
Free University of Bolzano
Faculty of Computer Science

Thesis

Dycapo: On the creation of an open-source Server

and a Protocol for Dynamic Carpooling

Daniel Graziotin

Submitted in partial fulfillment of the requirements for the degree of Bachelor in Applied
Computer Science at the Free University of Bolzano/Bozen

Thesis Advisor: Paolo Massa, Ph.D.

October 2010

Abstract
Using a private car is a transportation system very common in industrialized countries.
However, it causes different problems such as overuse of oil, traffic jams causing earth
pollution, health problems and an inefficient use of personal time.

One possible solution to these problems is carpooling, i.e. sharing a trip on a private
car of a driver with one or more passengers. Carpooling would reduce the number of cars
on streets hence providing worldwide environmental, economical and social benefits. The
matching of drivers and passengers can be facilitated by information and communication
technologies. Typically, a driver inserts on a web-site the availability of empty seats on
his/her car for a planned trip and potential passengers can search for trips and contact
the drivers. This process is slow and can be appropriate for long trips planned days in
advance. We call this static carpooling and we note it is not used frequently by people
even if there are already many web-sites offering this service and in fact the only real open
challenge is widespread adoption.

Dynamic carpooling, on the other hand, takes advantage of the recent and increasing
adoption of Internet-connected geo-aware mobile devices for enabling impromptu trip op-
portunities. Passengers request trips directly on the street and can find a suitable ride in
just few minutes. Currently there are no dynamic carpooling systems widely used. While
adoption is still a key issue, dynamic carpooling offers many open basic challenges related
to the implementation of the technological infrastructure.

This dissertation describes Dycapo, an open-source project for enabling dynamic car-
pooling services. After a review of the state of the art and a comparative analysis of
dynamic carpooling issues, the two main components of the project are described, namely
the protocol and the server. Dycapo Protocol is an open REST-based protocol for sharing
trip information among dynamic carpooling clients and servers, taking inspiration from
OpenTrip, a previously proposed data exchange format. Dycapo Server is a prototype
providing web services for dynamic carpooling functionalities, implementing Dycapo Pro-
tocol. Our aim with the release of an open protocol and open source code is to provide
a missing standard and platform that providers of dynamic carpooling services can adopt
and extend.

Riassunto
Il veicolo privato è un sistema di trasporto molto diffuso nei Paesi industrializzati. Tuttavia
questo utilizzo provoca diversi problemi, come ad esempio un uso eccessivo del petro-
lio e dei suoi derivati, un aumento della densità veicolare con conseguente incremento
dell’inquinamento, problemi di salute e un uso inefficiente del proprio tempo.

Una possibile soluzione a questi problemi è il carpooling, ovvero la condivisione di un
viaggio su una macchina privata tra un conducente ed uno o più passeggeri. Il carpooling
ridurrebbe il numero di auto sulle strade, fornendo quindi benefici ambientali, economici
e sociali a livello mondiale. L’incontro tra conducenti e passeggeri può essere facilitato
dalle tecnologie di informazione e comunicazione. L’autista, al momento di pianificare un
viaggio, inserisce su un sito web la disponibilità di posti vuoti della sua auto per quel
tragitto, i potenziali passeggeri, in caso di disponibilità di posti, possono così contattare
l’autista e condividere il viaggio. Questo processo, essendo lento, può essere adeguato
per lunghi viaggi, pianificati con giorni di anticipo. Il servizio sopracitato viene definito
carpooling statico e nonostante numerosi siti offrano già questo servizio, il fenomeno non
è largamente diffuso. Di fatto, l’unica vera sfida aperta è un’adozione massificata di questi
servizi.

Il carpooling dinamico si avvale della recente adozione di dispositivi mobili, collegati ad
Internet e con funzionalità di geo-localizzazione, offrendo così l’opportunità di creare viaggi
in apparenza improvvisati. Le richieste del potenziale passeggero avvengono direttamente
"on the road", permettendogli di trovare un passaggio ideale in breve tempo. L’adozione
del carpooling dinamico per l’attuazione di infrastrutture tecnologiche diventa quindi una
sfida di importanza fondamentale.

Questa tesi descrive Dycapo, un progetto open-source ideato con lo scopo di abilitare
servizi di carpooling dinamico. Dopo una rassegna dello stato dell’arte ed un’analisi com-
parativa delle problematiche legate al carpooling dinamico, descriviamo le due componenti
principali del progetto, ovvero il protocollo ed il server. Dycapo Protocol è un protocollo
aperto basato sull’architettura REST per la condivisione di informazioni di viaggio tra
client e server, prendendo spunto dalla OpenTrip, un protocollo precedentemente pro-
posto. Dycapo Server è invece un prototipo per fornire servizi di carpooling dinamico,
che dimostra ed implementa il protocollo Dycapo Protocol. Il nostro obiettivo, con il ri-
lascio di un protocollo aperto e codice open source, è di fornire una piattaforma standard
mancante, che i fornitori di servizi di carpooling dinamico possano adottare ed estendere.

Kurzfassung
Das Nützen eines privaten Transportmittels ist in den heutigen industrialisierten Staaten
sehr üblich. Das ergibt aber zahlreiche Probleme wie z.B hoher Kraftstoffverbrauch,
Verkehrsschlangen, Herzprobleme und eine ineffiziente Zeitnutzung.

Eine der möglichen Lösungen für diese Probleme ist „Carpooling“. Das bedeutet zum
Beispiel das gemeinsame nutzen eines privaten Fahrzeuges mit ein oder mehrere Perso-
nen. Carpooling würde die Anzahl der Fahrzeuge drastisch reduzieren und somit weltweit
soziale, ökonomische und umweltfreundliche Vorteile bringen. Die Anpassung und Paarung
von Fahrern und Beifahrern kann mittels der neuen Informations- und Komunikation-
saustauschtechnologien vereinfacht werden. Ein Fahrer kann womöglich die Anzahl der
möglichen Beifahrer für seine geplante Reise eingeben und potenzielle Nutzer können diese
somit finden und sich mit Ihm in Kontakt setzen. Dieser Prozess ist ziemlich lang und
eignet sich für längere Reisen die von vornherein geplant sind. Diese Methode wird „statis-
ches“ Carpooling genannt, hat jedoch trotz der zahlreichen Webseiten kein Erfolg.

„Dynamisches“ Carpooling jedoch basiert und erzielt Vorteil, von den immer mehr
zunehmenden mit dem Internet verbundenen lokalisationsbewussten mobilen Geräten, die
eine unmittelbare Reiseplanung ermöglichen. Beifahrer können Fahrziele direkt von über-
all abfragen und in nur einigen Minuten eine passende Mitfahrt finden. Zurzeit gibt es
jedoch keine, im großen Ausmaß, benutzte dynamische Carpooling-Systeme. Die größte
Problematik liegt bei der persönlichen Aufnahme des Produkts, jedoch gibt es auch Prob-
leme die die Realisierung der Technologischen Struktur umfassen.

Dieses Dokument beschreibt Dycapo, ein open-source Projekt, welches dynamische
carpooling Dienste ermöglicht. Nach einer Analyse und Studie der dynamischen car-
pooling Problematiken, werden die zwei Hauptteile des Projekts beschrieben, nämlich
das Protokoll und der Server. Das Dycapo-Protokoll ist ein open REST-basierendes
Protokoll für den Austausch von Reiseinformationen zwischen dynamischen carpooling
Clients und Servern, welches Inspiration aus OpenTrip, ein vorheriges vorgestelltes Pro-
tokoll genommen hat. Der Dycapo-Server ist ein Prototyp, welcher Webdienste für dy-
namische Carpooling-Funktionalitäten, welche den Dycapo-Protokoll implementieren, zu
Verfügung stellt.

Unser Ziel ist es mittels der Verbreitung eines offenen Protokolls und des open source
Formats, einen zurzeit fehlenden Standard und Grundbaustein zu erstellen, welcher von
anderen dynamischen carpooling Diensten angenommen und erweitert werden kann.

Acknowledgments
This project was carried out at the Fondazione Bruno Kessler, Trento, and would not have
been possible without the support of my supervisor Paolo Massa, it has been a pleasure
for me to work with him. I would like to thank in special all the people at the exploratory
project SoNet for their support, with whom I had the opportunity to spend a great time,
enjoy and learn a lot. Many thanks to Maurizio Napolitano for letting me know and enjoy
this experience at FBK.

Another big thank goes to the Computer Science staff, in particular to our Adminis-
trative Staff, for their willingness, professionalism and friendliness.

Ringrazio di cuore la mia famiglia per avermi permesso di arrivare a questo obiettivo,
per essermi sempre stata accanto, avermi supportato e sopportato durante le sessioni di
esame (e non solo), senza farmi mai mancare niente nella vita.

Grazie infine a tutti gli innumerevoli amici (qualcuno più speciale) che mi hanno ac-
compagnato in questo percorso, di cui non posso elencare i nomi perchè necessiterebbero
un’entrata in Appendice. Farò un’unica eccezione per Riccardo Buttarelli, che ha accettato
di accompagnarmi in questa avventura alla Fondazione Bruno Kessler, credere nella mia
visione e sviluppare il suo progetto di tesi in sintonia con il mio. In bocca al lupo e grazie
di tutto.

Contents

I Introduction 1

II State of the art 3

1 Review of published papers 3

2 Survey of deployed systems 6

3 Comparative Analysis of Dynamic Carpooling Issues 8

III Dynamic Carpooling Project: Dycapo 10

4 Overview 10
4.1 Terminology . 10
4.2 User Stories . 11
4.3 High-level architecture of the system . 12

5 Protocol 12
5.1 Elements . 13
5.2 Operations . 15

6 Server 19
6.1 Enabling Technologies . 20
6.2 Components . 20
6.3 Models . 21
6.4 Functionalities . 24

IV Conclusions and future work 29

A Appendix: Comparative Analysis Outcomes 31

B Appendix: Dycapo Protocol 36

List of Figures
1 High level view of Dycapo components architecture 12
2 Location Element . 13
3 Person Element . 13
4 Modality Element . 14
5 Preferences Element . 14
6 Participation Element . 15
7 Trip Element . 15
8 Search Element . 15
9 Participation Status . 18
10 Interaction of two clients and Dycapo Server using Dycapo Protocol 19
11 Dycapo Server components . 21
12 Dycapo Server class diagram . 23

List of Tables
1 Key Terms of Dycapo . 11
2 Paper Analysis: Interface Design, Algorithms, Coordination 31
3 Paper Analysis: Trustiness, Safety, Social Aspects Pt. 1 32
4 Paper Analysis: Trustiness, Safety, Social Aspects Pt. 2 33
5 Paper Analysis: Critical Mass, Incentives, Suggestions Pt. 1 34
6 Paper Analysis: Critical Mass, Incentives, Suggestions Pt.2 35

Part I

Introduction
Using a private car is a transportation system very common in industrialized countries.
Between 2004 and 2009, the worldwide production of private vehicles has been of 295
millions of new units 1 and, as of 2004, there were 199 millions registered drivers in the
U.S.A.2. Road transport is responsible for about 16% of man-made CO2 emissions3.

