Understanding Turning Radius and
Driving in Convex Polygon Paths in
Introductory Robotics

George K. Thiruvathukal, Loyola University Chicago; Dave Garcia,
Independent; Ronald |. Greenberg, Loyola University Chicago

Since most robots are built differently and have different shapes and sizes, you need to
calibrate the turning radius for each robot that you want to use.

Start by programming a (Lego) move block to rotate the motors one (1) rotation in a straight line
(circle with arrow that has a # inside). Then measure how far the robot travels. Let’s say it
travelled 15 cm.

OO D

We can now see the rolled out circumference of the wheel in a
straight line. The dotted line is the diameter, and that distance is
4.78 cm, we could have just measured the diameter, multiplied it
by pi (3.14) and figured out the circumference that way.

15 cm
&

By knowing how far a wheel travels when it rotates once, we can program the robot to travel any
desired distance we want without ever thinking about this number again. If the robot travels 15
cm for every 1 rotation of the motor, then we can easily program the robot to travel 45 cm. The
distance we wish to travel divided by the distance for one rotation equals the number of
rotations. 45cm—+15cm = 3.

When we set the steering section (up arrow symbol) in the move block to -100 or 100, the robot
will spin in place. That spinning motion creates an imaginary circle pattern on the floor. This
circle’s circumference is also the distance the wheels are traveling in order to spin 360 degrees.
Once we know what the circumference of that imaginary circle is, we can use our formula from
above to program the motors to rotate enough to spin 360 degrees. Since we can't straighten
out this circle, we will have to figure out the circumference by measuring the diameter. What is



- ~
- -
- L

diameter

Fs
l -~
.

~a- -

the diameter? When the robot is spinning around, the midpoint between the wheels is the center
of the circle, so if we measure the distance between the wheels, we will have the diameter of
this circle.

Measure the distance between the wheels (I usually measure from the outer edge of one wheel
to the outer edge of the other). Let’s say the diameter is 19.11 cm. Multiply this number by =
and we have the circumference. 19.11 cm x 3.14 cm = 60 cm If the circumference of the
spinning circle is 60 cm, then all we need to do is use our original formula: distance needed(60
cm)-+distance from one rotation(15 cm)=number of rotations(4). The result shows how many
rotations are needed to spin the robot in place for 360 . In the move block, set the steering (up
arrow symbol) to either -100 or 100, this will set the robot to spin in place. In the same move
block, set the number of rotations (circle with arrow and # inside) to the result from your last
equation. Since the measurement may not be perfect, you may need to tinker with the final
number of rotations in order to turn it exactly 360 degrees.

So now that you know the number of rotations it takes to turn the robot 360 degrees, here are a
couple of exercises you can do to add turns to your robotics explorations:

- (easy) Write a function (using a My Block) that turns a specific number of degrees. Since
the above exploration resulted in knowing how to turn 360 degrees, you can make a
parameter in your function to turn by a specified number of degrees and use an
arithmetic block to divide by 360 so you can compute the correct number of rotations.
You should take care to ensure that the calculation is being performed in decimal
(floating point).

- (easy) Using the function you developed in the previous step, write a program that drives
the robot from any starting point and follows the imaginary legs of an equilateral triangle.
Recall that an equilateral triangle has equal-length sides and 60-degree angles between
each edge. The pseudocode to draw this triangle is to do the following:

- drive straight K rotations
- turn 60 degrees
- drive straight K roations
- turn 60 degrees
- drive straight K rotations



- (optionally) turn 60 degrees (to point in the same direction the robot was
originally facing)
- (easy) Write a program that drives a square (equal-length sides and 90-degree angles)
pattern instead of a triangle. The pseudocode for this is similar to the equilateral triangle
but uses 90-degree turns instead of 60-degree turns

- (intermediate) Write a program that can drives in a general convex polygon pattern.
Recall that for a convex polygon, the interior angle calculation is (n-2) x 180 / n. Given
what we did in the two previous exercises, for n=3, this formula gives 180/ 3 = 60. For
n=4, this formula gives (4-2) x 180 /4 = 360 / 4 = 90. These are the familiar angles for
equilateral triangles and squares, respectively. To do this exercise, you will find it
convenient to create a function that performs the interior angle calculation. You will also
find it convenient to use a loop that iterates over the number of sides. You might find it
convenient to first “test” this idea by modifying the two previous exercises to use a loop
instead of explicit driving and turning n times.

- (intermediate) Rewrite all of your programs to appear on separate “tabs” (programs) in
your Lego EV-3 development environment. Create a tab “triangle” to draw a triangle. Use
your function to drive in a convex polygon with parameter n=3. Repeat for “square” with
n=4. Try to make some additional convex polygons (octagon, n=8). Each of these tabs
should be a single block that is calling your general polygon driving function (My Block).

- Other more advanced options may be added, pending acceptance of our Nifty
Assignment.



