

Institute for Software Integrated Systems Vanderbilt University

DeepForge: A Scientific Gateway for Deep Learning

Brian Broll

brian.broll@vanderbilt.edu

Miklos Maroti, Peter Volgyesi, Akos Ledeczi

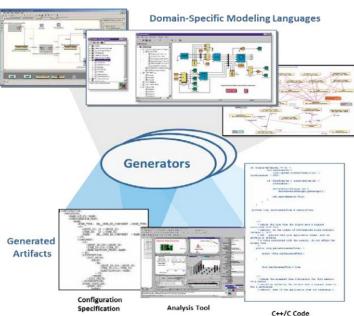
Overview

- Background
 - Deep Learning
 - Model Integrated Computing
- Core Concepts
- Platform
 - Design Goals
 - Architecture
- Future Work
- Demo

Background

Deep Learning

- A deep neural network is an artificial neural network with multiple hidden layers
- Flexible enough to be applied to a number of problems:
 - Speech-to-text
 - Image segmentation
 - Image classification
 - Learning embeddings
 - Styling images
 - etc
- State of art in almost everything

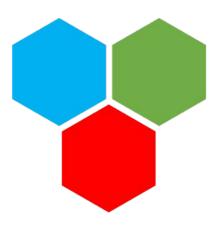


Model Integrated Computing

- The process of using domain specific abstractions for developing systems or applications
- The domain specific model is at the center of the workflow
- Aids in the design and implementation of complex systems

Keras + Tensorflow

- Keras
 - High-level neural networks API in Python
 - Frontend for multiple deep learning frameworks
- TensorFlow
 - Open source machine learning framework in Python
 - Supports many different deployment platforms from clusters to mobile devices



WebGME

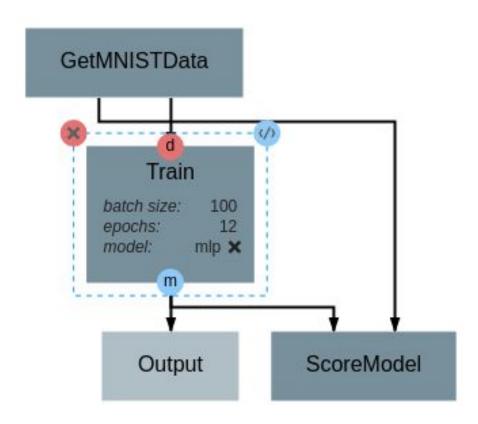
- An MIC framework for creating domain specific development environments
- Meta-configurable (provides a modeling language for creating modeling languages - similar to UML)
- Provides a number of useful features including version control and collaborative editing
- More information available at https://webqme.org

Core Concepts

Core Concepts

- Two different types of concepts:
 - Concepts for creating executable pipelines
 - Concepts for designing neural network architectures
- Four main concepts are creating executable pipelines
 - Operations
 - Pipelines
 - Jobs
 - Executions
- Two high-level concepts for designing neural networks architectures
 - Architectures
 - Layers

Pipeline Concepts



- Operations are functions with multiple, named inputs and outputs
- Attributes and references can be set at design time to specify configurable parameters
 - For example, iterations may be specified in a training operation
- Pipelines represent some machine learning task composed of operations
 - Examples include training, prediction, or data augmentation
- Pipelines can also contain *Input* and *Output* operations to specify inputs/outputs of the entire pipeline

Example Pipeline

Pipeline Concepts

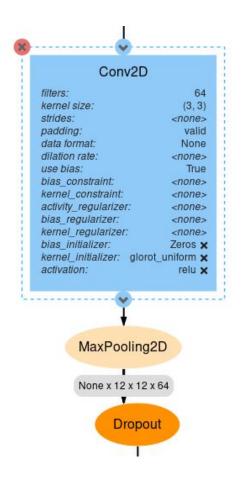
- Jobs are executable operations which contain the operation definition and metadata about the execution
 - This includes console output and plots
- Executions represent an executable instance of a pipeline (composed of jobs)

Platform

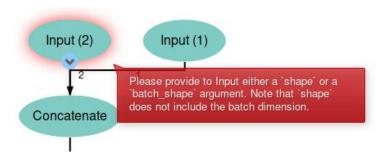
Platform

- Web-based platform with 3 driving design goals:
 - Accessibility
 - Rapid Development
 - Reproducibility
- Developed using WebGME