Private car travelling is a common but wasteful transportation system. Most cars are
occupied by just one or two people. Average car occupancy in the U.K. is reported to
be 1.59 persons/car, in Germany only 1.05 [6]. Private car travelling creates a number
of different problems and societal costs worldwide. Environmentally, it is responsible
for a wasteful use of a scarce and finite resource, i.e. oil, and causes unnecessary earth
pollution. The traffic caused by single occupancy vehicles causes traffic jams and hugely
increases the amount of time spent by people in queues on streets. This is a unsavvy use of
another scarce resource: time. Moreover, the additional pollution creates health problems
to millions of individuals. Lastly, lone drivers in separate cars miss opportunities to meet
and talk, incurring in a loss of potential social capital.

One possible solution to all these problems is carpooling, i.e. the act of sharing a trip
on a private vehicle between one or more other passengers. The shared use of a single
car by two or more people would reduce the number of cars on streets. Carpooling helps
the environment by allowing to use oil wisely, to reduce earth pollution and consequent
health problems. It reduces traffic and - consequently - time that people spend in their
cars. Carpooling has also the potential of increasing social capital by letting people meet
and know each other.

Carpooling is not a widespread practice. There are already many systems facilitating
the match between drivers and passengers, most of them in form of bulletin board-like
web-sites. The intention of offering empty seats of a vehicle is usually announced by a
driver many days before the start of the trip. The coordination between a driver and the
passengers who are candidating for sharing the trip with him/her is usually carried out
by e-mails or private messages in the web-site.

Therefore, we may see carpooling as a static way of sharing a trip.
The availability of geo-aware, mobile devices connected to the Internet opens up pos-

sibilities for the formation of carpools in short notice, directly on streets. This phe-
nomenon is called dyamic carpooling (also known as dynamic ridesharing, instant rideshar-
ing and agile ridesharing). Dan Kirshner, researcher in this field and maintainer of
http://dynamicridesharing.org website defines it as follows: “A system that facilitates the
ability of drivers and passengers to make one-time ride matches close to their departure
time, with sufficient convenience and flexibility to be used on a daily basis.”4.

Currently there are no dynamic carpooling systems widely used. In fact, there are many
problematic issues related to the implementation and the adoption of dynamic carpooling
systems. We analyze them critically in Part II of this dissertation. While we acknowledge
all aspects are critical, we claim that the basic technological infrastructure is an important
required and key building block. In fact we decide to focus on the creation of a solid, open
and collaborative base framework for dynamic carpooling. The design and implementation

1(Accessed Sept. 9 2010) http://oica.net/
2(Accessed Sept. 9 2010) http://www.fhwa.dot.gov/ [U.S. Department of Transportation - Federal

Highway Administration]
3(Accessed Sept. 9 2010) http://oica.net/ [Organisation Internationale des Constructeurs d’Automobile]
4Kirshner, D. (Accessed Sept 5th 2010) - http://dynamicridesharing.org

1

of an open protocol and an open-source server are presented in Part III.

2

Part II

State of the art
This part contains a summary of the state of the art regarding dynamic carpooling. It is
divided in three sections. In the first section there is a summary of previously published
papers, in order of publication. Then we introduce a brief analysis of the deployed systems.
In the last section we present the outcomes of the analysis of the whole state of the art
and how we decided to move in order to provide a significant contribute in solving the
problem of adopting dynamic ridesharing services.

1 Review of published papers
During the research phase different papers were analyzed in order to obtain the state of
the art. In this section we present a brief summary of each paper.

Sociotechnical support for Ride Sharing[11]

This paper lists barriers to dynamic carpooling adoption and possible actions to reduce
them. It reports about High Occupancy Vehicles (HOV) lane - which are lanes dedicated
for people doing carpooling - on streets of San Francisco and Oakland and complains that
there should be no fees on bridges for HOVs. The author suggests conventions developed
between drivers and passengers (e.g. pickup points near public transportation stops).
Regarding security, the paper suggests to give priority to female passengers, to not leave
them alone waiting for a ride. The paper reports that there are no stories about rape,
kidnapping or murder and the most common reported problem is bad driving.

There are suggestions on needed research:

• Need of location-aware devices, because dynamic carpooling is actually limited to
fixed pickups and drop-off locations.

• Simple user interfaces for passengers and drivers.

• Routing matching algorithms: short window of opportunity to match passenger and
driver.

• Time-to-pickup algorithms: to help passenger decide whether to use carpooling or
Public Transportation System.

• Safety and reputation system design: authenticate passenger and driver before mak-
ing the match, monitor arrival at destination, feedback system.

The paper discusses about social capital impacts: there is the potential for creating new
social connections and also matching drivers and passengers according to their profiles
creates bridging across class, race and religious views.

Pilot Tests of Dynamic Ridesharing[8]

The author presents three pilot tests done in the USA, all of them failed. The reasons of
failure are the following:

• Too complicated rules and user interface

3

• Too weak marketing effort

• Too few users. After 1 month, 1000 flyers distributed to the public and a proposed
discount on parking, only 12 users were using the system.

The paper adds the idea of saving money when parking. It also enforces the idea of using
social networks to allow car pooling on the fly. The author envisions using a web – and
mobile service, also introducing some interesting user stories.

The smart Jitney: Rapid, Realistic Transport [10]

The paper focuses on environmental benefits of dynamic carpooling. It asserts that dy-
namic carpooling would lower greenhouse gas emissions in a better way than electric/hy-
drogen/hybrid cars would do. It introduces the idea of Smart Jitney: an unlicensed car
driving on a defined route according to a schedule.

The author suggests the installation of Auto Event Recorders on cars, enforcing secu-
rity. It complains that challenges are all focused in convincing the population to use the
service, proposing a cooperative public development of the system.

Auction negotiation for mobile Rideshare service[1]

The paper proposes the use of agent-based systems powered auction mechanisms for driver-
passenger matching.

Casual Carpooling - enhanced[7]

The author considers areas without HOV lanes and proposes the use of Radio Frequency
IDentification (RFID) chips to quickly identify passengers and drivers. Readers should be
installed at common pick-up points. The paper complains that it would cost less to pay
passengers and drivers for using the service than to build a HOV lane.

Empty seats travelling[6]

This white paper by Nokia suggests to use the phone as a mean of transportation, creating
a value in terms of a transport opportunity. It points out some factors limiting static
carpooling, arranged via websites:

• Trip arrangements are not ad hoc

• It is impossible to arrange trips to head home from work or to drive shopping.

The paper notices that people are not widely encouraged to practice carpooling by local
governments. It collects obstacles and success factors in terms of human sentences, and
their solution. The authors say that the challenge is in the definition of a path leading
from existing ride share services to a fully automated system.

Interactive systems for real time dynamic multi hop carpooling[5]

The author proposes a dynamic multi-hop system, by dividing a passenger route into
smaller segments being part of other trips. The author claims that the problems of static
carpooling are that matching drivers and passengers based on their destinations limits the
number of possible rides, and with high waiting times. Carpooling is static and does not
adapt itself well to ad hoc traveling. The paper asks governments to integrate carpooling

4

in laws and to push for its use. The author complains that the perceived quality of service
is increased even driving the passenger away from destination: a driver and a passenger
should not be matched only if they share the same or similar destination because perfect
matching would require high waiting times.

The paper also addresses social aspects: in a single trip with 3 hops a passenger might
meet 3 to 10 people, therefore passengers may be socially matched. It suggests to link the
application with some social networks like Facebook, MySpace and use profile information
to match drivers and passengers.

As security improvement, the paper suggests: the use of finger-prints, RFID, voice
signature, display the location of vehicles on a map, using user pictures, assigning random
numbers to be used as passwords.

Instant Social Ride Sharing[4]

The paper proposes matching methodologies based on both a minimization of detours
and the maximization of social connections. It assumes the existence of a social network
data source in which users are connected by means of groups, interests, etc. In such a
network, the number of relatively short paths between a driver and a passenger indicates
the strength of their social connection.

It provides algorithms and SQL queries. The authors assume that there is already a
large scale of users, and no barriers to adoption are taken into account.

Combining Ridesharing & Social Networks[12]

The author envisions a mobile and web system that interacts with social networks profiles
that should improve security and trust by users. Users can register to the system in a
traditional way (e.g., by giving email, username, password), then complete their profiles
by linking their accounts to multiple existing social networks account, to fill the remaining
fields. Otherwise, they have to fill the fields manually and verify their identity in more
classical ways. The paper proposes Opensocial5 as connection interface. An own rating
system is also complained, which keeps scores of persons. Amongst the criteria are factors
like reliability, safety and friendliness.

It suggests the use of mobile systems, that should make use of GPS and creation of
a match on the fly (real-time algorithms). The paper provides some results of surveys:
people are willing to loose 23% more time to pickup a friend of their social network
rather than a stranger (6%). It also provides a high-level description of the system and
implementation details.

The author asks for extra research on psychological factors that increase trust and
perceived safety.

SafeRide: Reducing Single Occupancy Vehicles [9]

The publication is about a project in the U.S.A. It reports that there is a market-formation
problem: to achieve the system that attracts passengers, there will have to be many
drivers available. But the drivers will emerge only when it appears profitable or otherwise
desiderable, and that depends on there being many passengers, etc. The author complains
that someone must discover a winning formula before anyone will invest.

The paper lists some interesting user stories, as well as algorithms and requirements.
5Google, MySpace et al. (Accessed Sept. 5th 2010) - http://www.opensocial.org/

5

Current Trends in Dynamic Ridesharing, identification of Bottleneck Problems
and Propositions of Solutions [13]

This paper reports a state of the art of dynamic carpooling. The authors review several
papers about the topic and some applications. We used this publication as a base for
identifying problematics and to avoid duplication of work. The authors also identify
barriers against the adoption of dynamic carpooling systems and propose solutions. In
our comparative analysis, presented in Section 3, we report different proposals than those
presented in this paper. Our proposals are complementary to those reported by this paper
and are more focused in technological aspects.

