneous threshold is independent of the cutoff value c.  To see this,  let  the extinction probability for an
infected individual in a heterogeneous outbreak be equal to p. Now if we solve to find T0 that reduces the overall
extinction probability below a cutoff c:

SolveApT0 ä c, T0E
Solve::ifun : Inverse functions are being used by Solve, so some

solutions may not be found; use Reduce for complete solution information. á

::T0 Æ
Log@cD
Log@pD >>

Therefore the ratio of the homogeneous threshold to the general threshold is independent of c:
Log@cD
Log@pD ì -

Log@cD
Log@R0D

-
Log@R0D
Log@pD

Greater insight can be gained if we plot these thresholds, relative to those obtained for the same cutoff c in a
homogeneous population. In this case, we see that the main scaling appears to be for k and only seems strongly
dependent on R0 when it gets closer to one.

HomThresh@R_, c_D := -
Log@cD
Log@RD
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Plot@8FR3@R, 0.16, 0.01D ê HomThresh@R, 0.01D, FR3@R, 0.25, 0.01D ê HomThresh@R, 0.01D,
FR3@R, 0.35, 0.01D ê HomThresh@R, 0.01D, FR3@R, 0.65, 0.01D ê HomThresh@R, 0.01D,
FR3@R, 1, 0.01D ê HomThresh@R, 0.01D<, 8R, 1.0001, 5<,

AxesOrigin Æ 81, 0<, PlotStyle Æ Thickness@0.01D, AxesLabel Æ 8R0, Threshold<D
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As a first approach, we observed that for a fixed R0, it appears that the heterogeneous/homogeneous ratio scales
according to a function of order 1/k. As an example, here are the ratios if we set R0 = 5.
8FR3@R, 0.1, 0.01D ê HomThresh@R, 0.01D, FR3@R, 0.16, 0.01D ê HomThresh@R, 0.01D,

FR3@R, 0.25, 0.01D ê HomThresh@R, 0.01D, FR3@R, 0.35, 0.01D ê HomThresh@R, 0.01D,
FR3@R, 0.65, 0.01D ê HomThresh@R, 0.01D, FR3@R, 1, 0.01D ê HomThresh@R, 0.01D< ê. R Æ 5

86.47649, 4.20479, 2.83935, 2.14367, 1.33524, 1.<
The graph below shows a plot of these ratios, along with a fit of the curve 0.401 + 0.608

k
, which provides a good

match to the data. The coefficients were found using nonlinear regression analysis in R [R Development Core
Team, 2008].
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However, it is also clear that there is some dependence on R0 on this threshold ratio as well. To try and find the
form of this dependence, we repeated the above regression with 1/k but for different R0 values. Then, we plotted
the coefficients of the regression as a function of R0, and determined what function appear to fit the data best. The
below graphs show a plot of the coefficients, as well as a curve of the form (a + b êR0 + c êR0), which appears to
provide a good fit to data.
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Combining both these regression curves, it appears that a function that provides a good fit to the heterogeneous/ho-
mogeneous ratio appear to takes the form:

a +
b

k
c +

d

r
+

e

r2

By generating numerical data for different R0 and k values, we can use Mathematica’s ‘FindFit’ function to find
the coefficients of this function. Here’s the data of the ratios for different R0 values:
8FR3@R, 0.1, 0.01D ê HomThresh@R, 0.01D, FR3@R, 0.16, 0.01D ê HomThresh@R, 0.01D,

FR3@R, 0.25, 0.01D ê HomThresh@R, 0.01D, FR3@R, 0.35, 0.01D ê HomThresh@R, 0.01D,
FR3@R, 0.65, 0.01D ê HomThresh@R, 0.01D, FR3@R, 1, 0.01D ê HomThresh@R, 0.01D< ê. R Æ 2

85.97335, 3.90369, 2.66125, 2.02961, 1.29937, 1.<
8FR3@R, 0.1, 0.01D ê HomThresh@R, 0.01D, FR3@R, 0.16, 0.01D ê HomThresh@R, 0.01D,

FR3@R, 0.25, 0.01D ê HomThresh@R, 0.01D, FR3@R, 0.35, 0.01D ê HomThresh@R, 0.01D,
FR3@R, 0.65, 0.01D ê HomThresh@R, 0.01D, FR3@R, 1, 0.01D ê HomThresh@R, 0.01D< ê. R Æ 5

86.47649, 4.20479, 2.83935, 2.14367, 1.33524, 1.<
8FR3@R, 0.1, 0.01D ê HomThresh@R, 0.01D, FR3@R, 0.16, 0.01D ê HomThresh@R, 0.01D,

