SUPPLEMENTAL INFORMATION

TFEB-driven endocytosis coordinates MTORC1 signaling and autophagy
Running title: TFEB regulates endocytic trafficking of essential LYNUS components to mediate MTORC1 signaling and autophagy flux.
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SUPPLEMENTARY FIGURES
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Figure S1. Starvation or overexpression of TFEB induces EGF-rhodamine internalization and CAV2-mediated endocytosis. (A-C) EGF-rhodamine and endogenous CAV2 proteins relocalize from the plasma membrane to intracellular compartments under amino acid starvation. Bar diagram represents a quantitative assessment of intracellular vs plasma membrane-bound EGF-rhodamine in HEK-293T cells and CAV2 in NIH3T3 cells. Scale bar: 10 μm.  (D) Overexpression of WT TFEB-Flag or mutant TFEBS211A-Flag promotes internalization of endogenous CAV2 in transiently transfected NIH3T3 cells. Scale bar: 10 μm in overview images and 5 μm in magnified images.  Bar diagram represents a quantitative assessment of intracellular vs plasma membrane-bound CAV2. (E) Amino acid starvation increases, whereas depletion of TFEB significantly reduces, the expression of endogenous CAV2 proteins in HEK-293T cells. Bar graph represents quantitative analyses of relative protein levels. Data are represented as mean ± SEM, n = 3; *p ≤ 0.05; **p ≤ 0.01; ANOVA. 
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Figure S2. Overexpression of TFEB increases MTORC1 activity. Stable CAD cells expressing doxycycline-inducible WT Flag-TFEB proteins were cultured in nutrient-rich medium and treated with doxycycline for 24 h. MTORC1 activity was assessed by p-RPS6KB1 immunoblots. Bar graph represents relative protein levels of p-RPS6KB1:total RPS6KB1. Data are represented as mean ± SEM, n = 3, p ≤ 0.05; **p ≤ 0.01; ANOVA.
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[bookmark: _Hlk513461569]Figure S3. Inhibition of cellular endocytosis attenuates MTORC1 signaling. (A) Hypertonic sucrose medium dissociates MTORC1 from lysosomal membranes. Cells were cultured in nutrient-rich medium containing a 0.45 M sucrose for 1 h. Localization of lysosomal MTORC1 was determined by immunostaining. Bar graph represents quantitative analyses of colocalization between LAMP2- and MTOR-positive signal. (B) Hypertonic sucrose medium relocalized cytosolic TSC2 to lysosomal membranes. Cells were cultured in nutrient-rich media containing 0.45 M sucrose for 1 h. Localization of lysosomal TSC2 was determined by immunostaining. Bar graph represents quantitative analyses of colocalization between LAMP2 and TSC2 signal. Scale bar: 10 μm. (C) Time course analysis of hypertonic sucrose-mediated inhibition of MTORC1 signaling.  NIH-3T3 fibroblasts were incubated in media containing 0.45 M sucrose for the indicated time points, followed by immunoblot analyses assessing p-RPS6KB1 and total RPS6KB1 protein levels. Bar graph represents quantitative analyses of the relative protein levels of p-RPS6KB1 relative to total RPS6KB1. (D) Inhibition of DNM-dependent endocytosis with dynasore (for 4 h) reduces the quantity of lysosomal SLC38A9; see bar diagram for quantitative evaluation of SLC38A9 and LAMP2 colocalization.  Scale bar: 10 μm in regular and 5 μm in magnified images. (E) Time course analyses of ciliobrevin A-mediated inhibition of dynein showed a swift accumulation of LC3-II with gradual inhibition of MTORC1 activity.  HEK-293T cells were treated with ciliobrevin A for the indicated time points followed by p-RPS6KB1 and LC3 immunoblot analyses for MTORC1 activity and autophagosome biogenesis, respectively. Bar graphs represent a quantitative assessment of relative protein levels. Data are represented as mean ± SEM, n = 3, *p ≤ 0.05; **p ≤ 0.01; ANOVA. 
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Figure S4. Dynasore or ciliobrevin A treatment does not affect fusion of autophagosomes with lysosomes. Cells were cultured in media deficient of leucine and glutamine and containing either DMSO, dynasore or ciliobrevin A for up to 6 h. Colocalization of autophagosomal marker LC3 and lysosomal marker LAMP2 was determined by immunostaining. Arrowheads point towards spots positive for both markers. Bar graph represents quantitative analyses of colocalization between LAMP2 vesicles and LC3. Data are represented as mean ± SEM, n = 3, n.s., not significant; ANOVA. Scale bar: 10 μm.  
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