
Presented at Gateways 2018, University of Texas, Austin, TX, September 25–27, 2018.
https://gateways2018.figshare.com/

Kale: A System for Enabling Human-in-the-loop
Interactivity in HPC Workflows

Shreyas Cholia*, Matthew Henderson, Oliver Evans, Fernando Pérez
Lawrence Berkeley National Laboratory,

Berkeley, USA
*scholia@lbl.gov

I. INTRODUCTION
Scientific problem-solving frequently requires interactive,

iterative exploration and analysis. Web-based interactive
electronic notebook interfaces such as Jupyter [1] offer an
important mechanism for scientists to capture analyses in a
reproducible narrative context. An increasing number of
science gateway environments are providing support for
Jupyter Notebooks as a means to enable custom, ad-hoc
analyses on scientific data. However, Jupyter Notebooks alone
are not enough to fulfill the needs of scientific researchers
today. Scientists are producing and consuming large amounts
of data, and require significant computational resources to
process and analyze that data, causing scientific workflows to
become increasingly asynchronous in nature as processing is
off-loaded to remote resources. Many scientific researchers
turn to HPC systems for processing, but the traditional
asynchronous batch-queue environment used in HPC for such
computationally intensive tasks is largely separate from
interactive Notebook-based workflows, producing a
fragmented workflow for scientists that does not facilitate rapid
scientific inquiry. We introduce our system “Kale” that enables
Jupyter Notebooks to seamlessly interface with HPC
workflows, leveraging distributed computational resources for
iterative human-in-the-loop scientific exploration [2][3].

II. REQUIREMENTS
Our primary motivation for Kale is improved scientific

discovery and productivity through better tools. We seek to
enable human-in-the-loop computing, and enhance
reproducibility and collaboration in the scientific HPC and big-
data space. In order to contextualize our efforts, we
interviewed current users at the National Energy Research
Scientific Computing Center (NERSC), to understand how
scientists are using Jupyter in an HPC context [8], and to
identify gaps and desired features in the setup.

Key requirements that emerged:

• The need to use Notebooks for QA/QC in existing
data-analysis and HPC pipelines, including auto-
generated Notebooks that can be executed on results.

• Allowing human inspection of results during and after
batch workflow steps.

• Scaling up single-node Notebook operations to a
parallel/distributed mode

• Setting up and controlling job workflows through the
Notebook interface.

Based on these requirements, our focus has been on
providing a more natural development cycle for scientists using
HPC through human-in-the-loop computing, with a special
emphasis on real-time task monitoring, dynamic task control,
and runtime ad-hoc analyses at scale. Note that we are
deliberately not building a new workflow system through this
effort. Rather, our focus is on creating a toolset that can easily
work with with existing workflows. This includes workflows
based on existing workflows tools and job managers, as well as
custom ad-hoc workflows. The purpose of Kale is to provide
an integration layer between interactive widgets in Jupyter
notebooks and the backend workflows.

III. SYSTEM DESCRIPTION
Our approach is to leverage the existing Jupyter

architecture as much as possible, and to build upon existing
pieces of the infrastructure, including Notebooks, Frontends,
Widgets and Kernels. A Jupyter Notebook is a JSON document
that contains a linear list of cells that are either markdown or
code, and may also include rich output produced by that code,
including text, image data and placeholders for interactive
Widgets. A Jupyter Frontend is the web application, which
allows the user to view and manipulate the Notebook, renders
rich output, and handles complex user interaction with
Notebook elements. Jupyter Widgets are interactive elements
rendered as cell outputs by a Frontend such as sliders, text
inputs, or plots that directly manipulate and react to Kernel-
side variables. Finally, a Jupyter Kernel communicates with a
Frontend in order to execute and introspect user code.

We are primarily interested in Jupyter Widgets and Jupyter
Kernels. Jupyter Widgets are of particular interest here
because they can be composed visually and logically to form
powerful dashboards that enable quick, high-level exploration
of data and algorithms by providing a coupled input control
and output visualization interface. Jupyter Kernels are of
interest for asynchronous task execution, interactive task
control, monitoring, and data transfer. Future work may
explore customized Kernels for tighter HPC integration.

Fig. 1. High level architecture of a Jupyter deployment with Kale in an HPC environment.

