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A Proofs

Proof of Lemma 1. The proof is straightforward and therefore omitted.
Proof of Theorem 1. Let Wy, ..., W, be the words of Dy, where ¢ = 27 —1. Without loss

of generality, assume that the first ¢ words contain only generated factors and the other
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q—g words contain both basic and generated factors. Fori = g+1,...,q,let W; = {H;, G;}
where {H;} and {G;} denote a set of basic and generated factors, respectively. Note that
all sets {G;} are different. Otherwise, there are two distinct words W; = {H,;, G} and
W; = {H;,G} in the defining relation of Dy. This implies that the defining relation of D,
has a word involving only basic factors, which is a contradiction.

For any u € Zy, let H; + u be the set formed by applying the permutation [, to every
element of H;. The q words of D, then are Wy',..., W/, where W = W; fort=1,...,g
and W = {H;+u, G,} fori = g+1,...,q. We will show that the words W}* are different for
u=0,...,b—1,and i = g+1,...,q. First, suppose that W} = W7 for some 0 <u <v <b
and g +1 < i < j < ¢. Since all sets {G;} are distinct, we must have i« = j and thus
W = WP, This implies that H; +u = H; + v or that

H;=H; +w (mod b), (S.1)
where w = v — u. Let r; = |H,|, equation (S.1) implies that
H; ={x¢,x0 + w,x0 + 2w, ...,z + (r; — Dw}

for some o, and that

riw=0 (mod b). (S.2)

Since Condition 1 implies that 1 < r; < b, where b is a prime, equation (S.2) implies that
w =0 (mod b). Therefore, since 0 < w < b, we have that w = 0 and so u = v, which is a
contradiction.

Therefore, the complete words containing basic and generated factors in Dy, D1, ...,
Dgy_q are different from each other. By Lemma 1, these complete words define d(q — g)
different partial words with an aliasing index of 1/d in the concatenated design. The
g complete words containing only the generated factors in Dy remain complete in the

concatenated design because each such word remains the same after permutations on the

set of basic factors. This completes the proof.

Proof of Theorem 2. We need to show that the 2? —h —1 words containing the generated
factors and the set of permuted basic factors in the defining relation of Dy change after
linear permutations on the set B. Since the number of permuted basic factors is a prime,

the proof is similar to Theorem 1 and therefore omitted.



Proof of Lemma 2. Let Dq,..., Dy be d parent designs of strength ¢ and with n runs.
Let T = (Df,...,DI)T and b = (111, ..., d11)", where 1,, denotes a column of ones. Let
Cy, = (T,b) be the blocked concatenated design. Design C}, is a mixed-level orthogonal
array of strength ¢ since, for all sets of ¢ columns, the level-combinations appear equally
often. So, the d—1 block contrast vectors are orthogonal to the j-factor interaction contrast
vectors for 7 = 1,...,t — 1. For any set of ¢t + 1 columns that include column b, all level-
combinations in this set appear equally often in Cy,. Thus, the block contrast vectors are
also orthogonal to all t-factor interaction contrast vectors. As a result, the block effects are

not confounded with the main effects and all the j-factor interactions for j = 2,... .

B Issues with permuting other sets of factors

Permuting sets of factors other than the basic factors in the regular design does not permit
an easy characterization of the aliasing structure of the concatenated design. This is due
to possibly repeat complete words involving basic and generated factors, in two or more
isomorphic copies of the regular design. We illustrate this issue using a 64-run design con-
structed by concatenating isomorphic copies of a 2'2=7 design involving linear permutations
on the generated factors. To save space, we only consider words of length 4 in the regular

and concatenated designs.

Example S.1. Let Dy be the minimum aberration 227 design with basic factors 1, 2,
3, 4 and 5, and generators 6 = 123, 7 = 124, 8 = 134, 9 = 234, t, = 125, t; = 135 and
to = 145. The partial defining relation of Dy is

I = 256t; = 25Tty = 34t1te = 356ty = 358ty = 457ty = 458t
— 4789 = 4Otgt, = - - -
Design Dy has GR(Dy) = 4 and By(Dy) = 38. Let D; be an isomorphic copy of Dy formed

by applying the linear permutation /; to the set of generated factors; that is, 6 — 7, 7 — 8§,

8 —=9,9 —tg, tg = t1, t; — t and ty — 6. The partial defining relation of D is

I = 25Tty = 2568 = 346ty = 357t; = 3569 = 458t = 459,

= 489ty = 4Atot1te = -+ - .



The defining relations of Dy and D; have two words in common, namely 257, and 458t
which contain both basic and generated factors. This is because 257t, is obtained from
256t, by applying [; to the generated factors. Similarly, 458t; is obtained from 457¢,. Let
C be the 64-run design constructed by concatenating Dy and D;. By Lemma 1, C' has the
factors sets {2,5,7,t2} and {4,5,8,t1} as complete words of length 4. It is easy to verify
that the other 4-factor sets either form partial words with an aliasing index p4(S; C) = 1/2

or do not form a word.

Example S.1 shows that complete words containing basic and generated factors may be
repeated in the parent designs. A problem with these repeat words is that their presence
depends on whether words in the defining relation of the regular design can be obtained
from others via linear permutations, which hinders the characterization of the aliasing
structure of the concatenated design. Permuting only the basic factors circumvents this
issue because the words in the defining relation contain different sets of generated factors,
which do not change; see Theorem 1 and its proof in Section A. Permuting other sets of

factors such as all factors leads to a similar problem as permuting the generated factors.

C Issues with 2™7P designs when m — p is not a prime

If the 2™7P design has a number of basic factors m — p that is not a prime, it is not possible
to classify the words in the concatenated design into absent, complete, or partial with an
aliasing index of 1/d, where d is the number of concatenated copies. Depending on the
properties of the 277 design, other partial words with an aliasing index between 1/d and
1 may be present in the concatenated design. To illustrate this issue, we first introduce a
general class of permutations called cycles, to which the linear permutations belong. Next,
we use a simple but representative example where we concatenate three isomorphic copies
of a regular design with 4 basic factors.