2 Survey of deployed systems
After the theoretical research, also the existing systems were taken into consideration.
The following list contains the existing dynamic carpooling applications and some static,
web-based systems that are either innovative or well-known. All the reported websites
were accessed on Sept. 5th2010. Each text enclosed in double quotes is cited verbatim
from the website of the application.

Carriva - https://www.carriva.org/MFC/app

It is a proprietary solution using phone calls as communication system and a fixed price
of 0,10€ / km. Currently it has got 1118 active users.

Avego - http://www.avego.com

It is a proprietary application for Apple iPhone. It uses GPS technologies and presents
a simple, intuitive user interface. It handles costs automatically. The passengers are
not required to have an iPhone. It will offer information about public transports. The
application relies on a proprietary service called Futurefleet, on which no implementation
details are given. On October, 10th 2009 the service offered 5310 empty seats.

Carticipate - http://www.carticipate.com

Carticipate is a proprietary iPhone application that integrates with Facebook, defined as
“a location based mobile social network for ride sharing, ride combining, and car pooling”.
It has a very simple interface looking like Google Maps mobile. According to the website,
it is available on 59 countries.

Piggyback - http://www.piggybackmobile.com/

It is an Android application using a step-by-step approach (maximum one user input at
each application screen) and makes wide use of graphical representations instead of text.
It offers the possibility to bookmark addresses. The map screen is proprietary. When a
driver and passengers are matched their compatibility is showed, represented with stars (0
to 5) and categorized as friendliness, reliability, driving skills and car. The trip cost is also
showed. After the ride, the feedback system lets the user set the points for the aspects
listed above. The application lets also plan rides using a static carpooling approach.

6

Aktalita - http://www.aktalita.com/

It is an under development application, supposed to be proprietary.
“Aktalita combines the Web, a geospatially enabled database, and a Java enabled

cellphone to provide real-time dynamic carpooling between drivers and passengers”

RideGrid - http://www.highregardsoftware.com/ridegrid-dynamic-ridesharing.html

Ridegrid is another proprietary, not yet in production system. “RideGrid is a service
that uses mobile Internet and location technology to enable individuals to obtain rides
to and from any location, spontaneously. [..] RideGrid works by dynamically combining
routes. We evaluate the change required in a driver’s route such that it passes through
the desired source and destination of a compatible rider, and broker the agreement. We
have proprietary means to calculate the routes, monetize the transactions, and introduce
people to others they trust. “

It uses an internal credit system. The client has an outdated classical Java Micro
Edition interface.

Project Carpool - https://launchpad.net/carpool

Carpool was the only open-source project, using PHP and Javascript. The development
was stuck at the research time. The project is now closed.

GoLoco - http://goloco.org/

GoLoco is a proprietary web application that also relies on Facebook. It uses a private
payment system.

Ecolane DRT - http://www.ecolane.com/

Ir is a proprietary solution, web-based, focused on security. It provides a customized
Nokia touchscreen device. Among the features, they declare that the device is capable of
real-time data communication, reports of arrivals and departures with time information,
device locking mechanisms, GPS location and direction, mileage tracking, detailed trip
information.

Divide The Ride - http://www.dividetheride.com/

The project is a static, web-based solution organized around children activities. Families
invite other trusted families to join their group. Groups get notifications when a ride is
needed.

iCarpool - http://www.icarpool.com

This application is a static, web-based system that does not require payments. They
declare to use advanced proprietary algorithms for ride matching. “High precision trip
matching. helps you find the best carpool match. Find co-workers, neighbors and friends
for carpool. Use for daily commute, recurring trips, long distance trips and events Plan
ahead or use on-demand”. Matching criteria includes social relationships, but no details
are given.

7

Hover - http://www.hoverport.org/

It is a casual carpooling system using RFID technologies and an own credit system. The
members are approved after human verification tests. Participants must meet at a location
called “Hover Park” and are identified by the RFID system. On exiting the Hover Park,
the system recognizes driver and passengers and distributes credit points. There are
several destination points available, that register the arrival in the same way. It also offer
a guaranteed back-to-home system, by using taxis.

Flinc - http://www.flinc.mobi/

Flinc is a dynamic carpooling system using smartphones (Android and Apple iPhone).
“Flinc connects navigation systems and mobile phones and arranges available seats within
a few seconds - directly in the car and on the pavement. Flinc combines GPS and location-
based capabilities with social networking to offer a dynamic and automated method of
getting from one place to another. The service can be used on smartphones or on the
PC or Mac, helping users create rides within a few seconds via an entirely automated
process.”. The system is currently under active development.

3 Comparative Analysis of Dynamic Carpooling Issues
The analysis of the state of the art brought some issues related to adopting dynamic
carpooling systems, many of them recognized also by [13]. We categorized the issues
gathered from the state of the art and their proposals in the following categories:

• Interface Design - all issues related to graphical implementation of clients and ease
of use

• Algorithms - the instructions regarding driver/passengers matching problems

• Coordination - the aspects related on how to let people meet, authenticate and
coordinate.

• Trustiness - the problems related on raising user confidence on dynamic carpooling
systems

• Safety - the issues regarding ensuring protection of users

• Social Aspects - all the issues related to create social connections and raising social
capital in dynamic carpooling systems

• Reaching Critical Mass - the problems on reaching a sufficient amount of persons
using the system that would attract more other people

• Incentives - all the political, motivational and economical issues related to dynamic
ridesharing systems

• System Suggestions - everything else that we consider relevant for building dynamic
carpooling systems

We attach the comparative analysis summarized in tables, in Appendix A, Table 2 up to
table 6, for each category (columns), we list the suggestions and interesting points made
in the different research papers (rows). Tables 2 to 6 in Appendix A is our contribution
rationalizing the many problematic issues involved in the creation and deployment of

8

dynamic carpooling systems and in summarizing best practices and suggestions in how to
deal with them.

Our rationalization of dynamic carpooling issues and possible solutions shows how
dynamic carpooling systems still have many important open issues to be addressed and
solved. This fact explains the current absence of any dynamic carpooling system deployed
and used for real. We decided to address the overall challenge from a very core point of
view and to focus on technical aspects. Among them, we observed that the source code of
the projects and the prototypes produced was not freely accessible by the general public.
There are no information regarding the servers, that are all proprietary and obscured.
Another issue seems related to a missing standardization of the protocols used. Therefore,
every project started from zero, “reinventing the wheel”. While, in order to overcome the
“reaching critical mass” issue, we believe that it is important that providers of dynamic
carpooling services can exchange their data easily so that cross provider matching are
possible.

Based on this analysis, we decided to create two basic technological building blocks:

• An open, discussable protocol for communication between dynamic (and static) car-
pooling systems

• An open-source server prototype implementing the protocol

We decided to release the protocol under Creative Commons License and to release the
source code as open-source because our goal is to fill a void and provide a basic infras-
tructure that future providers of dynamic carpooling services can adopt, extend and in
general build on.

Therefore, the Dycapo project was born.

9

Part III

Dynamic Carpooling Project: Dycapo
4 Overview
Dycapo is the name given to a project aiming to share knowledge outcomes and techno-
logical products on dynamic carpooling. The information is created using a fully open
and collaborative system. The website, http://dycapo.org, is the start point and the con-
tainer of each project component. It is a Wiki, freely accessible and discussable. The
Wiki content and the source code are available under permissive and open licenses. We
used a blog and social networks to update in real-time about the status of the researches
and the development. The website was opened on Oct. 11 2009. As of Sept. 11 2010 we
had 1617 visits and many e-mail contacts, about proposals of collaboration and general
interest. This approach is part of the strategy we chose to become a world standard for
dynamic carpooling systems.

Dycapo Project is composed of four main parts:

• Research - this part is needed in order to understand the state of the art about
dynamic carpooling.

• Protocol - a formal specification of the communication protocol we propose as a
standard for the exchange of information among dynamic carpooling clients and
services.

• Server - the prototype implementing dynamic carpooling functionalities and the
protocol

• Client - will act as a start point for the clients implementing the protocol

The research part has been covered in Part II of this dissertation. A client is under
development by a university colleague and will be object of another Bachelor thesis. Our
analysis of the state of the art guided our decision to focus on technological aspects,
precisely server and protocol.

In this section we first introduce some terminology related to our domain of interest.
For the same reason, we then present two user stories on system functionalities. In the
following sections we present a general architecture of Dycapo, the open protocol proposed
as standard and the server prototype implementing the protocol and dynamic carpooling
functionalities.

4.1 Terminology

In Table 1 we introduce some key concepts used in both the protocol and the server for
defining entities operating in the system. The remaining concepts will be explained in
section 5.1.

10

Term Definition
Person A user registered in the system, with login and password
Trip The Driver can create Trips in the system. A Trip is

the information about the availability of seats in a
car going from a certain location to a certain
destination, driven by a Driver on a certain date

Driver The role of a Person when he/she offers to share
some seats on his/her car for a specific trip

Passenger The role of a Person when he/she accepts to occupy
a seat on a car of a Driver

Participation The act of taking part into a Trip. The Driver
participates by default in a Trip he/she created. A
Passenger can participate in Trips created by a
Driver. Participation can be just requested by the
passenger or already confirmed by the driver.

Location A geographical location.

Table 1: Key Terms of Dycapo

Formal relationships such as the fact that a Trip can have more related participations,
are summarized in the section about the internal working of the server, in Figure 12.

4.2 User Stories

The following user stories are for introducing the reader in the domain of interest related to
our dynamic carpooling protocol and server. For each user story, we specify in parentheses
the appearance of terms introduced in Table 1.

A simple trip

Paul (a Person) is in Via Roma, Bolzano, Italy (a Location). He wants to move to
the cemetery (a Location). He takes out his internet-enabled smart-phone with GPS
activated, opens his Dycapo client and gives the desired destination, therefore searching
for an available trip (and becoming a Passenger). Angela (a Driver) is travelling with her
car along Corso Libertà, Bolzano (a Location). The destination of her previously stored
trip is Laives, Italy, southern of the cimitery. She receives a notification from her Dycapo
client running on her smartphone, located in a car docking station. The notification
contains Paul’s position and she accepts his participation (Participation) request. The
client displays the directions for reaching Paul, using the GPS-chip . Paul (a Passenger)
and Angela meet and share the trip.

A planned concert

Anna lives in Trento, Italy (a Location). In two days she will attend a concert in Milano,
Italy (a Location). She takes out her internet-enabled smart-phone running a Dycapo
client and inputs her travel intentions, therefore creating a trip. Two days after she starts
her trip. Just after her start, she discovers that Mary is in Rovereto, Italy (a Location)
and would like to have a ride (a Participation) to Verona, Italy. The clients make them
meet and share part of Anna trip. While driving Mary to Verona, Anna receives another
ride request (a Participation) from John, who is in Brescia center, Italy and wants to

11

travel to Milano, too. Anna realizes that the deviation from her planned route is too
much and simply refuses the request (a Participation). Anna arrives to Milano and enjoys
the concert.