We introduce from Kale two types of services. The first is
a centralized Manager service that sits outside of the core
Jupyter service and provides communication between a
Notebook, Kale Worker services, and the HPC environment.
The second type of service is a Worker service, which is used
to wrap the HPC backend tasks, providing us with fine grained
control over the task itself, monitoring of the job and node, and
the ability to pass data back and forth. The Worker service is
non-invasive to the underlying tasks, allowing existing
workflows to operate without refactoring task level code.

A Kale Worker service component provides a REST API.
The Notebook process can communicate with the Worker via
this REST API, to give us resource monitoring at the task and
node level, along with fine-grained task control including basic
operations like Start, Stop, Pause, and Resume. Moreover this
Worker service enables direct communication with the task and
allows us to serialize results and output directly into the
Notebook. We can take this a step further by using the Worker
service to execute any ad-hoc operation that needs to be
performed at the task or node level.

We describe the Kale architecture and how it fits into a
typical Jupyter deployment in Figure 1. JupyterHub is a multi-
user platform for launching Jupyter Notebook servers, and is
anticipated to be the gateway Jupyter interface to an HPC
system for users. Users will login through JupyterHub, taking
them to their own Jupyter Notebook server instance. In tandem
with the Jupyter Notebook server, a Kale Manager daemon
service will be running as well. This daemon service operates
as a communications broker between Jupyter Notebook Kale

clients and other major system components, including the HPC
Batch Queue, any Scientific Workflow managers, and
individual Kale worker services running with HPC tasks. Kale
assumes a Jupyter Notebook based flow of execution, using an
initial ‘master’ Notebook capturing the overall scientific
computation and analysis, with the ability to launch task level
Notebooks for interactive manual runs of individual tasks.
Individual task Notebooks have a Kernel running on the
compute node, and a Kale Worker Service providing
controlling and monitoring for each HPC task. One of the
advantages of using a daemon Manager service for Kale is that
Notebooks can disconnect from running HPC jobs and return
later, without disrupting execution. The Kale Worker Service
can also be used to monitor results from the workflow task
directly. In Figure 1. we demonstrate this by reading job output
from a shared filesystem, but we can also have it use more
sophisticated mechanisms like communicating with a message
queue or querying a remote datastore to pull results, since the
actual operations can be user-defined.

IV. USING KALE WITH IPYWIDGETS
In addition to Kale’s backend services, we provide

modular, interactive Widget interfaces, which embed
monitoring and task control functionality directly in a
Notebook cell. Figure 2 shows an overview of a molecular
dynamics workflow, which includes large long-running
LAMMPS simulations, data parsing/analysis scripts, and
results visualization in Jupyter, all as workflow tasks. This
view includes rich HTML descriptions at the workflow and
task levels, expanding Jupyter’s concept of the computational

narrative from a single Notebook to an entire scientific
workflow. The Widget toolkit also provides task status,
workflow control, stdout/stderr logs, file tracking and resource

usage, providing quick access to relevant job information
without leaving the Notebook.

Fig. 2. LAMMPS Workflow with iPyWidgets interfacing with Kale.

V. WORKFLOW WRAPPERS
In order to make Kale as easy to use as possible we

introduce the idea of workflow wrappers. Kale allows you to
define a workflow using its own object oriented Python syntax,
but you can also use existing workflow tools (Parsl [7],
Fireworks [4] etc.) or job execution frameworks (IPyParallel
[5], Dask [6] etc.) to define your workflow. We are creating
simple wrappers and interceptors that will allow you to take
existing functions and tasks defined using these frameworks -
by adding a little bit of extra code to wrap your workflow, you
can now add a Kale layer to this workflow.

Kale remains agnostic to the underlying framework or the
actual batch execution system. Once the task is launched, the
Notebook communicates directly with the worker service
through the REST API independent of the backend.

VI. USE CASE
As part of our design philosophy we seek to ground our

work in real-world use cases. As an example, we describe how
we are currently using the Kale system to meet the needs of
deep learning workflows for particle physics at NERSC [9]. In
particular, Jupyter Notebooks in conjunction with Kale can be
used for two different kinds of deep learning tasks.