Let S, denote the group of all permutations of the set Z, = {0,...,b—1}. A permutation

o € Sy is a g-cycle if there are ¢ elements a4, ..., a, € Z;, such that
1. o(a;) = a4 for 1 <i < q—1;

2. o(ay) = ay;



3. o(j) =7 forall j & {a1,as,...,a,}.

We use the notation (ay,...,a,) for a g-cycle . Two cycles (ay,...,a,) and (by,...,b,)
are said to be disjoint if the sets {ay,...,a,} and {b,...,b,} do not have any element
in common. Consider two permutations ¢ and 7, the composition of two permutations,
denoted as o7, is the operation such that (o7)(i) = o(7(i)). If b is a prime, the linear
permutation [, € Sy, is a b-cycle over Z,, also referred to as a cyclic permutation, for
u # 0 (mod b). If b is not a prime, [, can be expressed as the composition of two or more

disjoint cycles, except when u and b are relatively prime.

Example S.2. Suppose that we have a regular design with four basic factors, labeled as
0, 1, 2 and 3. Let 02G; and 13G5 be two words in its defining relation, with {G;} a set
of generated factors. Consider a design C' constructed by concatenating three isomorphic
copies of this regular design, each one formed by applying [,,, u = 0, 1, 2, to the set of basic
factors. Note that I, = (0,1,2,3) whereas Iy = (0,2)(1, 3), the composition of two disjoint
2-cycles. It is easy to see that the defining relations of the isomorphic copies formed from
lp and [y share the words 02G; and 13G5. On the contrary, the defining relation of the
isomorphic copy formed from /; does not contain these words. By Lemma 1, the factor sets

{0,2,G1} and {1, 3, G5} form partial words with an aliasing index of 2/3 in C.

Example S.2 shows that a concatenated design constructed from a 2™~ design with
m — p not a prime may have partially aliased words with an aliasing index between 1/d
and 1. A problem with these words is that their presence depends on whether the [, used
can be expressed as the composition of disjoint cycles, and on whether the 2™7P design has
complete words that include the cycles. For this reason, it is difficult to characterize the
aliasing structure of the concatenated design constructed from a 2™ P design with m — p
not a prime. Theorems 1 and 2 circumvent this issue by permuting a prime number of

basic factors and restricting to regular designs that satisfy Condition 1; see Section A.

D Regular designs used

Table S.1 shows the regular designs of strength 3 used to construct our concatenated

designs. The table includes the labels, the run sizes and the partial wordlength patterns



of the designs. All the designs in the table have minimum aberration and were obtained
from the FrF2 package (Gromping, 2014) in R. The package contains a collection of good
regular designs from Chen et al. (1993), Block and Mee (2005), Xu (2009) and Ryan and
Bulutoglu (2010). The designs in Table S.1 are even-odd, except for the 32-run designs
with 11 factors or more and the 64-run designs with 21 factors or more, which are even

designs.

E Contributions of theorems and algorithm

In this section, we show the contributions of our theoretical results and the VNS algorithm
for constructing nonregular strength-3 designs. To this end, we use the three design cases
shown in Table S.2. The table shows the run sizes and numbers of factors of the concate-
nated designs, the regular designs used (see Section D) and the numbers of parent designs.
The regular designs have a number of basic factors that is a prime. Case 1 requires the
construction of a 96-run design from three isomorphic copies of the minimum aberration
(MA) 216 design with 5 basic factors. Case 2 requires the construction of a 384-run design
from three isomorphic copies of the MA 221714 design with 7 basic factors. The last case
in the table requires the construction of a 896-run design from seven isomorphic copies of
the MA 2%-21 design with 7 basic factors. The construction settings for these designs are
described in Section 4.1 in the main text.

Tables S.3, S.4 and S.5 show the construction of the concatenated designs from Cases
1, 2 and 3, respectively. The tables show the generalized resolution (GR), the Fj vector
and the B, value of the regular and concatenated designs. A dash as an element of the F}
vector means that the corresponding J4-characteristic does not exist.

Table S.3 shows the steps of our construction method to generate the 11-factor 96-run
concatenated design from Case 1. The MA 2176 design has 25 complete words of length 4,
three of which only include the generated factors. Theorem 1 generates a 9-factor 96-run
concatenated design with 3 complete words of length 4 and 66 partial words of the same
length with a Jy-characteristic of 32. This concatenated design has a B, value of 10.33.
The improved concatenated design, resulting from our VNS algorithm, eliminates all the

complete words of length 4. For this reason, it has a GR value of 4.66. The improved
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Table S.1: Regular minimum aberration designs of strength 3.

Runs Design By Bs Bg Runs Design By Bs Bg

32 29+ 6 8 0 128 228721 210 840 2800
2105 10 16 0 22922 266 945 3472
211-6 25 0 27 230-23 335 972 4662
2127 38 0 52 23124 391 1134 5826
21378 95 0 96 232725 452 1322 7219
214-9 77 0 168 23326 518 1543 8863
215710 105 0 280 23427 589 1800 10788
216-11 140 0 448 23528 665 2100 13020
64 217711 59 108 150 236-29 756 2401 15736
218-12 78 144 228 23730 854 2744 18886
219713100 192 336 23831 959 3136 22512
220-14 125 256 480 239732 1071 3584 26656
221=15 904 0 1680 210-33 1190 4096 31360
222716 250 0 2304 256 224716 26 216 584
223711 304 0 3105 22517 34 262 760
22418 365 0 4138 226-18 43 325 963
225719 435 0 5440 22719 53 395 1224
226-20 515 0 7062 22820 64 476 1550
128 22013 36 152 340 22921 78 579 1908
22114 o1 200 414 230-22 93 672 2400
222715 65 248 572 231723 113 792 2928
223-16 83 316 744 23224 133 932 3576
224717 102 384 992 233725 153 1095 4360
225718 124 482 1312 23426 176 1280 5272
226-19 152 568 1704 23527 200 1488 6360
227720 180 690 2200 236-28 225 1728 7632




Table S.2: Design cases used to evaluate the components of our construction method.