4.3 High-level architecture of the system

Dycapo system follows the client-server model, in which a server receives messages from
clients (running on geo-aware mobile phones) using a protocol, processes them and returns
them using the protocol again. In Figure 1 we can see three smartphones that, having a
client software, communicate with Dycapo servers using the protocol. The server system
operates the data received from the clients (e.g. performs matching between a Driver’s
trip and a Passenger search of a trip) and returns the results using the same protocol.

If the open protocol becomes a de-facto standard, the same client will be able to
communicate with different servers, possibily operated by different operations. In this
future scenario, server-to-server exchange of information is also possible, thanks to the
protocol.

Figure 1: High level view of Dycapo components architecture

5 Protocol
Dycapo Protocol (also known as DycapoP) is an open application-level protocol for en-
abling communication between dynamic (and static) carpooling servers and clients, us-
ing HTTP for operations and JSON (JavaScript Object Notation) as data exchange for-
mat. The protocol models are inspired by OpenTrip Core6, a former proposal of data
exchange format for carpooling and dynamic carpooling presented during the MIT "Real-
Time" Rideshare Research workshop7. DycapoP is released under Creative Commons
Attribution-ShareAlike 3.0 Unported license8 and documented at http://dycapo.org/Protocol.

The two main components of the protocol are: elements and operations. Elements are
the constructs to represent the entities involved in the protocol, for example a Person (as

6http://opentrip.info/wiki/OpenTrip_Core
7http://ridesharechoices.scripts.mit.edu/home/workshop/
8http://creativecommons.org/licenses/by-sa/3.0/legalcode

12

are Paul and Angela in the first user story) and a Location (as it is “Via Roma, Bolzano,
Italy” in the first user story). Operations are the actions that clients can perform on the
elements to obtain desired results. As example, the “searching a trip” action performed by
Paul in the first user story and “Anna [..] refuses the request” are translated as protocol
operations.

5.1 Elements

The elements defined by OpenTrip Core (using Atom Syndication9 format) have been ex-
tracted and represented using UML 2.1 Class Diagrams. While proceeding and discussing
the development of the server, those elements were extended and adapted. The elements
are represented in the Protocol using descriptive tables and real world code snippets. The
Dycapo Protocol draft version of August 22, 2012 is included in the Appendix B. Each
element has a href attribute, that holds the unique URL for doing operations on the
resource. It will be further explained in sub-section 5.2.

The following are the elements of Dycapo Protocol:

Location A Location (Figure 2) represents a geographical position, using human un-
derstandable attributes (like street, town, postcode, region, subregion and country) or ge-
olocation values such as georss_point10.

The leaves attribute is responsible for holding time-based information. It is used for
indicating the left of a location when starting a trip or a ride. It is also used for holding
the timestamp of the location of a Person and the predicted arrival at a place.

Person A Person (Figure 3) represents a user of the system and contains useful infor-
mation for building social connections or search preferences.

Figure 2: Location Element Figure 3: Person Element
9http://www.ietf.org/rfc/rfc4287.txt

10http://www.georss.org/simple#Point

13

Modality A Modality (Figure 4) element is a description of the mode of transportation
being used by the Person offering a Trip and a representation for the cost of the Trip.

Preferences A Preferences (Figure 5) element represents the preferences of the Driver
when performing a Trip, such as the age range of the Persons he will accept as passengers,
whether they can smoke during the Trip, etc.

Figure 4: Modality Element Figure 5: Preferences Element

Participation A Participation (Figure 6) element represents the fact of taking part in
a Trip. The attribute status represents the status of a Participation, being it a request,
a refuse, a start etc. This element is a central part of DycapoP, as it is used since the
beginning to end of a ride of a Passenger. The majority of the operations of the protocol
are built around a Participation element.

Trip A Trip (Figure 7) represents a single course of travel taken as part of one’s duty,
work, etc, offered by a Person. It is the most complex object of the Dycapo Protocol.
It contains all the information needed for doing operations with Trips. Following the
philosophy behind OpenTrip’s Trip element, it contains datestamp information such as
published, updated and expires, respectively representing the creation, the last edit and the
expiration of the trip. A Trip contains other Dycapo Protocol elements such as themodality
and the preferences, explained above. The locations element is an array of Location objects,
and holds the start, the end and all the intermediate geographical points of the trip.

14

Figure 6: Participation Element Figure 7: Trip Element

Search A query to the server when a passenger searches an available trip is represented
by a Search element (Figure 8).

Figure 8: Search Element

Attributes of elements can be mandatory or optional. The specific settings for each
entity are described in the complete protocol at Appendix B.

5.2 Operations

DycapoP is implemented using a resource oriented architecture, i.e. the definition of a full
REST-based [3] application-level protocol. That is, all DycapoP elements are represented
as web resources encoded in JSON exchange format. Each element is referenced through
a unique URL, stored in their href attribute. All the operations of the protocol are
implemented and performed using HTTP methods, i.e. GET, POST, PUT, DELETE of
resources. As

For example, to retrieve a particular trip, a client must perform the following HTTP
request:

GET /api/trips/3/ HTTP/1.1
Authorization: Basic cmlkZXIxOnBhc3N3b3Jk
Host: test.dycapo.org

It is self-descriptive: a GET against the collection namespace of trips, specifying in the
URL that we want to retrieve the Trip with id 3, using HTTP version 1.1. The autho-
rization line is present because in our implementation of the protocol the authorization is

15

done using HTTP Basic Authentication11. The Host part is required by HTTP version
1.1.

The server will respond in the following way, using a HTTP response.

HTTP/1.1 200 OK
Date: Mon, 13 Sep 2010 14:35:26 GMT
Server: Apache/2.2.14 (Unix) mod_ssl/2.2.14 [..]
Vary: Authorization,Cookie
Transfer-Encoding: chunked
Content-Type: application/json; charset=utf-8
X-Pad: avoid browser bug
922
{
"updated": "2010-09-02 16:03:24",
"participations": {

"href": "http://test.dycapo.org/api/trips/3/participations/"
},

"preferences": {

"nonsmoking": false,
"gender": "",
"ride": false,
"drive": false,
"href": "http://test.dycapo.org/api/trips/4/preferences/",
"age": "18-30"

},
"author": {

"username": "driver1",
"gender": "M",
"href": "http://test.dycapo.org/api/persons/driver1/"

},
"expires": "2010-09-05 16:03:05",
"locations": [{

"town": "Bolzano",
"point": "orig",
"href": "http://test.dycapo.org/api/trips/3/locations/",
"country": "",
"region": "",
"subregion": "",
"days": "",
"label": "Work",
"street": "Rom Strasse",
"postcode": 39100,
"offset": 150,

11http://www.ietf.org/rfc/rfc2617.txt

16

"leaves": "2010-09-02 16:02:22",
"recurs": "",
"georss_point": "46.490200 11.342294"

}, {

"town": "Bolzano",
"point": "dest",
"href": "http://test.dycapo.org/api/trips/3/locations/",
"country": "",
"region": "",
"subregion": "",
"days": "",
"label": "Work",
"street": "Piazza della Vittoria, 1",
"postcode": 39100,
"offset": 150,
"leaves": "2010-09-02 16:02:22",
"recurs": "",
"georss_point": "46.500740 11.345073"

}],
"href": "http://test.dycapo.org/api/trips/3/",
"published": "2010-09-02 16:03:05",
"modality": {

"kind": "auto",
"capacity": 4,
"lic": "",
"color": "",
"make": "Ford",
"vacancy": 1,
"cost": 0.0,
"href": "http://test.dycapo.org/api/trips/3/modality/",
"year": 0,
"model_name": "Fiesta"
}

}

The first lines are common HTTP response parts. The status line is a HTTP 200 OK,
specifying that the request has been successful. The Content-Type header informs that
the server is returning in JSON format that we now briefly analyze. What is returned in
this example is a Trip object, enclosed in curly brackets. Each Trip attribute is in the form
of: “attribute name” : attribute-value. All attributes are separated by a comma. Some
members have simple value types like boolean, number and string, e.g. published, href.
Other attributes have complex objects as values, e.g. modality, preferences. The locations
attribute is represented as an array of Location elements, enclosed in square brackets.

The protocol operations are available in Appendix B. This dissertation focuses on the
implementation of the functionalities in Part IV.

In Figure 9 we represent what we expect by clients when operating on a Participation
element, using a UML State Diagram. For each transition, we report the value of attribute

17

status and the HTTP method performed by the operation. We also report those transitions
that only the author of the Trip (i.e. the driver) can cause.

Figure 9: Participation Status

The UML 2.1 sequence diagram in Figure 10 summarizes a full user story - the creation
of a Trip, the participation of a passenger and its end. We comment the first passages, up
to the passenger ride request is accepted.

To create a Trip in Dycapo system, the driver client performs a HTTP POST operation
of a Trip element against the URL (Message 1 in Figure 10). The POST request contains
in its body the representation of the Trip (Figure 7) element using JSON notation. The
server responds using a HTTP 201 Created message, returning in the response body the
same Trip representation with an additional href attribute containing the unique URL
for future accessing the stored resource. The passenger searches a trip by doing a POST
request (Message 2 in Figure 10) containing in its body a representation in JSON of a
Search (Figure 9) element. The server returns a HTTP 201 Created response with the
Search element in its body, providing in the href attribute the URL for accessing the
resource. In Message 4 the driver sets the Trip as active by doing a PUT request against
the Trip previously stored, passing the updated Trip element. Afterwards, as illustrated
in Message 5, the passenger retrieves the Search resource using a GET request against the
unique URL of the Search resource, that will contain the Trip inserted by the driver. The
passenger then requests a ride by posting a Participation element (Message 6) using the
participations URL provided by the Trip element. The driver accepts the ride request by
obtaining the participations of the Trip (Message 7) using a GET request, retrieving the
passenger participation, modifying its status attribute to “accept” and updating it using
a PUT request.

18

Figure 10: Interaction of two clients and Dycapo Server using Dycapo Protocol

6 Server
Dycapo Server (also known as DycapoS) is a software built using first throwaway then
evolutionary prototyping - as defined by [2] - to demonstrate and support the definition
of a standard protocol for dynamic carpooling. In this part we describe the software
components, the enabling technologies, the models and the functionalities.