FR3@R, 0.25, 0.01D ê HomThresh@R, 0.01D, FR3@R, 0.35, 0.01D ê HomThresh@R, 0.01D,
FR3@R, 0.65, 0.01D ê HomThresh@R, 0.01D, FR3@R, 1, 0.01D ê HomThresh@R, 0.01D< ê. R Æ 7.5

86.66327, 4.31758, 2.90689, 2.18744, 1.34941, 1.<
8FR3@R, 0.1, 0.01D ê HomThresh@R, 0.01D, FR3@R, 0.16, 0.01D ê HomThresh@R, 0.01D,

FR3@R, 0.25, 0.01D ê HomThresh@R, 0.01D, FR3@R, 0.35, 0.01D ê HomThresh@R, 0.01D,
FR3@R, 0.65, 0.01D ê HomThresh@R, 0.01D, FR3@R, 1, 0.01D ê HomThresh@R, 0.01D< ê. R Æ 10

86.78469, 4.39114, 2.95112, 2.21622, 1.3588, 1.<
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8FR3@R, 0.1, 0.01D ê HomThresh@R, 0.01D, FR3@R, 0.16, 0.01D ê HomThresh@R, 0.01D,
FR3@R, 0.25, 0.01D ê HomThresh@R, 0.01D, FR3@R, 0.35, 0.01D ê HomThresh@R, 0.01D,
FR3@R, 0.65, 0.01D ê HomThresh@R, 0.01D, FR3@R, 1, 0.01D ê HomThresh@R, 0.01D< ê. R Æ 12.5

86.87313, 4.44483, 2.98348, 2.23733, 1.36571, 1.<
8FR3@R, 0.1, 0.01D ê HomThresh@R, 0.01D, FR3@R, 0.16, 0.01D ê HomThresh@R, 0.01D,

FR3@R, 0.25, 0.01D ê HomThresh@R, 0.01D, FR3@R, 0.35, 0.01D ê HomThresh@R, 0.01D,
FR3@R, 0.65, 0.01D ê HomThresh@R, 0.01D, FR3@R, 1, 0.01D ê HomThresh@R, 0.01D< ê. R Æ 15

86.94195, 4.48666, 3.00874, 2.25381, 1.37113, 1.<
We can combine this into a single data and subsequently fit the model to it:
data = 882, 0.1, 5.97335<, 82, 0.16, 3.90369<,82, 0.25, 2.66125<, 82, 0.35, 2.02961<, 82, 0.65, 1.29937< , 82, 1, 1<,85, 0.1, 6.47649<, 85, 0.16, 4.20479<, 85, 0.25, 2.83935<,85, 0.35, 2.14367<, 85, 0.65, 1.33524<, 85, 1, 1<,87.5, 0.1, 6.66327<, 87.5, 0.16, 4.31578<, 87.5, 0.25, 2.90689<,87.5, 0.35, 2.18744<, 87.5, 0.65, 1.34941<, 87.5, 1, 1<,810, 0.1, 6.78469<, 810, 0.16, 4.39114<, 810, 0.25, 2.95112<,810, 0.35, 2.21622<, 810, 0.65, 1.3588<, 810, 1, 1<,812.5, 0.1, 6.87313<, 812.5, 0.16, 4.44483<, 812.5, 0.25, 2.98348<,812.5, 0.35, 2.23733<, 812.5, 0.65, 1.36571<, 812.5, 1, 1<,815, 0.1, 6.94195<, 815, 0.16, 4.48666<, 815, 0.25, 3.00874<,815, 0.35, 2.25381<, 815, 0.65, 1.37113<, 815, 1, 1<<
882, 0.1, 5.97335<, 82, 0.16, 3.90369<, 82, 0.25, 2.66125<, 82, 0.35, 2.02961<,82, 0.65, 1.29937<, 82, 1, 1<, 85, 0.1, 6.47649<, 85, 0.16, 4.20479<, 85, 0.25, 2.83935<,85, 0.35, 2.14367<, 85, 0.65, 1.33524<, 85, 1, 1<, 87.5, 0.1, 6.66327<,87.5, 0.16, 4.31578<, 87.5, 0.25, 2.90689<, 87.5, 0.35, 2.18744<, 87.5, 0.65, 1.34941<,87.5, 1, 1<, 810, 0.1, 6.78469<, 810, 0.16, 4.39114<, 810, 0.25, 2.95112<,810, 0.35, 2.21622<, 810, 0.65, 1.3588<, 810, 1, 1<, 812.5, 0.1, 6.87313<,812.5, 0.16, 4.44483<, 812.5, 0.25, 2.98348<, 812.5, 0.35, 2.23733<,812.5, 0.65, 1.36571<, 812.5, 1, 1<, 815, 0.1, 6.94195<, 815, 0.16, 4.48666<,815, 0.25, 3.00874<, 815, 0.35, 2.25381<, 815, 0.65, 1.37113<, 815, 1, 1<<
model = a +