Case Factors Runs Regular design Copies

1 11 96 2116 3
21 384 921-14 3
3 28 896 92821 7

concatenated design has 69 partial words of length 4 (three more than the concatenated
design resulting from Theorem 1) with a Jy-characteristic of 32, and a By value of 7.67.
The improved concatenated design with 96 runs and 11 factors is listed in Table 1 in the

main text.

Table S.3: Contributions of Theorem 1 and the VNS algorithm for constructing an 11-factor

96-run design.

Step Runs GR  Fy(96) Fy(32) By
Regular design 32 4 — 25 25
Theorem 1 9% 4 3 66 10.33
VNS Algorithm 4.66 0 69 7.67

Table S.4 shows the steps of our construction method to generate the 21-factor 384-run
concatenated design from Case 2. The MA 22!~ design has 52 complete words of length 4,
12 of which include only the generated factors. Using Theorem 1, we generated a 21-factor
384-run concatenated design with a GR value of 4 and a B, value of 25. More specifically,
this design has 12 complete words of length 4 and 117 partial words of length 4 with a
Jy-characteristic of 128. The VNS algorithm resulted in an improved concatenated design
that turned the 12 complete words into 12 partial words of length 4 with a Jy-characteristic
of 128. The improved concatenated design has a GR value of 4.66, a B, value of 14.33 and
it is listed in Table 3 in the main text.

Table S.5 shows the steps of our construction method to generate the concatenated
design from Case 3. The MA 222! design has a By value of 210. Theorem 1 generated
a 28-factor 896-run concatenated design with 65 complete words of length 4. The By
value of this design is 85.71. The VNS algorithm eliminated all the complete words and



Table S.4: Contributions of Theorem 1 and the VNS algorithm for constructing a 21-factor

384-run design.

Step Runs GR  Fy,(384) F,(128) B,
Regular design 128 4 — 52 52
Theorem 1 384 4 12 117 25
VNS Algorithm 4.66 0 129 14.33

generated an improved concatenated design with a GR value of 4.857. The B, value of the
improved concatenated design is almost four times smaller than the concatenated design
from Theorem 1. The 896-run improved concatenated design is shown in Table 1 in the
main text.

This small study showed that the theoretical results turn most of the complete words
in the regular design into partial words in the concatenated design. The VNS algorithm
further reduces the number of complete words and results in concatenated designs with a

better Fy vector, a better By value and also a better GR than the starting designs.

Table S.5: Contributions of Theorem 1 and the VNS algorithm for constructing a 28-factor

896-run design.

Step Runs GR  Fy(896) F,(128) B,
Regular design 128 4 — 210 210
Theorem 1 896 4 65 1015 85.71
VNS Algorithm 4.857 0 1080  22.04

F Tables of two-level strength-3 designs

We show the strength-3 nonregular designs obtained from 32-, 64-, 128- and 256-run regular
designs in Tables S.6, S.7, S.8 and S.9, respectively. The tables report the regular design
used and the number of parent designs (d) as well as the run size, the generalized resolution
(GR), the F vector, the B, value and the degrees of freedom (df) for estimating two-factor
interactions (2FIs) of the concatenated designs. Tables S.7 and S.9 also include the best



basic factor to keep fixed (f). In the tables, we use a boldface GR value and a boldface
F, vector to indicate that these values are larger and sequentially smaller, respectively,
than the corresponding values of all the benchmark designs available in the literature. The
degrees of freedom for estimating 2FIs are calculated as the rank of the matrix consisting of
the 2F1 contrast vectors (Cheng et al., 2008). A referee pointed out that some concatenated
designs in the tables have repeat runs. Repeat runs are attractive for physical experiments
as they provide a pure error estimate of the error variance. For this reason, we also report
the designs with repeat runs in Tables S.6-S.9.

Table S.6 shows the strength-3 designs constructed from 32-run minimum aberration
(MA) designs. The 128-run designs in the table outperform the corresponding regular MA
designs of Xu (2009) in terms of the G-aberration criterion, except for 9-11 factors. For
these numbers of factors, 128-run regular designs with a strength strictly larger than 3 are
available (Xu, 2009). For 15 and 16 factors, the 128-run designs in Table S.6 have a larger
GR value than the 160-run designs. However, the 160-run designs provide a smaller By
value and also a larger number of degrees of freedom for estimating 2FIs than the smaller
alternatives. The designs with 11 factors or more in Table S.6 are even because they are
constructed from even parent designs; see Section D. This implies that they cannot estimate
more than 15d 2FIs. For 9 and 10 factors, the designs in the table can estimate all the
2FIs. For 11 factors, the 128- and 160-run designs also permit the estimation of the 2FTs.
For 12 factors, only the 160-run design shares this property. Note that, for 9-15 factors,
strength-4 128-run designs are available in Hedayat et al. (1999) and Schoen et al. (2010),
or from the quaternary linear codes (QLCs) of Xu and Wong (2007). Strength-4 designs
with 9 factors and 160 runs are available in Bulutoglu and Ryan (2018). Our 16-factor
128-run design outperforms all the benchmark designs available in the literature in terms
of the G-aberration criterion.

Table S.7 shows the strength-3 designs constructed from 64-run MA designs. For 18
factors or more, our 256-run designs have less G-aberration than the corresponding regular
MA designs in Xu (2009). For 17-21 factors, our 256-run designs also have less G-aberration
than the 256-run QLC designs of Xu and Wong (2007). For 20 and 21 factors, our 256-run

designs have a larger GR value but a smaller B, value and also a smaller number of degrees
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of freedom for estimating 2FIs, than the 320-run designs in Table S.7. The designs with
21 factors or more in the table are even because their parent designs are even too; see
Section D. So, they cannot estimate more than 31d 2FIs. The 320-run designs with 17 and
19 factors in Table S.7 are the only ones that permit the estimation of all the 2FIs. For
17-19 factors, strength-4 256-run designs are available in Hedayat et al. (1999).