DycapoS source-code is available in an open GIT repository 12, under the Apache
License, version 2.013. The project was opened on Nov. 14 2009 and as of August 22, 2012
counts 177 commits, 14 git tags and 5 branches.

12http://github.com/BodomLx/dycapo
13http://www.apache.org/licenses/LICENSE-2.0.html

19

6.1 Enabling Technologies

DycapoS makes use of several open-source systems for achieve its goals. We list them in
this sub-section.

• Python programming language and Django web framework14. Python is a general-
purpose high-level and multi paradigm programming language, known for a human
understandable, clear syntax. Django is a web framework following the Model-View-
Controller architectural pattern. Even if Django is focused on a rapid creation of
rich-content web-sites, its openness let the community create add-ons for different
purposes, as it is in our case. DycapoS uses the following components of Django:

– The object-relational mapper - that operates between Python objects, defined
as classes, and a relational database, letting developers operate at object level
instead of writing SQL queries.

– The regular-expression-based URL dispatcher.
– The authentication system that easily provides wrappers for doing HTTP basic

authentication against stored users.

• Geopy15, a geocoding library for Python programming language that helps to lo-
cate the coordinates of addresses across the world using third-party geocoders ser-
vices. It also provides reverse geocoding functionalities, i.e. the retrieval of human-
understandable data of a physical location, starting from its coordinates.

• Piston16, a Django add-on that provides the creation of RESTful APIs.

• Py.test17, a mature unit-testing framework for Python programming language

• Apache webserver and PostgreSQL database management system.

6.2 Components

Dycapo Server is written using Python programming language, which allows a partitioning
of a software into modules and packages. A module is a component providing execution
statements and definition of functions, variables, classes, etc. Each module correspond to
a single Python file. A module has its own private symbol table. A package is a set of
modules or other sub-packages, implemented as a directory. Dycapo Server is organized
using separation of concerns, each concern held in a separate package.

We represent in Figure 11 a high-level overview of Dycapo Server components, here
described:

• rest - this module holds all the wrappers of the resources exposed to the public using
REST architecture. It contains a Python module for each DycapoP element, that
defines behaviors to perform depending on the HTTP request done by clients. That
is, each Python module contains a class defining behaviors to be done for each HTTP
operation implemented.

• piston - this module contains an open-source framework that lets us create applica-
tion programming interfaces implemented with REST principles.

14(Accessed Sept. 22 2010) http://djangoproject.com
15(Accessed Sept. 22 2010) http://code.google.com/p/geopy/
16(Accessed Sept. 22 2010) http://bitbucket.org/jespern/django-piston/wiki/Home
17(Accessed Sept. 22 2010) http://codespeak.net/py/dist/test/

20

• server - in this module we implemented the server functionalities and models. See
sub-sections 6.3 and 6.4 for more information

• geopy - in this module we have a geocoding library for Python for our matching
algorithm and for completing Location objects when received from clients.

• tests - in this module we have a full testing suite of REST functionalities (and
therefore, the server internal functionalities). Actually, a full test run performs 199
HTTP requests doing multiple asserts on each call.

A HTTP request to the webserver connected to the Internet is wrapped by our Python
web framework as a Python object. The requested URL is evaluated by an internal
dispatcher that passes the control to the rest package. The rest package converts the
resource representation provided to a Python object defined in the server module. Then it
performs some actions and computation by calling a component of the server module. The
server module eventually saves or retrieves states by querying the database and returns
results, that are again converted by the rest package in JSON format and returned by the
web server.

Figure 11: Dycapo Server components

6.3 Models

Dycapo Server models are developed as Python classes and trace the elements of Dycapo
Protocol. They are stored in the models sub-package inside the server package. Since we
already mentioned them in Section 5.1, we include in Figure 12 a UML 2.1 Class diagram
to represent them and their relations.

The slight differences in their Python implementations are in their data type, that are
a specialization of the data type of DycapoP attributes. There are other tiny differences.
For example, we have separate attributes in Location for GeoRSS longitude and latitude,
for facilitating database queries.

In Figure 12 we also have a Response class, with a yellow background. Response is a
special object type used internally in DycapoS for wrapping return values and exceptions.
Its attribute code is for representing statuses, using HTTP status codes. Attribute type is
a helper attribute to include the type of the object returned by functions, or exception.
The attribute value holds the value returned from functions, and can be of any Python
type.

The Participation class is the only one which is completely different when compared to
the one in DycapoP (Figure 6). Its implementation is more complex because we decided to
implement the status as a set of boolean values, for facilitating database queries. Through
a helper method, the combinations of the boolean values are translated to the human-
understandable strings of the status attribute of the Participation element of DycapoP
(Figure 9).

21

Moreover, we store important safety-related data for each Participation statuses, that
are the timestamp and the Person location related to the change of status.

22

Figure 12: Dycapo Server class diagram
23

6.4 Functionalities

All the functionalities of DycapoS are stored in packages as pure functions, inside the
server module. They are divided in five packages, according to a separation of concerns
division. In this sub-section we list the functionalities, we include a short comment on
what they perform and we provide how they are generally used by REST operations.

Common

This package contains all the functions that a driver and a passenger have in common.
That is, all the operations regarding geographical position, registration and profile changes
are in the common package.

s e tPo s i t i o n (current_user , p o s i t i o n)

It verifies the validity of the Location object, then links it to the given Person, as
current Person position and/or Participation location depending whether the person is
participating to a Trip or not.

g e tPo s i t i on (current_user , person)

It verifies the privacy-related permissions of both users given - the first one requesting
the position of the second one, then eventually returns the location of the Person.

r e g i s t e r (person)

This function registers a Person to the system.

updatePerson (current_user , person)

It updates current_user Person with the attributes of person Person. We use this
function for user profile changes.

changePassword (person)

It changes the password of the user, supplied in person.password

Driver

In the driver package we implemented all the functionalities needed by a Person when
he/she assumes the role of a driver. That is, all the operations regarding the manipulation
of Trips and acceptation/refusal of Trip Participation are developed in this package.

i n s e r tT r i p (t r ip , author , source , de s t i na t i on , modality , p r e f e r e n c e s)

This function inserts a Trip in the system. It may be either started or not. It also
checks the validity of each object supplied

s t a r tTr ip (t r ip , d r i v e r)

It sets a Trip as started.

getRides (t r ip , d r i v e r)

This function returns all pending ride requests for a trip

acceptRide (t r ip , dr ive r , passenger)

It accepts a ride request of a passenger

r e fu s eR ide (t r ip , passenger)

24

This function refuses a ride request of a passenger

f i n i s hT r i p (t r ip , d r i v e r)

It sets a Trip as finished.

Passenger

This package contains the functionalities needed by a Person when he/she assumes the
role of a passenger. That is, all the operations regarding the search of a Trip, the request/-
cancellation/start/end of a Participation are implemented in this package.

searchRide (source , de s t i na t i on , passenger)

Given a source, a destination and the passenger, this function searches for a suitable
active Trip.

requestRide (t r ip , passenger)

It sends a request for a ride to the Trip author.

s tatusRide (t r ip , passenger)

It returns the status of the Participation related to the Person passenger.

cance lRide (t r ip , passenger)

This function deletes a ride previously requested by a passenger.

s ta r tR ide (t r ip , passenger)

It lets the system know that a ride successfully started, i.e. the driver has arrived to
pick the passenger

f i n i s hR id e (t r ip , passenger)

It lets the system know that a ride successfully finished, i.e. the Passenger has arrived
to destination

Matching

We created the matching package separated from the passenger package for better han-
dling its functionalities. This package holds the matching algorithm of Persons when a
Trip is searched. The current matching algorithm has been implemented ex-novo by this
dissertation author. It is based on air distances, not on real routing vector. It is consid-
ered suitable for testing the server prototype by a tiny community of conscious volunteers
but not for real-world usage. The algorithm is heavily tested by the testing framework of
DycapoS.

search_r ide (l o ca t i on , passenger)

This function returns all the Trips with a destination near a given location, by creating
a virtual geographical box around the location. We query the database for all active Trips,
that also have seats available, searching a destination that is inside this box. The retrieved
trips are then filtered by looking if the driver air position from the destination is greater
than the passenger position. Then, the remaining trips are filtered by calculating if the
driver tends to move approaching the passenger position or to move away from him/her.
The remaining trips are returned by the function. See the remaining helper functions for
more information.

25

get_proximity_factor (person , p o s i t i o n)
Given a person and a location, this function determines if the person is approaching

it or getting away from it, by retrieving some recent locations of the person and com-
puting their distance from the location. The set of ordered distances is then passed to
location_proximity_factor that retrieves the proximity factor.
l ocat ion_prox imity_factor (d i s t an c e s)

Given a list of distances, it computes the approaching factor which is a natural number
in the interval (-inf , +inf). If the factor is greater than 0, the numbers in list tend to
decrease and therefore, the driver is approaching the passenger. If the factor is 0, the
numbers in list tend to stay around the same value and therefore, the driver is neither
approaching nor moving away from the passenger. If the factor is less than 0, the numbers
in list tend to increase and therefore the driver is moving away from the passenger.

Utils

This package holds some utility functions related to time and object’s attribute synchro-
nization.

REST to Server mapping

DycapoS is built over a resource-oriented architecture (that is REST) but internally imple-
ments functions as if it was a service-oriented architecture. As we introduced in sub-section
6.1, a HTTP request is dispatched to the rest package, that contains the handlers respon-
sible for react to the requests according to the HTTP method used. The handler overrides
up to four methods, one for each HTTP method available. The method is responsible for
calling the correct function inside the server package and return its results.

