
A Sustainable Collaboratory
for Coastal Resilience Research

Shuai Yuan and Steven R. Brandt
Center for Computation and Technology

Louisiana State University
Email: sbrandt@cct.lsu.edu

Qin Chen and Ling Zhu
Department of Civil and Environmental Engineering,

and Department of Marine and Environmental Sciences
Northeastern University

Rion Dooley
Texas Advanced Computing Center

Abstract—Our goal is to create a cloud-ready repository of
open-source coastal modeling tools which enable scientists and
engineers to use high performance computers to study a variety
of physical and ecological processes. The system we are building
leverages Jupyter notebooks, Docker, Singularity, and the Agave
Platform to create a platform for running jobs and analyzing data
in a way that is (1) intuitive, (2) repeatable, (3) and collaborative.

The paper describes the methodology to integrate the four
technologies into the system that serves the coastal resilience
research collaboratory. Two commonly used open-source numer-
ical models are used to demonstrate the utility of the system.
Simulation results of ocean waves generated by Hurricane Issac
(2012) and coastal wave evolution are presented as an illustration.
The sustainability of the collaboratory is discussed in detail.

I. INTRODUCTION

Communities on modern river deltas (with total populations
> 500 million people) are threatened due to global reduc-
tions in river sediment, land subsidence and rising sea level.
Hundreds of billions of dollars must be invested to secure
human communities from these threats in the face of continued
population growth. The many risk mitigation projects needed
to address these issues will require an intensive effort in com-
puter simulations that are integrated with data collection and
engineering analytics for guidance. This is a grand challenge
for earth system science as dynamic environmental processes
at appropriate space and time scales which must be integrated
into observation networks and coupled simulation models.

Our vision (which was funded by NSF [Cyb]) was to
build a Coastal Resilience Collaboratory (CRC) to advance
research, enrich training, inspire collaboration, and inform
decision making through highly available innovation-enabling
cyberinfrastructure (CI), with a particular focus on geosciences
and engineering integrated with ecosystem ecology for the
sustainability of deltaic coasts. We proposed an integrated,
coupled modeling framework built on top of a platform-
transparent cloud technology tailored for the coastal modeling
community. Its primary focus is to facilitate the deployment
of complex models on cloud and cloud-like architectures with
negligible performance overhead through use of low-level
virtualization technology.

We demonstrate a system that enables and facilitates the re-
search and collaboration at the CRC. The system is built upon

(1) Jupyter notebooks to create a customizable, interactive tool
for science discoveries and engineering analyses, (2) the Agave
framework to simplify sharing of data and accessing high
performance computing resources, (3) Singularity to deploy
and run simulation codes on cloud-enabled resources (making
use of MPI and multiple compute nodes), and (4) Docker
both to construct the images for singularity and to deploy
the Jupyter notebooks to user machines and workstations.
The integration of these technologies provides an intuitive
and easy-to-use way for users to interact both with high
performance computers and with each other.

II. METHODOLOGY

A. Docker and Singularity

Docker is an open platform allowing developers to build,
ship, and run distributed applications in self-contained envi-
ronments. It consists of Docker Engine, a portable, lightweight
runtime and packaging tool, and Docker Hub, a cloud service
for sharing applications and automating workflows. Docker
provides a convenient framework for providing standardized,
repeatable builds that is readable and understandable. Docker
itself, however, because of its reliance on root permissions for
so many of its tasks, has limited usage in a high performance
computing (HPC) environment.

For this reason, Singularity and other similar tools have been
created. Singularity does not allow regular users any form of
sudo access. However, because root access is often needed
during the creation of images (e.g. for installing software),
Singularity frequently relies on Docker to obtain images for
use on HPC machines.

A difficulty with Singularity is that, while it can be used
for running MPI jobs, the MPI version inside and outside the
container must be matched exactly with one installed on the
host, even (in many cases) including compiler options. In this
project we developed a technique to circumvent this problem
by using bash’s exec command to start the desired image from
within the .bashrc file. That allows us to launch a job from
inside Singularity and use only the MPI version inside the
container. Thus, we do not need the same version of MPI (or
any version of MPI at all) to exist on the host.

Presented at Gateways 2018, University of Texas, Austin, TX, September 25–27, 2018.
https://gateways2018.figshare.com/

Getting this to work is not as straightforward as
it sounds. When OpenMPI starts up, for example, it
runs a command similar in form to “ssh orted ...”,
where orted is the name of OpenMPI’s remote exe-
cution program and “...” is the argument list passed to
orted. We need to change the command orted ... to
“singularity exec my.simg orted ...”. It might
be possible to modify OpenMPI to make this change, however,
we have found a simpler solution based on ssh.