Table S.8 shows strength-3 designs constructed from 128-run MA designs. Our 512-
run designs outperform the best 512-run regular designs of Xu (2009) in terms of the G-
aberration criterion, except for 20-23 factors. For these numbers of factors, 512-run regular
designs with a GR value of 5 exist (Xu, 2009). For 27-29 factors, the 640-run designs in
Table S.8 have a smaller GR value than designs with 512 runs. Similarly, for 19-26 and 36
factors, the 768-run designs have smaller GR values than the designs with 640 or 512 runs.
For 30 factors or more, the 896-run designs also provide smaller GR values than smaller
alternatives with 768 runs, except for 36 and 37 factors. However, Table S.8 shows that,
for each number of factors, the B4 value decreases with the run size of the design. For
20-22 factors, the designs in the table permit the estimation of the 2FIs. For 23-25 factors,
the designs with more than 384 runs share this property as well as the 26-factor 640-run
design. For 26-29 factors, the 768- and 896-run designs in the table can also estimate all
the 2FIs. All the designs in Table S.8 are even-odd designs.

Finally, Table S.9 shows the strength-3 nonregular designs constructed from 256-run
MA designs. For 34, 35 and 36 factors, our 1024-run designs provide a larger GR value
than the best 1024-run regular designs available in Xu (2009). All 1280-run designs in
Table S.9 have a GR value of 4.8. For 24-29 factors, the designs in Table S.9 can estimate
all the 2FIs. For 30 factors or more, only the designs with 1024 and 1280 runs share this
property. Note that, for 24-33 factors, regular 1024-run designs of strength 4 are available
in Xu (2009). For 24-36 factors, the 768-run designs in Table S.8 outperform the designs in
Table S.9 in terms of the G-aberration criterion. However, the 768-run designs constructed
from 256-run MA designs provide less Go-aberration than the 768-run designs constructed

from 128-run MA designs. All designs in Table S.9 are even-odd designs.
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Table S.6: Strength-3 designs obtained from 32-run MA designs. A boldface F; vector
indicates that it is sequentially smaller than the F}; vectors of the benchmarks available in
the literature. d: number of parent designs; df: degrees of freedom for estimating 2FIs;

Runs; ;,: design has ¢ duplicate, j triplicate and & quadruplicate runs.

Parent Runs GR  Fy(96,64,32) B, df d
29-1 96500 466 (0,0,18) 2 36 3
128520 4.75 (0,0,24) 15 36 4
1601202 4.8  (0,0,30) 12 36 5
21075 9699 4.66 (0,0,30) 3.33 45 3
128020 4.75 (0,0,40) 2.5 45 4
160002 4.8  (0,0,50) 2 45 5
9211-6 96 4.66 (0,0, 69) 767 45 3
128 475 (0,0,88) 55 55 4
160000 48 (0,0,113) 452 55 5
21277 96 4.66 (0,0,108) 12 45 3
128 475 (0,0,140) 875 60 4
160200 4.8 (0,0,178) 712 66 5
213-8 96 4.66 (0,0,155) 1722 45 3
128 4.75 (0,0,200) 125 60 4
160200 4.8  (0,0,255) 102 74 5
214-9 96 4.66 (0,0,213) 23.67 45 3
128 4.75 (0,0,272) 17 60 4
160200 4.8  (0,0,349) 13.96 74 5
215-10 96 4 (1,0,284) 32.56 45 3
128 4.5  (0,6,360) 24 60 4
160 44 (1,0,464) 1892 75 5
216-11 96 4 (3,0,367) 43.78 45 3
128 45 (0,13,460) 32 60 4
160 4.4  (3,0,597) 2496 75 5
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Table S.7: Strength-3 designs obtained from 64-run MA designs. A dash as an element of
the Fj vector means that the corresponding Jy-characteristic does not exist. A boldface
F, vector indicates that it is sequentially smaller than the F, vectors of the benchmarks
available in the literature. d: number of parent designs; f: best factor to fix; df: degrees

of freedom for estimating 2FTs; Runs;: design has ¢ duplicate runs.

Parent Runs GR  Fy(256,192,128,64) B, df d f
21711192 4.66 (—,0,0,153) 17 119 3 6
256 4.75 (0,0,0,188) 11.75 135 4 6
3204 4.8 (0,0,0,247) 9.88 136 5 6
218=12 192 4.66 (—,0,0,198) 22 126 3 6
256 4.75 (0,0,0,240) 15 141 4 6
320, 48 (0,0,0,318) 1272 149 5 6
219-13 192 4 (—,1,0,243) 28 120 3 6
256 4.5  (0,0,4,312) 2050 156 4 3
320 4.8 (0,0,0,412) 1648 171 5 3
220-14 192 4 (- 2,0,291) 3433 129 3 6
256 4.5  (0,0,14, 368) 2%.50 170 4 1
320 4.4  (0,2,0,459) 19.08 187 5 6
2215 199 4 (—,7,0,483) 60.67 93 3 1
256 4.5 (0,0,31,572) 4350 124 4 1
320 44  (0,7,0,769) 33.28 155 5 1
222-16 192 4 (—,11,0,579) 75.33 93 3 6
256 4 (1,0,42,680) 54.00 124 4 6
320 4.4  (0,13,0,917) 41.36 155 5 1
2217 192 4 (—,15,0,685) 91.11 93 3 1
256 4 (2,0,55,792) 6525 124 4 1
320 4.4  (0,19,0,1077) 4992 155 5 1
224-18 192 4 (—,21,0,806) 11056 93 3 1
256 4 (4,0,71,924) 7950 124 4 1
320 4.4 (0,30,0,1267) 6148 155 5 6
2219 192 4 (—,26,0,949) 13144 93 3 6
256 4 (6,0, 88,1080) 95.500 124 4 ©
320 4.4  (0,40,0,1475) 73.4 155 5 6
226-20 192 4 (—,38,0,1097) 15989 93 3 6
256 4 (11,0, 108, 1240) 11550 124 4 6
320 4.4 (0,63,0,1692) 90.36 155 5 6
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Table S.8: Strength-3 designs obtained from 128-run MA designs. A dash as an element
of the Fj vector means that the corresponding J,-characteristic does not exist. A boldface
GR value and Fj vector indicate that these values are larger and sequentially smaller,
respectively, than the corresponding values of the benchmarks available in the literature.
d: number of parent designs; df: degrees of freedom for estimating 2FIs; Runs;: design has