As example, we consider the most simple handler of DycapoS, that is the Location
handler for Person’s locations:

import p i s ton . handler
import p i s ton . u t i l s
import s e r v e r . models
import s e r v e r . u t i l s
import s e r v e r . common5

import r e s t . u t i l s

c l a s s Locat ionPersonHandler (p i s ton . handler . BaseHandler) :
allowed_methods = [’GET’ , ’POST’ , ’PUT’]
model = s e r v e r . models . Locat ion10

f i e l d s = (" h r e f " , " town " , " po int " , " country " , " r eg i on " ,
" subreg ion " , " days " , " l a b e l " , " s t r e e t " , " postcode " ,

" o f f s e t " , " l e av e s " , " r e cu r s " , " georss_point ")

de f read (s e l f , request , username=None) :15

user = r e s t . u t i l s . get_rest_user (r eque s t)
t ry :

i f username :
person = se rv e r . models . Person . ob j e c t s . get (username=username)
r e s u l t = s e rv e r . common . g e tPo s i t i on (user , person)20

26

re turn r e s t . u t i l s . extract_result_from_response (r e s u l t)
e l s e :

r e turn p i s ton . u t i l s . r c .NOT_FOUND
except s e r v e r . models . Person . DoesNotExist :

r e turn p i s ton . u t i l s . r c .NOT_FOUND25

except s e r v e r . models . Locat ion . DoesNotExist :
r e turn p i s ton . u t i l s . r c .NOT_FOUND

def c r e a t e (s e l f , request , username) :30

user = r e s t . u t i l s . get_rest_user (r eque s t)
i f user . username != username :

re turn p i s ton . u t i l s . r c .FORBIDDEN
data = reques t . data
l o c a t i o n = se rv e r . models . Locat ion ()35

d i c t_ lo ca t i on = r e s t . u t i l s . c l ean_ids (data)
l o c a t i o n = r e s t . u t i l s . populate_object_from_dict ionary (l o ca t i on ,

d i c t_ l o ca t i on)

r e s u l t = s e rv e r . common . s e tPo s i t i o n (user , l o c a t i o n)40

i f r e s u l t . code == se rv e r . models . Response .CREATED:
r e s u l t . va lue . h r e f = r e s t . u t i l s . get_href (request ,

" locat ion_person_handler " , [user . username])
r e s u l t . va lue . save ()45

re turn r e s u l t . va lue
e l s e :

r e turn r e s t . u t i l s . extract_result_from_response (r e s u l t)

de f update (s e l f , request , username) :50

re turn s e l f . c r e a t e (request , username)

The class LocationPersonHandler extends BaseHandler defined by the Piston frame-
work. The lines between 9 and 13 are instance variables for enabling/disabling HTTP
methods, for setting the Django model to be mapped as REST resource and for choosing
which model attributes to expose to the public. The methods defined afterwards are those
that manage the HTTP requests according to their HTTP method:

read() - lines 15 to 29 For handling HTTP GET requests. We retrieve the
user doing the GET request in line 16. Then, according to the presence of the user-
name parameter, we either return a HTTP 404 error code (wrapped inside the pis-
ton.utils.rc.NOT_FOUND object) or we call the server.common.getPosition() function
- presented in sub-section 6.4.1. We then quite-directly return the results of the function,
using the helper function rest.utils.extract_result_from_response(), since each function in
the server package returns a Response object (discussed in section 6.3).

create() - lines 32 to 48 For managing HTTP POST requests. As we do for
the read() method, we retrieve the user doing the GET request, and return a HTTP
403 Forbidden if the user trying to perform the operation is not the same user targeted

27

for it. Then, in a similar way as we do for the read() method, we prepare the Loca-
tion object with the data provided in the POST request (lines 34-38) and pass it to the
server.common.setPosition() function. Again, we return to the client according to the
Response object provided by the function. We populate the location’s href attribute if
the operation was successful.

update() - lines 50 to 51 For handling HTTP PUT requests - in the current
implementation, we just perform a call to the create() method.

delete() - not in the example For handling HTTP DELETE requests.

Summarizing In this part we presented the technical outcomes of this dissertation,
divided in three sections. In section 4, we gave an introduction of the Dycapo Project
and the domain of interest of the architecture of the system. In section 5 we wrote about
Dycapo Protocol, a REST-based protocol aiming to become a standard for the format and
the transmission of data for dynamic carpooling services. In section 6 we presented Dycapo
Server, a prototype system providing dynamic carpooling functionalities, implemented
using Python programming language and demonstrating the use of the protocol. In the
next part we will draw some conclusions and envision future work of the project.

28

Part IV

Conclusions and future work
In this dissertation we presented the outcomes of Dycapo, a project aimed at providing
a better understanding and a technological solution to the open problem of dynamic car-
pooling. Through an analysis of the state of the art (reported in Part II), we identified
the key issues as well as the functional and non-functional requirements in the domain
of dynamic carpooling. Based on the comparative analysis of the open issues, we noticed
that the basic building block was missing: an open and extendable technological infras-
tructure. Hence we decided to focus on two key components: a protocol for dynamic
carpooling services, and a server able to handle calls from clients using the protocol, both
of them presented in Part III. Dycapo Protocol is an open REST-based protocol that aims
to become the missing standard for the format and the transmission of data related to
dynamic carpooling services. Dycapo Server is a prototype software written using Python
programming language that provides an essential set of dynamic carpooling functionali-
tites, using Dycapo Protocol. Its aim is to become a solid base or an inspiration for the
creation of full dynamic carpooling services, run by companies and organizations.

The domain of interest, dynamic carpooling, is quite complex as it is possible to notice
from the UML diagrams we created: the entities involved are complex and relate each other
in non-trivial ways. In fact, there is very little empirical research on the topic, mainly
proposals about how a system should be. There are also few working systems, with very
few users and moreover not open source so that it is not possible to study and extend
them. It was not easy to come up with a reasonable and consistent set of requirements
and entities, then modeled by UML diagrams, but we are confident that Dycapo protocol
is a useful resource for the community that can be easily extended and built on.

The aim to become a world standard is a high target but not impossible. We targeted
this goal by choosing an open development process: the code was released as open source
since the very first days and the evolving discussion about the state of the art and the
proposed protocol was carried on an open wiki at www.dycapo.org since the beginning of
the project. This strategy already started to pay back. In fact, we received many positive
feedbacks from people related to the domain of interest. We have been contacted by the
author of a paper analyzed, by many people involved in dynamic carpooling projects, some
of them analyzed in the research phase and by local entrepreneurs. We have also received
some proposals of joint ventures and protocol adoptions. There is also the possibility of
a collaboration with MIT’s Mobile Experience Laboratory, since there is a collaboration
among FBK, where most of this work was done, and MIT. We have a first but empirical
evidence about the quality of the protocol and how it is described: a University colleague is
developing an Android client for Dycapo in the context of his bachelor thesis and he is able
to figure out how the protocol should work mostly by looking at the public documentation.

Regarding future improvements, most of them are related to real world usage: we
would like to test our system with real users. In this case, it would be very interesting to
perform stress testing for understanding how the system can scale with many users and to
extend some functionalities, for example a better handling of unforeseen situations. Many
cases have already been covered by the testing framework we developed but obviously
not all of them. Some possible inconsistencies in the protocol or in the server would be
better spotted by real world usage and we really look forward for a deployment of Dycapo
with real users. The develop of a feedback system would also be interesting: would users
start to use it, it would be very important to give them the possibility to express how

29

they felt about the ride when it is finished. Moreover, there would be a requirement for
the addition of Geographic Information Systems (GIS) and relative algorithms for the
real-time matching of drivers and passengers.

Concluding, we believe the topic of this thesis is a recent and challenging one, still
waiting for at least initial solutions and steps forwards. We are confident that our thesis
was able to create some basic, open building blocks that others after us would be able to
improve and extend with the common goal of solving an important problem for our world:
too many cars on our streets with just one passenger in them.

30

A Appendix: Comparative Analysis Outcomes

Paper Interface Design Algorithms Coordination
[11] Give start, ending points

and clear indications.
Filter what information to
reveal

[8] Provide lots of flexible
settings to satisfy users.

Provide a static/dynamic
approach, let users insert
entries days before the start

[10] Provide different levels of
services:
- simple: just destination
and pickup
- groups preferences (only
women etc.)
- scheduling of rides

[1]
[7] Implement one-time

registration process, simple.
Provide RFID devices for
drivers and passengers

[6]
[5] Focus on simplicity.

Provide voice, speech
recognition. Allow users to
communicate each other.

Driving passenger away
from the destination but
near transportation
locations (e.g. a bus
station) increases quality of
service and enhances
coordination.

[4] Given, built around social
connections. Social network
needed.

Built around social
connection between users

[12] Implement a simple
registration system from
mobile phone.
In a second phase link
social networks profiles, or
manual fill.
Develop a very simple UI

[9] Both data structures and
Algorithms for matching
are given

[13] Build it similar, simple and
intuitive like Twitter. Use
parameters like “where are
you going?”.
Car position is essential:
drivers should get a
message and just confirm or
refuse a ride

Use legal pick up points

Table 2: Paper Analysis: Interface Design, Algorithms, Coordination

Paper Trustiness Safety Social Aspects
[11] Authenticate before

the match: password
/ PIN monitor
arrival at destination
Provide a feedback
system a la EBay

Announce matching
items in profiles
before the ride
Do research in social
capital aspects

[8] Create a PIN at
registration phase to
be used by the client

Add social
networking support
to help finding
neighbours

[10] Brand the idea:
apply stickers on
every car that
participates.
Give limitations to
drivers: age limits,
extra driving tests,
check on criminal
records etc.

Provide Auto Event
Recorders on cars.
Implement an
emergency button on
mobile phone, record
GPS data.
Provide a feedback
system a la EBay

[1]
[7] Record carpooling

activity when cars
pass through RFID
readers

Build it around
RFID, record lots of
data and positions

[6] Involve community
and governments in
planning and
implementation
phases

Let the service be
available only to
registered users;
Provide a Feedback
system

Give the possibility
to create social
connections

[5] Use RFID, GPS.
Implement a
complete rating
system.
Display vehicle and
driver information
before entering a
vehicle. Display
participants
pictures. Assign
random numbers for
passenger pickups to
confirm the ride.
Provide voice and
video features.

Match passengers
socially.
Link the application
to social networks.

[4] Use social networks
to enhance it.

Table 3: Paper Analysis: Trustiness, Safety, Social Aspects Pt. 1

32

Paper Trustiness Safety Social Aspects
[12] People are ready to

spend 17% more
time to pickup a
friend of the social
network rather than
a stranger.
Implement it.

Implement a rating
system. Use and
record GPS data.
Do extra research in
this field.

[9] Use social networks
to enhance it.

Implement a GPS
Help button. Record
time, place, and
sound. Develop a
Feedback system

[13] Market against
negative
prejudgments of
people: ride-sharing
is associated with
unreliability,
problems with
passengers and
crime.
Use the survey
provided.

Solve problems
related to reliability,
politeness and
customs.
Make people change
mind about the
dangers of
carpooling.
Implement a rating
with rate of
confirmed trip-
requests, rate of
canceled trips and
time accuracy.
Use RFID, GPS,
Blue-tooth, event
recorders and
everything else you
could add. Measure
and record the speed
of vehicles.