b

k
+
c

r
+

d

k r
+

e

r2
+

f

k r2

a +
b

k
+

e

r2
+

f

k r2
+
c

r
+

d

k r

fit = FindFit@data, model, 8a, b, c, d, e, f<, 8r, k<D
8a Æ 0.334401, b Æ 0.689435, c Æ 0.408427, d Æ -0.507054, e Æ -0.355933, f Æ 0.466701<
Therefore the predicted function to fit the heterogeneous to homogeneous ratio is:

mfit@r_, k_D := 0.334401 +
0.689435

k
+
0.408427

r
-
0.507054

k r
-
0.355933

r2
+
0.466701

k r2

By comparing this function multiplied by the exact homogeneous threshold, we see that it provides a good fit to
the numerical threshold calculated for heterogeneous outbreak. Here’s plot for k = 0.1, 0.5 and 0.9 for a c = 1%
threshold:
plot1a = Plot@FR3@R, 0.1, 0.01D, 8R, 2, 15<, PlotStyle Æ 8Red, Dashed<D;
plot2a = Plot@FR3@R, 0.5, 0.01D, 8R, 2, 15<, PlotStyle Æ 8Blue, Dashed<D;
plot3a = Plot@FR3@R, 0.9, 0.01D, 8R, 2, 15<, PlotStyle Æ 8Green, Dashed<D;
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ShowBPlotB:mfit@x, 0.1D * Log@100.0D
Log@xD >, 8x, 2, 15<, PlotStyle Æ 8Red<F, plot1aF
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ShowBPlotB:mfit@x, 0.5D * Log@100.0D
Log@xD >, 8x, 2, 15<, PlotStyle Æ 8Blue<F, plot2aF
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ShowBPlotB:mfit@x, 0.9D * Log@100.0D
Log@xD >, 8x, 2, 15<, PlotStyle Æ 8Green<F, plot3aF
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ü Sensitivity analysis
ü Sensitivity analysis

We next perform a sensitivity analysis of this function, in order to determine when the outbreak threshold is 
mostly dominated by changes in R0 and k respectively. Specifically, we invoke an elasticity analysis (Caswell 
2001, section 9.2), to determine the sensitivity of this approximation based on proportional changes in R0 and k. 
For our approximation function f HR0, k), the elasticitiy of R0 at a given point HR0

*, k*) is equal to:

∂ f
∂R0

* ◊
R0
*

f HR0
*,k*L

Sensitivity for R0. The following figure shows the sensitivity of f to R0:
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Sensitivity for R0. The following figure shows the sensitivity of f to R0:

FR4@R_, k_D :=
1

Log@RD * mfit@R, kD

ContourPlotBHD@FR4@R2, k2D, R2D ê. 8R2 Æ R, k2 Æ k<L * R

FR4@R, kD ,

8R, 1.01, 5<, 8k, 0.1, 1<, FrameLabel Æ 8R0, k<,
ContourLabels Æ Function@8x, y, z<, Text@Framed@zD, 8x, y<, Background Æ WhiteDD,
ColorFunction Æ "RedBlueTones", ContourStyle Æ BlackF

-3.5

-3

-2.5

-2

-1.5

-1

1 2 3 4 5

0.2

0.4

0.6

0.8

1.0

R0

k

This plot shows that the sensitivity is negative and increases with higher R0. This implies that as R0 increases the
change in threshold decreases, and does so at  a slower rate for larger R0.  This is  reflected in the 1 êLog HR0)
function in the threshold approximation. Note however that for small R0 close to one, the sensitivity becomes
larger and negative, indicating a large increase in the number of infected indivduals needed for the outbreak to
establish.

Sensitivity for k. Similarly, we can calculate the sensitivity of f to k:
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ContourPlotBHD@FR4@R2, k2D, k2D ê. 8R2 Æ R, k2 Æ k<L * k
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8R, 1.01, 5<, 8k, 0.01, 1<, FrameLabel Æ 8R0, k<,
ContourLabels Æ Function@8x, y, z<, Text@Framed@zD, 8x, y<, Background Æ WhiteDD,
ColorFunction Æ "RedBlueTones", ContourStyle Æ BlackF
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The sensitivity is negative and increases towards zero for larger k values, due to the 1/k behaviour of the outbreak
threshold. Thus whilst sensitivity increases for smaller k, it does not cause as rapid an increase in the threshold
level as changing R0 by a similar proportion.
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