1 duplicate runs.

Parent Runs GR  F4(640,512,384,256,128) By df d
220-13 384 4.66 (—,—,0,0,92) 10.22 190 3
512 475  (—,0,0,0,112) 7 190 4
640, 4.8 (0,0,0,0,148) 5.92 190 5
768, 4.66  (0,0,0,2,168) 4.89 190 6
896, 4.857 (0,0,0,0,204) 4.16 190 7
221-14 384 466 (—,—,0,0,129) 14.33 210 3
512 475  (—,0,0,0,156) 9.75 210 4
640, 4.8 (0,0,0,0,207) 8.28 210 5
768, 4.66  (0,0,0,3,234) 6.83 210 6
896, 4.857 (0,0,0,0,285) 5.82 210 7
222-15 384 466 (—,—,0,0,173) 19.22 231 3
512 475  (—,0,0,0,216) 13.5 231 4
640, 4.8  (0,0,0,0,281) 1124 231 5
768, 4.66  (0,0,0,2,324) 9.22 231 6
896, 4.857 (0,0,0,0,389) 7.94 231 7
923-16 384 466 (—,—,0,0,211) 2344 251 3
512 475  (—,0,0,0,256) 16 253 4
640, 4.8 (0,0,0,0,339) 13.56 253 5
768, 4.66  (0,0,0,5,384) 11.22 253 6
896, 4.857 (0,0,0,0,467) 9.53 253 7
2%-17T 384 466 (—,—,0,0,258) 28.67 269 3
512 4.7%5 (—,0,0,0,312) 19.5 276 4
640, 4.8 (0,0,0,0,414) 16.56 276 5
768, 4.66  (0,0,0,7,468) 13.78 276 6
896, 4.857 (0,0,0,0,570) 11.63 276 7
225-18 384 466 (—,—,0,0,316) 35.11 269 3
512 4.75 (—,0,0,0,384) 24 300 4

Continued on next page
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Table S.8 (continued)

Parent Runs GR  Fy(640,512,384,256,128) B, af d
640 4.8  (0,0,0,0,508) 20.32 300 5
768, 4.66  (0,0,0,9,576) 17 300 6
896, 4.857 (0,0,0,0,700) 1429 300 7
926-19 384 4 (—,—,1,0,373) 42.44 276 3
512 4.5 (—,0,0,8,444) 29.75 324 4
640 4.8  (0,0,0,0,596) 23.84 325 5
768 4.66  (0,0,0,14,666) 20.06 325 6
896  4.857 (0,0,0,0,818) 16.69 325 7
927-20 384 4 (—,—,3,0,431) 50.89 282 3
512 4.5 (—,0,0,18,508) 36.25 347 4
640 4.4  (0,0,2,0,686) 28.16 350 5
768  4.66  (0,0,0,19,762) 23.28 351 6
896  4.857 (0,0,0,0,942) 19.22 351 7
928-21 384 4 (—,—,5,0,495) 60 289 3
512 4.5 (—,0,0,27,580) 43 365 4
640 4.4  (0,0,3,0,787) 32.56 377 5
768  4.66  (0,0,0,25,870) 26.94 378 6
896  4.857 (0,0,0,0,1080) 22.04 378 7
929-22 384 4 (—,—,9,0,611) 76.89 291 3
512 4.5 (—,0,0,44,708) 55.25 367 4
640 4.4 (0090965) 41.84 401 5
768 4.66  (0,0,0,41,1062) 34.06 406 6
896  4.857 (0,0,0,0,1328) 27.10 406 7
930-23 384 4 (—,—,12,0,777) 98.33 261 3
512 4 (—,1,0,56,908) 71.75 348 4
640 4.4 (001601227) 54.84 425 5
768 4.66  (0,0,0,90,1362) 47.83 426 6
896  4.571 (0,0,15,0,1682) 37.08 433 7
231-24 384 4 (—, —,17,0,890) 115.80 261 3
512 4 (—,2,0,70,1032) 84 348 4
640 4.4 (002601397) 65.2 431 5
768  4.66 (0,0,0,119, 1548) 56.22 457 6
896  4.571 (0,0,30,0,1909) A4.47 462 T
232-25 384 4 (—, —,22,0,1004) 133.56 261 3
512 4 (—,5,0,84,1148) 97.75 348 4

Continued on next page
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Table S.8 (continued)