Table 4: Paper Analysis: Trustiness, Safety, Social Aspects Pt. 2

33

Paper Critical Mass Incentives Suggestions
[11] Provide a

location-aware
system
Make use of mobile
phones

[8] Provide mass
marketing before,
during and after
deployment. Search
for start-up
incentives

Search an
institutional
sponsor.
Make the
government provide
parking spaces to
participants

Implement both Web
and mobile clients.
Implement a static
and a dynamic
approach.
Start with a
many-to-one system:
all at a single
destination

[10] Use a cooperative,
public development
of the system

Implement a Web
interface and mobile
clients (using phone
calls)

[1]
[7] Make employers

incentive employees.
Involve Regional
Transportation
Boards

[6] Create an
incremental service,
starting from a
thread of backwards
compatible services
(bus, taxi). Don’t
introduce new
devices for the
service, use mobile
phones

Find a way to make
the service a
business case. Search
for public incentives

Implement the
system mobile only.
Record GPS data.
Provide a
non-obtrusive
system for
authentication
Research on quality
of service measures

[5] A multi-hop system
will solve the
problem, as more
rides will be
available, waiting
times will decrease
and quality will rise.

Convince
governments to
change laws to
enforce carpooling

Use a dynamic,
multi-hop, real- time
mobile system to
minimize waiting
times, one hop at a
time

[4] Use mobile phones
and sms. Use GPS.
Use a provided
high-level
description of the
system

Table 5: Paper Analysis: Critical Mass, Incentives, Suggestions Pt. 1

34

Paper Critical Mass Incentives Suggestions
[12] Involve users in some

parts of development
process. Research
further on this topic.

Implement a mobile
and a web system
that interacts with
social networks
profiles.
Use Opensocial and
other social
networks.
Use our high level
description of the
whole system

[9] Market-formation
problem: discover a
new, winning
formula.
Start with an
existing service, like
taxis.
Find large
employers.
Serve events (i.e..
concerts)

Find money. Search
for incentives from
governments

Implement our Use
Cases
Provide our
functional
requirements.
Provide our
non-functional
requirements

[13] Convince the user to
use the system for
the first time.
Pay the user directly
for the first N times
of use.
Integrate public
transportation
system.
Implement the
system first for an
existing taxi
network, and then
private cars could
participate.

Provide a free taxi of
public transport ride
in case of no return
possibility. Include
existing carsharing
projects in the
system startup.
Create an own
currency system to
be converted in real
money. Convince
governments to
adapt the laws for
dynamic carpooling

Implement a mobile,
GPS, Multi-hop
system

Table 6: Paper Analysis: Critical Mass, Incentives, Suggestions Pt.2

35

B Appendix: Dycapo Protocol

36

Protocol

Dycapo Protocol is an open protocol for sharing trip data among dynamic transit services. It is currently in the first stages of development.

It is an JSON RESTful protocol, heavily inspired by OpenTrip (http://opentrip.info/) Core protocol.

Contents

Introduction
Dycapo Protocol is an application-level protocol for enabling communication between Dynamic Carpooling servers and clients, using HTTP [RFC2616] and
JSON [RFC4627].

Where to start

To better understand OpenTrip Dynamic, you should first read the OpenTrip Core (http://opentrip.info/wiki/OpenTrip_Core) specification, as we are
inspiring from it. After that, we may summarize Dycapo Protocol as “OpenTrip entities extended and encoded in JSON”. That is, we took all OpenTrip
Core entities as described in the draft, created a convenient UML class diagram for developing Dycapo and extended the entities to suit our needs. That
is how Dycapo Protocol is coming out.

Specification

Notational Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in
this document are to be interpreted as described in RFC2119 (http://tools.ietf.org/html/rfc2119) .

Each attribute requirement is specified when submitting objects to the system, not when returning them to the clients. Some attributes MAY be hidden
when Resources are accessed because of privacy issues, e.g. the actual position of a user. This goes beyond the scopes of this Protocol and depends on
the implementation of the server system.

JSON-Related Conventions

Dycapo Protocol Document formats are specified in terms of the JavaScript Object Notation [rfc4627].

Every data type is a JSON data type, as described in JSON specs (http://www.ietf.org/rfc/rfc4627.txt) .

Other Data-Type Conventions

The protocol makes use of GeoRSS Simple Point (http://georss.org/GeoRSS_Simple#Point) notation for expressing Geographical coordinates,
encapsulated in a JSON string.

Date/Time objects are expressed using JSON string data type, using [ISO 8601] Convention. The following is the preferred format: "YYYY-MM-DD
HH:MM:SS", as example: "2010-08-21 21:36:23"

Terminology

For convenience, this protocol can be referred to as the "Dycapo Protocol" or "DycapoP". The following terminology is used by this specification:

URI - A Uniform Resource Identifier as defined in [RFC3986]. In this specification, the phrase "the URI of a document" is shorthand for "a URI which,
when dereferenced, is expected to produce that document as a representation".
IRI - An Internationalized Resource Identifier as defined in [RFC3987]. Before an IRI found in a document is used by HTTP, the IRI is first converted
to a URI. See Section 4.1.
Resource - A network-accessible data object or service identified by an IRI, as defined in [RFC2616]. See [REC-webarch] for further discussion on
Resources.
Object - An unordered collection of zero or more name/value pairs, where a name is a string and a value is a string, number, boolean, null, object,
or array. Defined in [rfc4627]
Array - An ordered sequence of zero or more values, as in [rfc4627]

Driver - the role assumed by a user when he/she offers a Trip and drives a vehicle.
Passenger - the role assumed by a user when he/she searches for a ride. A user which is not a Driver is automatically considered a Passenger.
Trip - a single journey or course of travel taken as part of one's duty, work, etc. A Driver offers Trips. In DycapoP, a Trip is composed by some
simple attributes described below plus a mode, a preferences, more than two locations.
Location - a place of settlement, activity, or residence.
Mode - a description about the mode of transportation being used by the Driver when performing a Trip.
Preferences - a description about the preferences of a Driver when performing a Trip.
Participation - the fact of taking part, as in some action or attempt, in a Trip. Both a Driver and Passengers participate in a Trip.

Protocol Model

DycapoP specifies operations for publishing, editing and deleting specific Resources using HTTP. It uses JSON-formatted representations to describe the
state and metadata of those Resources.

Objects as inner Properties of other Objects

Some DycapoP objects can be obtained as Objects alone or be included in other objects.

As example, a Person object has a location attribute, that holds the current Person position.

When a DycapoP object is returned as an inner property of another object, just the href attribute MUST be included. All the other properties MAY be
included.

The href attribute

Each Protocol object MUST include an attribute called href when returned as a resource. The type of this attribute is a string and its value MUST be the
URL uniquely identifying the object.

For each Object a URL structure is proposed for sake of comprehension. It SHOULD NOT be followed as it is against REST principles.

The author attribute

Some Protocol objects have an attribute called author. This attribute specifies the Person that created the resource. The requirement of this attribute is
always a MAY because its presence depends on the internal implementation of the security systems of the server implementing the protocol. Therefore,
its value is usually filled in by the server after an authentication happened.

Initial URI

Dycapo Protocol attempts to be as more REST as possible. Therefore, it defines resources as hypertext driven. Clients SHOULD use an inital URI, here
defined as http://example.com/api". Each other access SHOULD be performed using the href attribute of each object.

A GET request to the initial URI should return a list of accessible resources. As example:

Elements

Location

Represents a single location. See OpenTrip_Core#Location_Constructs (http://opentrip.info/wiki/OpenTrip_Core#Location_Constructs) for more info.

Attribute Type Requirement

label string MAY

street string MUST*

point string MUST

country string MAY

region string MAY

town string MUST*

postcode number MUST*

subregion string MAY

georss_point string MUST*

offset number SHOULD

recurs string MAY

days string MAY

leaves string (see Dates) MUST

href string MUST NOT

Either georss_point OR all from set {street,town,postcode} MUST be specified
point value MUST be any from the set {orig, dest, wayp, posi}.

See OpenTrip_Core#Attributes (http://opentrip.info/wiki/OpenTrip_Core#Attributes) for more info. posi is an extension and is for indicating that the
Location represents the current position of a Person.

Data Representation Example

The following is a valid Location object:

01.
02.
03.
04.
05.
06.
07.
08.
09.
10.
11.

{
"searches": {

"href": "http://example.com/api/searches/"
},
"persons": {

"href": "http://example.com/api/persons/"
},
"trips": {

"href": "http://example.com/api/trips/"
}

}

01.
02.
03.
04.
05.
06.
07.
08.
09.
10.
11.
12.
13.

{
"town": "Bolzano",
"point": "orig",
"country": "",
"region": "",
"subregion": "",
"days": "",
"label": "Work",
"street": "Rom Strasse",
"postcode": 39100,
"offset": 150,
"leaves": "2010-09-02 13:32:34",
"recurs": "",

Operations

URL http://example.com/persons/[username]/location/

Method GET

Description Returns a Person position

URL http://example.com/persons/[username]/location/

Method POST

Request Body Location

Description Updates (or creates) a Person's position

URL http://example.com/persons/[username]/location/

Method PUT

Request Body Location

Description Updates (or creates) a Person's position

URL http://example.com/trips/[id]/locations/

Method GET

Description Returns the Locations involved in a Trip

URL http://example.com/trips/[trip_id]/locations/[location_id]/

Method GET

Description Returns a Location involved in a Trip

Person

Represents a Person as described on OpenTrip_Core#Person_Constructs (http://opentrip.info/wiki/OpenTrip_Core#Person_Constructs)

Attribute Type Requirement

username string MUST

email string MUST

first_name string SHOULD

last_name string SHOULD

uri string MAY

phone string SHOULD

location object (Location) MUST NOT

age number SHOULD

gender string SHOULD

smoker boolean MAY

blind boolean SHOULD

deaf boolean SHOULD

dog boolean SHOULD

href string MUST NOT

Data Representation Example

The following is a valid Dycapo Protocol Person:

Operations

URL http://example.com/persons/

Method GET

Description Retrieves a collection of Persons

URL http://example.com/persons/

Method POST

Request Body Person

Description Creates a Person resource

13.
14.
15.

"recurs": "",
"georss_point": "46.490200 11.342294"

}

1.
2.
3.
4.
5.
6.

{
"username": "driver1",
"gender": "M",
"phone": "123456",
"email": "driver@drivers.com"

}

URL http://example.com/persons/[username]/

Method GET

Description Retrieves a Person

URL http://example.com/persons/[username]/

Method PUT

Request Body Person

Description Updates a Person object

Modality

Represents additional information about the mode of transportation being used. See OpenTrip_Core#Mode_Constructs
(http://opentrip.info/wiki/OpenTrip_Core#Mode_Constructs) for more info.