Normally, ssh does not make the command it is executing
available through the argument list (the variable $* in
bash) or an environment variable. It will, however, make
the command available if some command is specified in the
~/.ssh/authorized_keys file, i.e. if the line containing
the public key starts off with the command directive,
e.g. “command="/bin/true" ssh-rsa AAB...”
With this change, ssh will put the relevant command,
e.g. “orted ...” in the special environment variable
“SSH_ORIGINAL_COMMAND.” If, in our ~/.bashrc,
we execute “singularity exec my.simg
$SSH_ORIGINAL_COMMAND,” we now have a solution
which enables us to use a single MPI version, one installed
inside the container, without the need for having a matching
installation (or indeed, any MPI installation) on the host. For
this project we developed scripts to make this exec function
select the correct image from the many available on the host
as execution begins on each node, allowing one user account
to be used for running many types of jobs. It is probably
simpler, however, to assign each image to a single user id
(e.g. a user named “swan” to run Swan jobs, and a user
named “funwave” to run Funwave-TVD jobs), and to have
that user always exec into that image.

B. Jupyter

Jupyter is a tool for interactive computing that is halfway
between a GUI and a command-line tool, offering the best of
both worlds for many users. Although the Agave Platform’s
reference science gateway, Agave ToGo, provides a wizard
and form-driven interface for submitting jobs, our target au-
dience finds the lower level Python interface made available
through Jupyter Notebooks[KRKP+16] to be convenient for
their largely interactive analytics needs.

In this project, we employ Jupyter to enable researchers to
perform more detailed analysis than what is possible from a
web submission tool alone. We utilize Agave’s CLI to stream-
line access to Agave’s capabilities from multiple kernels.

C. The Agave Platform

One step removed from our container runtimes, is the Agave
Platform. Just as Docker and Singularity provide a consistent
interface running our code, we need an abstraction to access
data and launch our containers.

Because our project does not provide ongoing compute
and storage infrastructure to support a persistent Jupyter Hub
instance, and because we do not provide shared resource allo-
cations to run published containers, it is imperative that anyone

in the community should be able to run coastal modeling codes
from any Jupyter Hub, Notebook, or Lab environment on any
system that can run our community images.

Considerable effort has gone into enabling remote execu-
tion within the Jupyter project through the JupyterSpawner
community projects [jup], [TCC+17], [Mil17]. This project is
inspired by theirs, but uses a Docker container for a Jupyter
Notebook rather than a JupyterHub. Our goal was to make the
installation and use of the Coastal Model Repository (CMR)
as decentralized and light weight as possible, needing only
minimal support from HPC support staff. Indeed, our system
is intended to be able to make use of a workstation or a small
group-managed cluster.

Other projects have utilized a variety of other approaches
to manage remote computation. Middleware libraries such
as SAGA[GJK+06], Vine[RDG+07], and DARE[MKEKJ12]
have been popular in the gateway community over the years.
Programmatically invoking containers and raw code from
within the Python kernel is common in high-trust and single
user environments. Co-locating notebook servers with the
container runtime, and forking direct system callouts are also
frequently used. Each of these approaches requires knowledge
of the target execution environment and valid user credentials
to run correctly. Adopting them would introduce a trade-off
between security, portability, reusability, and reproducibility
into our notebooks and force users without experience in these
areas to make such choices.

By delegating the mechanics of managing application assets,
interacting with systems and schedulers, monitoring, data
staging and archiving, notifications, and logging to Agave, we
can treat each simulation, regardless of size and duration, as an
asynchronous process and conceptually deal with it as a high-
level step in our experiment. Every aspect of the experiment
is recorded both in the notebook and in Agave’s provenance
trail and can be shared, published, and repeated by anyone or
everyone we wish to grant access.

Our Coastal Modeling notebooks leverage Agave’s public
tenant, which is an independently managed instance of the
platform available for anyone in the open science community
to use free of charge. In that tenant, we created two execution
systems representing LSU’s Shelob HPC cluster and a virtual
machine used for small runs and testing. We also created one
storage system representing a high speed file system connected
to Shelob where we are storing our published images. Finally,
we created an Agave app that accepts a single input and targets
Shelob’s PBS scheduler as the execution target.

D. Putting it All Together

To use the system, the user first starts the Jupyter notebook
through our docker image. The user then configures the
notebook, providing it with Agave credentials and a choice of
HPC resource. If the /home/jupuser directory is mounted
from outside the container, this configuration information will
persist there, removing the need to run configuration again.

Additionally, the ability to run jobs on an HPC resource
requires the permission of the owner of a community account

Figure 1. Schematic of the CMR workflow

for the given resource. These can be easily granted through
Agave. The CMR, however, also allows the user to configure
such an account on any publicly accessible workstation or
cluster that they control (where, minimally, Singularity and
the images to be run need to be installed).