Parent Runs GR  Fy(640,512,384,256,128) B, It d
640 4.4 (0,0,38,0,1562) 76.16 432 5
768 4.66  (0,0,0,165,1722) 66.17 482 6
896  4.571 (0,0,51,0,2123) 52.60 489 7
233-26 384 4 (—,—,29,0,1125) 154 261 3
512 4 (—,7,0,104,1272) 112.5 348 4
640 4.4  (0,0,51,0,1739) 87.92 430 5
768 4.66  (0,0,0,200,1908) 75.22 507 6
896  4.571 (0,0,67,0,2359) 60.45 518 7
234-2T 384 4 (—,—,35,0,1264) 17544 261 3
512 4 (—,9,0,124,1420) 128.75 348 4
640 4.4 (0,0,65,0,1944) 101.16 435 5
768 4.66  (0,0,0,234,2130) 85.17 519 6
896  4.571 (0,0,86,0,2633) 69.53 546 T
235-28 384 4 (—, —,40,0,1439) 109.89 261 3
512 4 (—,9,0,142,1628) 146.25 348 4
640 4.4 (0,0,73,0,2220) 115.08 435 5
768 4.66  (0,0,0,258,2442) 96.5 521 6
896  4.571 (0,0,97,0,3010) 79.245 576 7
236-20 384 4 (—,—,50,0,1604) 228.22 261 3
512 4 (—,13,0,170,1796) 167.75 348 4
640 4.4 (009802454) 133.44 435 5
768 4.33  (0,13,0,264,2694) 109.94 521 6
896  4.571 (0,0,136,0,3314) 92.61 604 T
237-30 384 4 (—,—,56,0,1818) 258 261 3
512 4 (—, 15,0, 186, 2040) 189 348 4
640 4 (1010302790) 149.68 435 5
768 4.33  (0,15,0,298,3060) 124.78 520 6
896  4.571 (0,0,181,0,3733) 109.43 606 7
238-31 384 4 (—,—,68,0,2011) 291.44 261 3
512 4 (—, 20,0, 206, 2240) 211.5 348 4
640 4 (2012203075) 168.92 435 5
768 4.33  (0,32,0,301,3360) 141 521 6
896  4.286 (2,0,175,0,4142) 117.69 608 7
239-82 384 4 (—, —,80,0,2213) 325.80 261 3
512 4 (—,24, 0,249, 2444) 239 348 4

Continued on next page
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Table S.8 (continued)

Parent Runs GR  F;(640,512,384,256,128) B, af d
640 4 (4,0,139,0, 3372) 188.92 435 5
768 4.33  (0,44,0,309, 3666) 155.72 522 6
896  4.286 (5,0,197,0,4535) 131.29 609 7
24033 384 4 (=, —,93,0,2423) 362.22 261 3
512 4 (—, 30,0, 282, 2652) 266.25 348 4
640 4 (5,0,167,0, 3670) 211.92 435 5
768  4.33 (0,640,342, 3978) 176.94 522 6
896  4.286 (6,0,242,0,4920) 147.92 609 7

Table S.9: Strength-3 designs obtained from 256-run MA designs. A boldface GR value
and F} vector indicate that these values are larger and sequentially smaller, respectively,
than the corresponding values of the benchmarks available in the literature. d: number of
parent designs; f: best factor to fix; df: degrees of freedom for estimating 2FIs; Runs; ;:

design has ¢ duplicate and j triplicate runs.

Parent Runs GR  Fy(768,512,256) B, df d f
924-16 768,0 4.66 (0,0,66) 733 276 3 6
102449 4.75 (0,0,80) 5 2716 4 6
128044 4.8 (0,0,106) 424 276 5 6
22517 768 4.66 (0,0,84) 933 300 3 6
1024 4.75  (0,0,100) 6.25 300 4 6
128040 4.8 (0,0,134) 536 300 5 6
22618 768 4.66 (0,0,105) 11.67 325 3 8
1024 475 (0,0,124) 775 325 4 8
128040 4.8 (0,0,167) 6.68 325 5 8
227-19 768 4.66 (0,0,127) 14.11 351 3 7
1024 475 (0,0,148) 9.25 351 4 7
128040 4.8 (0,0,201) 804 351 5 7
228-20 768 4.66 (0,0,152) 16.89 378 3 8
1024 4.75  (0,0,172) 1075 378 4 7
128040 4.8 (0,0,236) 944 378 5 7
229-21 768 4.66 (0,0,184) 20.44 406 3 8
1024 4.75  (0,0,212) 13.25 406 4 8

Continued on next page
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Table S.9 (continued)

Parent Runs GR  Fy(768,512,256) B, df d f
1280 4.8 (0,0,290) 11.6 406 5 8
230-22 768 4.66 (0,0,215) 23.89 433 3 5
1024 4.75  (0,0,244) 1525 435 4 5
1280 4.8 (0,0,333) 13.32 435 5 4
231=23 768 4.66 (0,0,255) 28.33 461 3 5
1024 4.75  (0,0,284) 1775 465 4 5
1280 4.8 (0,0,393) 15.72 465 5 4
232-24 768 4.66 (0,0,297) 33 491 3 5
1024 4.75  (0,0,328) 20,5 496 4 5
1280 4.8  (0,0,461) 1844 496 5 5
23325 768 4.66 (0,0,347) 38.06 522 3 2
1024 475 (0,0,384) 21 528 4 7
1280 4.8 (0,0,525) 21 528 5 5
234-26 768 4.66 (0,0,404) 4489 553 3 6
1024 4.75 (0,0,456) 285 561 4 6
1280 4.8 (0,0,608) 24.32 561 5 2
25521 768 4 (1,0,455) 5156 576 3 6
1024 4.5 (0,10, 496) 335 595 4 1
1280 4.8 (0,0,692) 27.68 595 5 3
236-28 768 4 (3,0,492) 57.67 601 3 3
1024 4.5 (0,19, 560) 39.75 630 4 6
1280 4.8 (0,0,773) 3092 630 5 7
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G Sets of factors for sign switching

Tables S.10, S.11 and S.17 include the best sets of factors in which to switch the signs in the
parent designs with 32, 64 and 256 runs, respectively. Due to the length of the results, we
show the best sets of factors in which to switch the signs in the 128-run parent designs in
Tables S.12-S.16. More specifically, Tables S.12, S.13, S.14, S.15 and S.16 show the sets of
factors for the 128-run parents used to construct 384-, 512-, 640-, 768- and 896-run designs,
respectively.

