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I. INTRODUCTION 
Scientific problem-solving frequently requires interactive, 

iterative exploration and analysis.  Web-based interactive 
electronic notebook interfaces such as Jupyter [1] offer an 
important mechanism for scientists to capture analyses in a 
reproducible narrative context. An increasing number of 
science gateway environments are providing support for 
Jupyter Notebooks as a means to enable custom, ad-hoc 
analyses on scientific data. However, Jupyter Notebooks alone 
are not enough to fulfill the needs of scientific researchers 
today.  Scientists are producing and consuming large amounts 
of data, and require significant computational resources to 
process and analyze that data, causing scientific workflows to 
become increasingly asynchronous in nature as processing is 
off-loaded to remote resources. Many scientific researchers 
turn to HPC systems for processing, but the traditional 
asynchronous batch-queue environment used in HPC for such 
computationally intensive tasks is largely separate from 
interactive Notebook-based workflows, producing a 
fragmented workflow for scientists that does not facilitate rapid 
scientific inquiry. We introduce our system “Kale” that enables 
Jupyter Notebooks to seamlessly interface with HPC 
workflows, leveraging distributed computational resources for 
iterative human-in-the-loop scientific exploration [2][3]. 

II. REQUIREMENTS 
Our primary motivation for Kale is improved scientific 

discovery and productivity through better tools. We seek to 
enable human-in-the-loop computing, and enhance 
reproducibility and collaboration in the scientific HPC and big-
data space. In order to contextualize our efforts, we 
interviewed current users at the National Energy Research 
Scientific Computing Center (NERSC), to understand how 
scientists are using Jupyter in an HPC context [8], and to 
identify gaps and desired features in the setup.  
 
Key requirements that emerged:  

• The need to use Notebooks for QA/QC in existing 
data-analysis and HPC pipelines, including auto-
generated Notebooks that can be executed on results. 

• Allowing human inspection of results during and after 
batch workflow steps. 

• Scaling up single-node Notebook operations to a 
parallel/distributed mode 

• Setting up and controlling job workflows through the 
Notebook interface. 

Based on these requirements, our focus has been on 
providing a more natural development cycle for scientists using 
HPC through human-in-the-loop computing, with a special 
emphasis on real-time task monitoring, dynamic task control, 
and runtime ad-hoc analyses at scale. Note that we are 
deliberately not building a new workflow system through this 
effort. Rather, our focus is on creating a toolset that can easily 
work with with existing workflows. This includes workflows 
based on existing workflows tools and job managers, as well as 
custom ad-hoc workflows. The purpose of Kale is to provide 
an integration layer between interactive widgets in Jupyter 
notebooks and the backend workflows.  

III. SYSTEM DESCRIPTION 
Our approach is to leverage the existing Jupyter 

architecture as much as possible, and to build upon existing 
pieces of the infrastructure, including Notebooks, Frontends, 
Widgets and Kernels. A Jupyter Notebook is a JSON document 
that contains a linear list of cells that are either markdown or 
code, and may also include rich output produced by that code, 
including text, image data and placeholders for interactive 
Widgets. A Jupyter Frontend is the web application, which 
allows the user to view and manipulate the Notebook, renders 
rich output, and handles complex user interaction with 
Notebook elements. Jupyter Widgets are interactive elements 
rendered as cell outputs by a Frontend such as sliders, text 
inputs, or plots that directly manipulate and react to Kernel-
side variables.  Finally, a Jupyter Kernel communicates with a 
Frontend in order to execute and introspect user code. 

We are primarily interested in Jupyter Widgets and Jupyter 
Kernels.  Jupyter Widgets are of particular interest here 
because they can be composed visually and logically to form 
powerful dashboards that enable quick, high-level exploration 
of data and algorithms by providing a coupled input control 
and output visualization interface. Jupyter Kernels are of 
interest for asynchronous task execution, interactive task 
control, monitoring, and data transfer.  Future work may 
explore customized Kernels for tighter HPC integration. 



 
Fig. 1. High level architecture of a Jupyter deployment with Kale in an HPC environment.

We introduce from Kale two types of services.  The first is 
a centralized Manager service that sits outside of the core 
Jupyter service and provides communication between a 
Notebook, Kale Worker services, and the HPC environment. 
The second type of service is a Worker service, which is used 
to wrap the HPC backend tasks, providing us with fine grained 
control over the task itself, monitoring of the job and node, and 
the ability to pass data back and forth.  The Worker service is 
non-invasive to the underlying tasks, allowing existing 
workflows to operate without refactoring task level code. 

A Kale Worker service component provides a REST API. 
The Notebook process can communicate with the Worker via 
this REST API, to give us resource monitoring at the task and 
node level, along with fine-grained task control including basic 
operations like Start, Stop, Pause, and Resume. Moreover this 
Worker service enables direct communication with the task and 
allows us to serialize results and output directly into the 
Notebook. We can take this a step further by using the Worker 
service to execute any ad-hoc operation that needs to be 
performed at the task or node level. 