To simplify the running of jobs, the Docker/Singularity
images that we create have some features in common.
All of them, for example, contain a directory called
"workdir" from which mpi is called, and a script named
/usr/local/runapp.sh which launches the mpi job. The
inputs are sent through Agave to the image as input.tgz
and the results come back as output.tgz.

The above choices make it possible to use a single standard
batch script which receives the image name as a parameter.
From Agave’s perspective, all jobs, regardless of the image
they use, look the same. The notebook, however, has custom
code for setting parameters and visualizing computational
results.

As jobs progress through the stages of QUEUED, RUNNING,
FINISHED, etc. Agave will call back to web servers to
provide notifications. At present, we make use of Push-
Bullet [Pus], to receive SMS notifications, but any service
accessible through the web could be utilized. The notification
service allows a user to submit a job, then walk away or work
on other things while waiting for the job to make it through
the queue and run. Once the data is ready to analyze, they can
return to the notebook and continue working.

You can see how all these pieces are connected in Fig. 1.
Agave sits at the center, orchestrating the movement of files,
the starting and monitoring jobs, and sending notifications
through SMS.

III. RESULTS

The system described above will incorporate a number
of open-source numerical models commonly used by the
coastal science and engineering community. For demonstration
purposes, we show two applications: 1) Simulation of ocean
waves generated by Hurricane Isaac (2012) in the Gulf of
Mexico (GoM) using SWAN (Simulating WAve Nearhsore,

[SWA]); and (2) simulation of nearshore nonlinear wave prop-
agation using FUNWAVE-TVD (the TVD version of the FUlly
Nonlinear WAVE model, [FUN]). First, the images of SWAN
and FUNWAVE-TVD were generated using Docker. Second, a
Jupyter notebook that incorporates the functionalities of Agave
and Singularity as well as data visualization was developed.
Third, a Docker image of the Jupyter notebook was generated.
For our applications, a user can simply download the Jupyter
notebook image, and modify the commonly used parameters
in the input file of the model, run numerical simulations and
visualize the model results.

A. Modeling of Hurricane-Generated Waves Using SWAN

SWAN is a spectral wave model based on the wave energy
(action) balance equation that computes random, short-crested
wind-generated waves. In this demonstration, SWAN is ap-
plied to simulate the wave field in the GoM during Hurricane
Isaac in 2012. The hurricane wind field and bathymetry at
the computational grids are prepared by the user. Fig. 2(a)
shows the graphical input interface generated by the Jupyter
notebook, where users can upload the input file, edit the
parameters in the input file (e.g. time step) and choose the
format of output. Fig. 2(b) exhibits the track for Hurricane
Isaac (2012) and the bathymetry of the GoM. Fig. 2(c)
presents the modeled significant wave heights in the study
area, visualized through the Jupyter notebook.

(b) (c)

(a)

Figure 2. (a) Graphical input interface generated by the Jupyter notebook,
(b) track for Hurricane Isaac (2012) and (c) modeled significant wave heights
in the GoM.

B. Modeling of Nearshore Wave Processes Using FUNWAVE-
TVD

FUNWAVE-TVD is a phase-resolving wave model based on
the Boussinesq equations. In this demonstration, FUNWAVE-
TVD is applied to simulate the wave propagation over an
elliptic shoal resting on a plane beach (slope 1/50). The bottom
topography, shown in Fig. 3(a), is prepared by the user. Fig.
3(b) presents the snapshot of the surface elevation at 30 sec,
visualized through the Jupyter notebook.

(a) (b)

Figure 3. Contour plots of (a) water depth and (b) surface elevation in the
study area.

IV. SUSTAINABILITY

The CMR will provide and maintain a minimal operational
system image to synchronize with upstream development
by the open source community for bug fixes, performance
improvement, and feature enhancement. It will also automati-
cally check community code repositories, such as Community
Surface Dynamics Modeling System (CSDMS [CSD]) and
DesignSafe-CI [Des], as well as the download page of each
model hosted on the CMR. Once a new release of a model
is detected, the CMR will download, compile, and test the
model to update the repository. With the help of the CMR,
a coastal researcher will be able to start running state-of-
the-art models on the latest cloud-ready computing systems
in minutes. Workflow management tools will be able to take
advantage of the CMR to quickly deploy coastal models on
academic and commercial cloud platforms while continuing
their support on traditional HPC systems. With community
involvement, we will build a software ecosystem for coastal
models around the CMR to better serve the coastal researchers
to speed up scientific discovery and decision-making process.