The steps required to construct the strength-3 designs from Tables S.6-S.9 in Section F

are:

1. Obtain the 2™7P design with n = 2™7P runs and m factors in Table S.1 in Section D
using the following command of the FrF2 package in R:
FrF2(nruns = n, nfactors = m, randomize = FALSE)
The output is a minimum aberration (MA) design where its first b = m — p columns

correspond to the basic factors and the rest to the generated factors.

2. Generate d isomorphic copies, Dy, ..., Dy 1, of the 2P design as in Theorem 1 if
b is a prime. Otherwise, generate the copies as in Theorem 2 with B the subset of
basic factors that does not include factor f. Tables S.7 and S.9 in Section F show f

for the 64- and 256-run regular designs, respectively.
3. Switch the signs in the factor columns of Dy, ..., D41 according to Tables S.10-S.17.
4. Concatenate Dy, ..., D, 1 to create the final design with N = nd runs and m factors.

Example S.3. To generate the 18-factor 256-run design in Table S.7 in Section F, we
start from the MA 218712 design with 6 basic factors in Section D. We generate the MA
design using the command FrF2(nruns = 64, nfactors = 18, randomize = FALSE) of
the FrF2 package in R. The first 6 columns of the resulting design correspond to the basic
factors while the other columns to the generated factors. Since the number of basic factors
of the regular design is not a prime, we use Theorem 2 to generate the four isomorphic
copies, Dy, D1, Dy and Ds, of the 2'8712 design. To this end, Table S.7 shows that f = 6
and so the subset of basic factors to permute is B = {1,2,3,4,5}. Design Dy is the regular
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design without modification. Design D; is formed by shifting the columns 1,...,5 one
position to the right and placing column 5 in the first position. Designs Dy and D3 are
formed in a similar fashion by shifting the factor columns in B two and three positions to
the right, respectively. According to Table S.11, we switch the signs of the columns in the
sets {11,13,15,16}, {13,14,18} and {8,14,16} in D;, Dy and D3, respectively. Finally,
we concatenate Dy, Dy, Dy and D3, to generate a 256-run design for 18 factors with a

generalized resolution of 4.75, an Fy(256, 128,64) = (0,0,240) and a By value of 15.
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Table S.10: Factors in which to switch the signs in 32-run parent designs.

Parent N D, D, Ds D,
29-4 96 8
128 8
160 &
2105 9% 6
128 8
160 6
211-6 9% 8 7
128 9 10 11
160 6 9,11 9
212-7 96 12 11
128 6 8 7
160 12 7 10
2138 9% 7,8 8
128 7,8 7.13 11
160 6,9 11, 13 10, 13
92149 96 9 13 8, 12
128 7,8, 14 7,13 6, 8
160 8§, 12 7,9 12, 13, 14
215-10 96 10, 11, 14 8, 13
128 8,11, 13, 14 9,13,14 8,9
160 7,9, 11,13 6,10,13 6,8, 12 11
916-11 96 g 10,11, 13, 14, 16 6, 15
128 8, 10, 14, 15 6, 8, 15, 16 10, 11, 16
160 8,10,11,13,14 6, 11,13 7,11, 13, 14,16 6, 13, 14
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Table S.13: Factors in which to switch the signs in 128-run parent designs to construct

512-run designs.

Parent Copy Factors

220-13 D; 8,13, 16, 18, 19, 20
Dy 9,10, 18
D3 12,16

921-14 D, 8,9,12, 19, 20
Dy 10, 14, 21
Dy 17,21

922-15 D, 8,9, 10, 14, 22
D, 10, 15, 21
Dy 11,17

923-16 Dy 10, 12, 14, 18, 20, 22
D, 11, 14, 15, 17, 22
Dy 12,14, 19

924-17 Dy 8,9, 10, 12, 14, 15, 22, 23, 24
Dy 9,13, 14, 15, 22
Ds 10,11, 17, 18

92518 D, 13,16, 17, 20, 23, 24
Dy 8,9, 14, 17, 20, 21, 22
Dy 9,11, 15, 18, 20, 25

926-19 D, 8,13, 14, 16, 20, 22, 23, 25, 26
D, 14,17, 19, 20, 21, 25, 26
Dy 12,13, 14, 19, 20

927-20 D, 8,16, 19, 23, 25, 27
D, 8,13, 14, 17, 20, 25
Dy 14, 18, 20, 21, 25, 26

Continued on next page
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Table S.13 (continued)

Parent Copy

Factors

228—21

229722

230723

231—24

232—25

233726

234—27

235—28

236729

Dy
D,
Dj

Dy
D,
Dy

D,
D,
Dy

9,12, 13, 14, 15, 16, 19, 20, 27, 28
11, 15, 21, 26, 28
8, 14, 21, 23, 28

9,13, 15, 16, 19, 21, 23, 24, 25, 26
10, 13, 14, 21, 25, 26, 28, 29
10, 12, 14, 19, 24, 25, 29

8,9, 10, 16, 17, 21, 23, 24, 26, 27, 29
9, 10, 12, 14, 16, 17, 23, 28, 29, 30
14, 15, 16, 17, 29

8, 12, 13, 14, 18, 20, 21, 23, 25, 26, 28, 29
9, 10, 12, 14, 15, 16, 17, 21, 27
8, 10, 12, 16, 18, 23, 24, 27

9,11, 12, 13, 15, 18, 28, 31, 32
14, 17, 18, 19, 20, 21, 26, 27, 29, 30
8, 10, 11, 17, 20, 21, 27, 29

9, 11, 12, 21, 22, 24, 25, 29, 32, 33
9, 11, 12, 14, 15, 19, 24, 25, 26, 27, 31
15, 16, 19, 23, 25, 26, 27, 30, 31, 32, 33

12, 13, 16, 19, 23, 24, 25, 26, 27, 28, 29, 31, 33
8,9, 10, 12, 13, 14, 15, 18, 23, 24, 25, 28, 30, 32, 33, 34
8,9, 10, 14, 18, 20, 23, 29