Accessibility

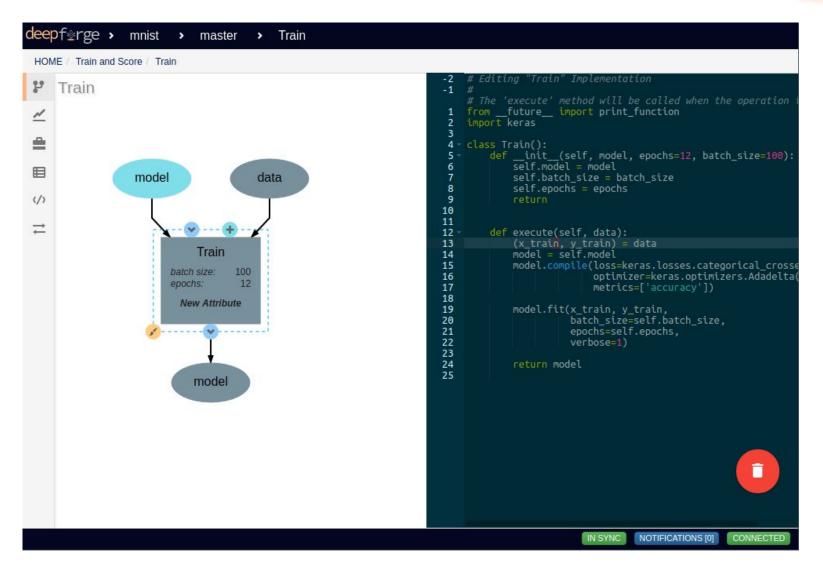


- Goal: Make deep learning easily accessible to other domains
- Enforce domain semantics (and constraints)
- Immediate neural network validation and feedback
 - Error feedback
 - Dimensionality information
- Utilize a hybrid visual-textual interface
 - Use the appropriate modality for the given task



Enforcing Domain Semantics: Building a Neural Network

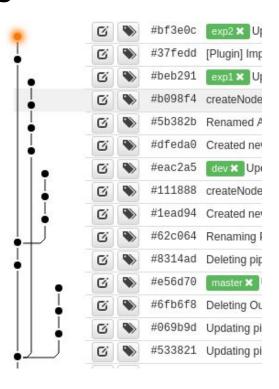
Dimensionality Feedback



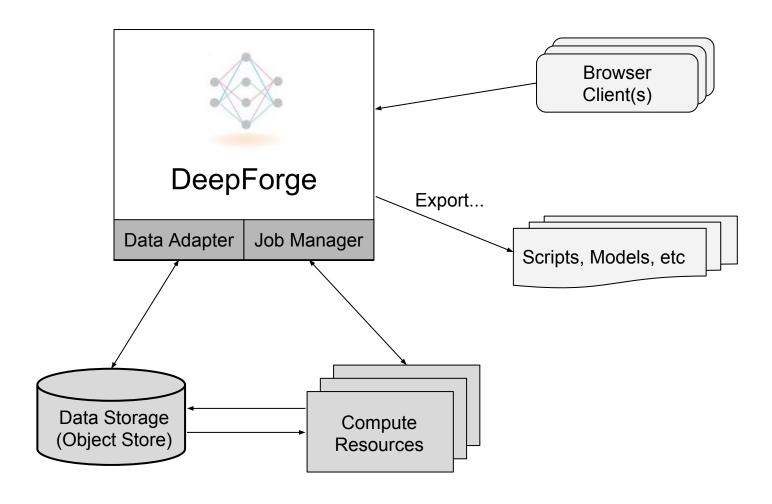
Error Messages (During Construction)

Creating a Custom Operation

Rapid Development


- Productivity during development was another key design decision
- Collaboration capabilities
 - Real-time collaborative editing
 - Integrated version control allows for working on isolated branches
- Support the entire development lifecycle
 - From initial creation to execution and subsequent iterations
 - Execute and monitor pipelines from the browser

Reproducibility


- Integrated version control of project content
- Blob data is referenced by hash in the project content
 - This includes datasets, trained models, etc
- Both data and the code are reproducible
- Automatic tagging commits when executing pipelines

Architecture Overview

Future Work

- Add integrations with scientific infrastructure
 - data sources
 - computational resources
- Registry for hosting project resources
 - operation definitions
 - architectures
 - trained models
- Add more data introspection utilities
- Model introspection utilities
- Architecture editor improvements
 - Parameterization
 - Composable

Demo

Questions?

- Related Resources and Links:
 - Website: http://deepforge.org
 - Source Code:
 - https://github.com/deepforge-dev/deepforge
 - Slack Channel: https://slack.deepforge.org