Hyper-parameter optimization: This involves using a
Jupyter Notebook to optimize a set of hyper-parameters (such
as number of hidden layers in the neural network or learning
rate). We configure the set of desired hyper-parameters that we
wish to search over using a Widget interface, and then launch a
series of model training runs on the HPC backend across a
number of different nodes. The jobs themselves are wrapped as
Kale tasks, and we can view a model output dashboard with
current best and worst model runs in real-time directly in a
Notebook Widget.

Monitoring specific training runs: For a given set of
hyper-parameters, we can monitor and control model training
runs, including live visualization of the loss function through
Notebook Widgets communicating with Kale. Enabling human
intervention allows for poorly performing runs to be halted and
for new runs to be started in optimal regions of the parameter
space, maximizing productive utilization of computational
resources.

VII. CONCLUSION AND FUTURE WORK
We believe that a system like Kale plays a key role in

connecting interactive notebook environments like Jupyter
with large scientific workflows at scale, and adds a key human-
in-the-loop component to this process. This system combines
the usability and convenience of a web science gateway for
HPC, with the flexibility of a rich programming environment
to enable ad-hoc exploratory data analysis. Moving forward,
we expect to develop Kale in conjunction with multiple science
use cases such as high-throughput materials discovery and
automated analysis and classification of cosmology images.
Better integration with different cloud and HPC environments
is another potential area of investigation.

In conclusion, we hope that Jupyter along with Kale can
help provide interactivity and iteration to what was previously
a very fractured and fragmented process, thus reducing the
overall time to scientific insight.

ACKNOWLEDGMENT
This work was supported by Lawrence Berkeley National

Laboratory, through the U.S. Department of Energy under
Contract No. DE-AC02-05CH11231.

REFERENCES
[1] “Jupyter Notebooks - a publishing format for reproducible

computational workflows.” Thomas Kluyver, Benjamin Ragan-Kelley,
Fernando Pérez, Brian E. Granger, Matthias Bussonnier, Jonathan
Frederic, Kyle Kelley, Jessica B. Hamrick, Jason Grout, Sylvain Corlay,
Paul Ivanov, Damián Avila, Safia Abdalla, Carol Willing. ELPUB
(2016). doi: 10.3233/978-1-61499-649-1-87

[2] “Demo: Extending Jupyter to Support Interactive High Performance
Computing.”, Matthew Henderson, Oliver Evans, Shreyas Cholia,
Fernando Pérez,Gateways 2017, November 2017,
https://doi.org/10.6084/m9.figshare.5501137.v1

[3] “Poster: Science at the Speed of Thought: Enhancing Jupyter to Enable
Interactive Human-in- the-loop Supercomputing”, Matthew Henderson,
Oliver Evans, Shreyas Cholia, Fernando Pérez, Jupytercon 2017, August
2017.

[4] Jain, A., Ong, S. P., Chen, W., Medasani, B., Qu, X., Kocher, M.,
Brafman, M., Petretto, G., Rignanese, G.-M., Hautier, G., Gunter, D.,
and Persson, K. A. (2015) FireWorks: a dynamic workflow system
designed for high-throughput applications. Concurrency Computat.:
Pract. Exper., 27: 5037–5059. doi: 10.1002/cpe.3505.

[5] IPyParallel. Interactive Parallel Computing in Python
https://ipyparallel.readthedocs.io/

[6] Dask Development Team (2016). Dask: Library for dynamic task
scheduling, URL http://dask.pydata.org

[7] Babuji, Y., Brizius, A., Chard, K., Foster, I., Katz, D.S., Wilde, M., &
Wozniak, J.. (2017, August 30). Introducing Parsl: A Python Parallel
Scripting Library. Zenodo. http://doi.org/10.5281/zenodo.853491.

[8] R. Thomas, S. Canon, S. Cholia, L. Gerhardt, and E. Racah.
Toward Interactive Supercomputing at NERSC with Jupyter. Cray User
Group (CUG) Conference Proceedings, May 2017.

[9] “Deep Neural Networks for Physics Analysis on low-level whole-
detector data at the LHC.” Wahid Bhimji, Steven Andrew Farrell,
Thorsten Kurth, Michela Paganini, Prabhat, Evan Racah. Nov 9, 2017. 6
pp. Conference: C17-08-21, e-Print: arXiv:1711.03573