We describe the Kale architecture and how it fits into a 
typical Jupyter deployment in Figure 1. JupyterHub is a multi-
user platform for launching Jupyter Notebook servers, and is 
anticipated to be the gateway Jupyter interface to an HPC 
system for users.  Users will login through JupyterHub, taking 
them to their own Jupyter Notebook server instance.  In tandem 
with the Jupyter Notebook server, a Kale Manager daemon 
service will be running as well.  This daemon service operates 
as a communications broker between Jupyter Notebook Kale 

clients and other major system components, including the HPC 
Batch Queue, any Scientific Workflow managers, and 
individual Kale worker services running with HPC tasks.  Kale 
assumes a Jupyter Notebook based flow of execution, using an 
initial ‘master’ Notebook capturing the overall scientific 
computation and analysis, with the ability to launch task level 
Notebooks for interactive manual runs of individual tasks. 
Individual task Notebooks have a Kernel running on the 
compute node, and a Kale Worker Service providing 
controlling and monitoring for each HPC task. One of the 
advantages of using a daemon Manager service for Kale is that 
Notebooks can disconnect from running HPC jobs and return 
later, without disrupting execution. The Kale Worker Service 
can also be used to monitor results from the workflow task 
directly. In Figure 1. we demonstrate this by reading job output 
from a shared filesystem, but we can also have it use more 
sophisticated mechanisms like communicating with a message 
queue or querying a remote datastore to pull results, since the 
actual operations can be user-defined.  

IV. USING KALE WITH IPYWIDGETS 
In addition to Kale’s backend services, we provide 

modular, interactive Widget interfaces, which embed 
monitoring and task control functionality directly in a 
Notebook cell. Figure 2 shows an overview of a molecular 
dynamics workflow, which includes large long-running 
LAMMPS simulations, data parsing/analysis scripts, and 
results visualization in Jupyter, all as workflow tasks. This 
view includes rich HTML descriptions at the workflow and 
task levels, expanding Jupyter’s concept of the computational 



narrative from a single Notebook to an entire scientific 
workflow. The Widget toolkit also provides task status, 
workflow control, stdout/stderr logs, file tracking and resource 

usage, providing quick access to relevant job information 
without leaving the Notebook. 

 

 
 

Fig. 2. LAMMPS Workflow with iPyWidgets interfacing with Kale. 

 

V. WORKFLOW WRAPPERS 
In order to make Kale as easy to use as possible we 

introduce the idea of workflow wrappers. Kale allows you to 
define a workflow using its own object oriented Python syntax, 
but you can also use existing workflow tools (Parsl [7], 
Fireworks [4] etc.) or job execution frameworks (IPyParallel 
[5], Dask [6] etc.) to define your workflow. We are creating 
simple wrappers and interceptors that will allow you to take 
existing functions and tasks defined using these frameworks - 
by adding a little bit of extra code to wrap your workflow, you 
can now add a Kale layer to this workflow.  

Kale remains agnostic to the underlying framework or the 
actual batch execution system. Once the task is launched, the 
Notebook communicates directly with the worker service 
through the REST API independent of the backend. 

VI. USE CASE 
As part of our design philosophy we seek to ground our 

work in real-world use cases. As an example, we describe how 
we are currently using the Kale system to meet the needs of 
deep learning workflows for particle physics at NERSC [9]. In 
particular, Jupyter Notebooks in conjunction with Kale can be 
used for two different kinds of deep learning tasks.  

Hyper-parameter optimization: This involves using a 
Jupyter Notebook to optimize a set of hyper-parameters (such 
as number of hidden layers in the neural network or learning 
rate). We configure the set of desired hyper-parameters that we 
wish to search over using a Widget interface, and then launch a 
series of model training runs on the HPC backend across a 
number of different nodes. The jobs themselves are wrapped as 
Kale tasks, and we can view a model output dashboard with 
current best and worst model runs in real-time directly in a 
Notebook Widget.  



Monitoring specific training runs: For a given set of 
hyper-parameters, we can monitor and control model training 
runs, including live visualization of the loss function through 
Notebook Widgets communicating with Kale. Enabling human 
intervention allows for poorly performing runs to be halted and 
for new runs to be started in optimal regions of the parameter 
space, maximizing productive utilization of computational 
resources. 

VII. CONCLUSION AND FUTURE WORK 
We believe that a system like Kale plays a key role in 

connecting interactive notebook environments like Jupyter 
with large scientific workflows at scale, and adds a key human-
in-the-loop component to this process. This system combines 
the usability and convenience of a web science gateway for 
HPC, with the flexibility of a rich programming environment 
to enable ad-hoc exploratory data analysis. Moving forward, 
we expect to develop Kale in conjunction with multiple science 
use cases such as high-throughput materials discovery and 
automated analysis and classification of cosmology images. 
Better integration with different cloud and HPC environments 
is another potential area of investigation. 

In conclusion, we hope that Jupyter along with Kale can 
help provide interactivity and iteration to what was previously 
a very fractured and fragmented process, thus reducing the 
overall time to scientific insight. 
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