Attribute Type Requirement

kind string MUST

capacity number MUST

vacancy number MUST

make string MUST

model_name string MUST

year string MAY

color string SHOULD

lic string SHOULD

cost number SHOULD

href string MUST NOT

Please use as capacity the total capacity of your car MINUS the driver. E.G. If a car has a capacity of 5 seats, use 4 as value for capacity.

Data Representation Example

The following is a valid DycapoP Modality object:

Operations

URL http://example.com/trips/[trip_id]/modality/

Method GET

Description Returns the Modality object of that Trip

Preferences

Stores the preferences of a Trip set by the Person who creates it. See OpenTrip_Core#Preference_Constructs
(http://opentrip.info/wiki/OpenTrip_Core#Preference_Constructs) for more info. We kept drive and ride attributes just for compatibility reasons: in
OpenTrip Dynamic just a driver should be the author of a Trip.

Attribute Type Requirement

age string MAY

nonsmoking boolean MAY

gender string MAY

drive boolean MAY

ride boolean MAY

href string MUST NOT

Even if all attributes of Prefs objects are optional, objects of type Prefs MUST be provided when doing an operation that involves this object. In case
of zero attributes provided, an empty object MUST be provided
gender MUST be any of the values {'M', 'F', 'B'}, meaning 'male', 'female', 'both'

Data Representation Example

The following is a valid DycapoP Prefs object:

01.
02.
03.
04.
05.
06.
07.
08.
09.
10.
11.

{
"kind": "auto",
"capacity": 4,
"lic": "",
"color": "",
"make": "Ford",
"vacancy": 4,
"cost": 0.0,
"year": 0,
"model_name": "Fiesta",

}

1.
2.
3.
4.
5.
6.

{
"ride": falsefalse,
"gender": "",
"age": "18-30",
"drive": falsefalse,
"nonsmoking": falsefalse

Operations

URL http://example.com/trips/[trip_id]/preferences/

Method GET

Description Returns the Preferences of the Trip

Trip

Represents a Trip. See OpenTrip_Core#Entry_Elements (http://opentrip.info/wiki/OpenTrip_Core#Entry_Elements) for more info.

Attribute Type Requirement

published string (Date) MUST NOT

active boolean MUST

updated string (Date) MUST NOT

expires string (Date) MUST

author object (Person) MAY

locations array (Location) MUST

mode object (Mode) MUST

preferences object (Preferences) MUST

href string MUST NOT

participations array (Participation) MUST NOT

Data Representation Example

The following is a complete DycapoP Trip object, containing the other Entities used as example in the rest of the document

Operations

URL http://example.com/trips/

Method GET

Description Retrieves a collection of Trips

6.
7.

"nonsmoking": falsefalse
}

01.
02.
03.
04.
05.
06.
07.
08.
09.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.

{
"preferences": {

"nonsmoking": falsefalse,
"gender": "",
"ride": falsefalse,
"drive": falsefalse,
"age": "18-30"

},
"expires": "2010-09-05 13:33:08",
"locations": [

{
"town": "Bolzano",
"point": "orig",
"country": "",
"region": "",
"subregion": "",
"days": "",
"label": "Work",
"street": "Rom Strasse",
"postcode": 39100,
"offset": 150,
"leaves": "2010-09-02 13:32:34",
"recurs": "",
"georss_point": "46.490200 11.342294"

},
{

"town": "Bolzano",
"point": "dest",
"country": "",
"region": "",
"subregion": "",
"days": "",
"label": "Work",
"street": "Piazza della Vittoria, 1",
"postcode": 39100,
"offset": 150,
"leaves": "2010-09-02 13:32:34",
"recurs": "",
"georss_point": "46.500740 11.345073"

}
],
"modality": {

"kind": "auto",
"capacity": 4,
"lic": "",
"color": "",
"make": "Ford",
"id": 4,
"vacancy": 4,
"cost": 0.0,
"year": 0,
"model_name": "Fiesta"

}
}

URL http://example.com/trips/

Method POST

Request Body Trip

Description Creates a Trip object

URL http://example.com/trips/[trip_id]/

Method GET

Request Body Person

Description Returns a Trip Resource

URL http://example.com/trips/[trip_id]/

Method PUT

Request Body Trip

Description Updates a Trip object

URL http://example.com/trips/[trip_id]/

Method DELETE

Request Body Trip

Description Deletes a Trip object

Participation

Represents a Participation in a Trip.

Attribute Type Requirement

author object (Person) MAY

status string MUST

href string MUST

status attribute value MUST be from the set {"request","accept","start","finish"} and represents the current Participation status of a user

Data Representation Example

The following is a valid Dycapo Protocol Participation:

Operations

URL http://example.com/trips/[trip_id]/participations/

Method GET

Description Retrieves the Participations of the Trip

URL http://example.com/trips/[trip_id]/participations/

Method POST

Request Body Participation

Description Creates a Participation object related to the Trip (Requesting a Ride)

URL http://example.com/trips/[trip_id]/participations/[username]/

Method PUT

Request Body Person

Description Updates a Participation object related to the Trip (Accepting a Ride request, Starting a Ride, Finishing a Ride)

URL http://example.com/trips/[trip_id]/participations/[username]/

Method DELETE

Description Deletes a Participation resource (Refusing a Ride request, Deleting a Ride request).

01.
02.
03.
04.
05.
06.
07.
08.
09.
10.
11.

{
"status": "accept",
"person": {

"username": "driver1",
"href": "http://example.com/api/persons/rider1/",
"location": {

"href": "http://example.com/api/persons/rider1/location/"
}

},
"href": "http://example.com/api/trips/4/participations/rider1/"

}

Search

This resource represents a search between Trips. Due to the complexity of the objects involved when searching a Trip, there is the necessity of creating
state-ful Search objects, accessible each time a search is needed.

Attribute Type Requirement

origin object (Location) MUST

destination object (Location) MUST

author object (Person) MAY

trips array (Trip) MUST NOT

Data Representation Example

The following is a valid Search object:

Operations

URL http://example.com/searches/

Method POST

Request Body Search

Description Creates a Search object

URL http://example.com/searches/[search_id]/

Method GET

Description Retrieves the Search object and the results, if any

Use of HTTP Response Codes

The Dycapo Protocol uses the response status codes defined in HTTP to indicate the success or failure of an operation. Consult the HTTP specification
[RFC2616] for detailed definitions of each status code. In detail, DycapoP makes use of the following codes:

Code Name Description

200 OK Denotes a successful operation, an entity containing additional information SHOULD be provided

201 Created Denotes the creation of a resource. A representation of the Resource SHOULD be provided

204 No Content Denotes the deletion of a resource. A representation of the Resource SHOULD NOT be provided

401 Unauthorized The client provided wrong (or did not provide) credentials

403 Forbidden The client does not have the rights for perform the request

404 Not Found No Resource has been found at the given URI

415 Unsupported Media Type A Protocol Error Occurred. A description of the error SHOULD be provided

License

01.
02.
03.
04.
05.
06.
07.
08.
09.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.

{
"origin": {

"town": "Bolzano",
"point": "posi",
"href": "http://example.com/api/searches/37/",
"country": "",
"region": "",
"subregion": "",
"days": "",
"label": "Work",
"street": "Drususallee, 43/a",
"postcode": 39100,
"offset": 150,
"id": 140,
"leaves": "2010-09-02 13:32:34",
"recurs": "",
"georss_point": "46.494957 11.340239"

},
"author": {

"username": "rider1",
"href": "http://example.com/api/persons/rider1/"

},
"destination": {

"town": "Bolzano",
"point": "dest",
"href": "http://example.com/api/searches/37/",
"country": "",
"region": "",
"subregion": "",
"days": "",
"label": "Work",
"street": "Piazza della Vittoria, 1",
"postcode": 39100,
"offset": 150,
"id": 141,
"leaves": "2010-09-02 13:32:34",
"recurs": "",
"georss_point": "46.500891 11.344306"

}
}

This work is licensed under the Creative Commons Attribution-Share Alike 3.0 License (http://creativecommons.org/licenses/by-sa/3.0/) .

 Privacy policy About Dycapo Project Disclaimers Powered by MediaWiki Designed by Paul Gu

45

References
[1] Abdel-Naby, S., Fante, S.: Auctions negotiation for mobile rideshare service. In Proc.

IEEE Second International Conference on Pervasive Computing and Applications
(2007)

[2] Davis, A. Operational prototyping: a new development approach. Software, IEEE 9,
5 (1992)

[3] Fielding, R. T. Architectural styles and the design of network-based software archi-
tectures. PhD thesis, University of California, Irvine (2000)

[3] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., and Berners-
Lee, T. RFC2616: hypertext transfer Protocol-HTTP/1.1. RFC Editor United States
(1999).

[4] Gidófalvi, G. et al. Instant Social Ride-Sharing. In Proc. 15th World Congress on
Intelligent Transport Systems, p 8, Intelligent Transportation Society of America
(2008)

[5] Gruebele, P.A., Interactive System for Real Time Dynamic Multi-hop Carpooling.
Global Transport Knowledge Partnership (2008).

[6] Hartwig, S., Buchmann, M.: Empty seats traveling: Next-generation ridesharing and
its potential to mitigate traffic and emission problems in the 21st century. Technical
report, Nokia (2007), http://research.nokia.com/tr/NRC-TR-2007-003.pdf

[7] Kelley, K. L. Casual Carpooling-Enhanced. Journal of Public Transportation 10, 4
(2007), 119.

[8] Kirshner, D. Pilot Tests of Dynamic Ridesharing. Technical report (2006),
http://www.ridenow.org/ridenow_summary.html

[9] Morris, J. et. al. SafeRide: Reducing Single Occupancy Vehicles. Technical report
(2008), http://www.cs.cmu.edu/~jhm/SafeRide.pdf

[10] Murphy, P.: The smart jitney: Rapid, realistic transport. New Solutions Journal (4)
(2007)

[11] Resnick, P. SocioTechnical support for ride sharing. In Working Notes of the Sympo-
sium on Crossing Disciplinary Boundaries in the Urban and Regional Contex (UTEP-
03) (2006).

[12] Wessels, R. Combining Ridesharing & Social Networks. Technical report (2009),
http://www.aida.utwente.nl/education/ITS2-RW-Pooll.pdf

[13] Zimmermann, H., and Stempfel, Y. Current Trends in Dynamic
Ridesharing, identification of Bottleneck Problems and Propositions
of Solutions. Indian Institute of Technology Delhi, India. (2008),
http://dynamicridesharing.org/~dynami11/wiki/images/9/95/IIT_Delhi_-
_Dynamic_Ridesharing.PDF

Dedicated to My Family.