V. CONCLUSION

For years, many coastal scientists and engineers who didn’t
run large-scale applications regularly were inhibited by the
effort needed to gain the specialized knowledge needed to
effectively use HPC resources for their research. Their time
could be better spent on their research if they didn’t have
to worry about how to compile software and run their ap-
plications in different HPC environments. Our Coastal Model
Repository (CMR) is targeting cloud and cloud-like architec-
tures to enable quick deployment of coastal models and their
working environments. The CMR will serve as a community
repository for precompiled open source models that are widely
used by coastal researchers. While source code for various
executables and libraries will be available, CMR will also
introduce distribution of containerized coastal models, which
can run on any cloud-like architecture directly, and with
negligible system overhead.

VI. ACKNOWLEDGMENTS

This work was conducted in support NSF Awards
1856359 [Cyb], 1450437 [Aga], and the Louisiana State
High Performance Computing facility (including the clusters
SuperMike and Shelob).

REFERENCES

[Aga] https://www.nsf.gov/awardsearch/showAward?AWD_ID=
1450437&HistoricalAwards=false.

[CSD] Csdms model repository. https://csdms.colorado.edu/wiki/
Model_download_portal.

[Cyb] http://www.nsf.gov/awardsearch/showAward?AWD_ID=
1539567.

[Des] Designsafe-ci. https://www.designsafe-ci.org/.
[FUN] Funwave. https://fengyanshi.github.io/build/html/index.html.
[GJK+06] Tom Goodale, Shantenu Jha, Hartmut Kaiser, Thilo Kiel-

mann, Pascal Kleijer, Gregor von Laszewski, Craig Lee, Andre
Merzky, Hrabri Rajic, and John Shalf. SAGA: A Simple API
for Grid Applications. High-level application programming on
the Grid. Computational Methods in Science and Technology,
12(1):7–20, 2006.

[jup] Jupyter spawner. https://github.com/jupyterhub/dockerspawner.
[KRKP+16] Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez,

Brian E Granger, Matthias Bussonnier, Jonathan Frederic, Kyle
Kelley, Jessica B Hamrick, Jason Grout, Sylvain Corlay, et al.
Jupyter notebooks-a publishing format for reproducible compu-
tational workflows. In ELPUB, pages 87–90, 2016.

[Mil17] Michael Milligan. Interactive HPC Gateways with Jupyter and
Jupyterhub. In Proceedings of the Practice and Experience in
Advanced Research Computing 2017 on Sustainability, Success
and Impact, PEARC17, pages 63:1–63:4, New York, NY, USA,
2017. ACM.

[MKEKJ12] Sharath Maddineni, Joohyun Kim, Yaakoub El-Khamra, and
Shantenu Jha. Distributed Application Runtime Environ-
ment (DARE): A Standards-based Middleware Framework for
Science-Gateways. J. Grid Comput., 10(4):647–664, December
2012.

[Pus] The push bullet service. https://www.pushbullet.com/.
[RDG+07] Michael Russell, Piotr Dziubecki, Piotr Grabowski, Michal

Krysinśki, Tomasz Kuczyński, Dawid Szjenfeld, Dominik Tar-
nawczyk, Gosia Wolniewicz, and Jaroslaw Nabrzyski. The Vine
Toolkit: A Java Framework for Developing Grid Applications.
In Parallel Processing and Applied Mathematics, Lecture Notes
in Computer Science, pages 331–340. Springer, Berlin, Heidel-
berg, September 2007.

[SWA] Swan spectral wave model. http://swanmodel.sourceforge.net/.
[TCC+17] Rollin Thomas, Shane Canon, Shreyas Cholia, Lisa Gerhardt,

and Evan Racah. Toward interactive supercomputing at nersc
with jupyter. In Cray User Group (CUG) Conference Proceed-
ings. Cray User Group (CUG), 2017.

https://www.nsf.gov/awardsearch/showAward?AWD_ID=1450437&HistoricalAwards=false
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1450437&HistoricalAwards=false
https://csdms.colorado.edu/wiki/Model_download_portal
https://csdms.colorado.edu/wiki/Model_download_portal
http://www.nsf.gov/awardsearch/showAward?AWD_ID=1539567
http://www.nsf.gov/awardsearch/showAward?AWD_ID=1539567
https://www.designsafe-ci.org/
https://fengyanshi.github.io/build/html/index.html
https://github.com/jupyterhub/dockerspawner
https://www.pushbullet.com/
http://swanmodel.sourceforge.net/

	Introduction
	Methodology
	Docker and Singularity
	Jupyter
	The Agave Platform
	Putting it All Together

	Results
	Modeling of Hurricane-Generated Waves Using SWAN
	Modeling of Nearshore Wave Processes Using FUNWAVE-TVD

	Sustainability
	Conclusion
	Acknowledgments
	References