8,12, 15, 17, 18, 19, 26, 28, 32
13, 19, 23, 24, 31, 33, 34, 35
8,9, 16, 19, 20, 26, 29, 30, 32, 35

8, 11, 12, 14, 15, 17, 18, 21, 23, 24, 27, 29, 30, 36
12, 14, 15, 17, 19, 20, 26, 27, 34, 36
12, 14, 16, 20, 21, 24, 25, 26, 29, 34, 36

Continued on next page
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Table S.13 (continued)

Parent Copy Factors

93730 D, 8,10, 15, 20, 21, 22, 23, 26, 27, 29, 31, 35
D, 8,9, 10, 13, 14, 15, 16, 18, 20, 23, 24, 27, 29, 35, 36
Dy 10, 13, 15, 17, 21, 27, 33, 34

93831 D, 11,16, 17, 18, 19, 22, 24, 25, 28, 32, 33, 35, 37, 38
Dy 9,10, 14, 15, 18, 20, 22, 23, 24, 25, 26, 27, 28, 31, 36, 38
Dy 13, 16, 19, 20, 24, 27, 29, 30, 31, 32, 33, 35

939-32 D, 10, 12, 17, 20, 21, 22, 23, 26, 28, 29, 30, 31, 34, 37
Dy 9,11, 12, 14, 15, 20, 22, 23, 24, 26, 28, 30, 31, 33, 39
Dy 10, 11, 14, 16, 17, 18, 21, 22, 23, 27, 30, 35, 39

910-33 D; 9,10, 11, 12, 15, 16, 19, 20, 22, 24, 25, 26, 28, 32, 34
D, 8,9, 13,14, 16, 17, 24, 29, 31, 34, 36, 37, 38, 39
Dy 8,11, 13, 16, 17, 21, 27, 28, 30, 31, 33, 36

Table S.14: Factors in which to switch the signs in 128-run parent designs to construct

640-run designs.

Parent Copy Factors

920-13 D, 9,14, 15,17
D, 11,13, 15, 20
D; 12,18, 20

921-14 D, 8,12, 15,16, 19
D, 9,11, 15, 21
Dy 14,17, 21

922-15 D, 16,19, 21, 22
D, 11,15, 16, 18
Dy 9,13, 21

923-16 D, 10, 11, 12, 14, 15, 20, 22

Continued on next page
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Table S.14 (continued)

Parent

Copy

Factors

224717

225—18

226—19

227—20

228—21

229—22

230723

12, 15, 16, 17, 21, 23
14, 17, 21, 22

10, 11, 12, 14, 16, 20, 22
8, 11, 12, 16, 24
17, 18, 20, 22, 23

13, 16, 17, 20, 23, 24
10, 14, 16, 18, 19, 21, 25
8, 16, 25

8, 15, 21, 25

8,9, 10, 11, 12, 17, 19, 20, 24, 26
9, 13, 20, 23, 24, 25

8, 10, 16, 21, 22, 23

9, 11, 14, 16, 24

10, 12, 13, 14, 18, 24, 26
8,12, 13, 18, 22, 26
9,11, 15, 17, 20, 25
9,11, 13, 24

9, 13, 15, 16, 18, 20, 22, 26

9, 10, 11, 15, 20, 22, 25

9, 10, 12, 16, 19, 22, 23, 24, 25
8, 12, 19, 20, 22

9,10, 11, 12, 13, 14, 16, 17, 18, 21, 22, 23, 25
10, 12, 13, 15, 18, 20, 23, 28, 29

9, 14, 15, 16, 20, 21, 22, 28

8, 10, 17, 19, 20, 22, 26

8,9, 13, 15, 16, 17, 22, 23, 26, 27, 28
8,12, 15, 18, 21, 22, 23, 25, 26, 27, 28, 29, 30
11, 12, 14, 21, 23, 26, 29

Continued on next page
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Table S.14 (continued)

Parent

Copy

Factors

231—24

232—25

233—26

234—27

235—28

236—29

237730

Dy

11, 14, 15, 19, 22, 28, 29, 30

8, 10, 11, 12, 13, 14, 15, 17, 18, 20, 22, 26, 27, 30
10, 13, 14, 15, 16, 17, 19, 21, 22, 25, 31

14, 17, 19, 21, 22, 23, 24, 26, 31

8,9, 13, 16, 19, 22, 24, 31

8, 11, 12, 15, 16, 21, 23, 24, 25, 26, 29
8, 10, 11, 12, 13, 15, 17, 27, 30, 32

9, 14, 17, 18, 19, 22, 26, 31

12, 13, 14, 17, 18, 19, 25, 28

8, 10, 14, 15, 16, 19, 20, 29, 30
9, 13, 15, 16, 18, 19, 20, 21, 29
8, 11, 12, 14, 15, 18, 19, 23, 32
14, 16, 17, 24, 29, 31, 32

10, 14, 15, 16, 17, 19, 20, 25, 27, 28, 33, 34
8, 10, 11, 13, 21, 23, 25, 26, 27, 32, 33

8, 10, 13, 14, 17, 20, 23, 24, 30, 33

12, 13, 19, 21, 23, 26, 30, 32

10, 14, 15, 16, 17, 18, 21, 23, 31, 32, 33, 34, 35
8, 11, 15, 16, 18, 20, 21, 22, 25, 26, 27

8, 10, 12, 14, 24, 26, 27, 32, 34, 35

8, 13, 17, 18, 26, 27, 28

8,9, 10, 11, 13, 18, 19, 21, 24, 26, 28, 29, 31, 32, 34, 35
9,11, 12, 15, 16, 18, 19, 21, 25, 29, 31, 32, 33, 34, 35
9,10, 12, 15, 17, 18, 19, 23, 24, 27, 28, 29

9, 16, 19, 20, 21, 23, 24, 25, 28, 33, 35

10, 11, 14, 16, 20, 24, 28, 29, 31, 32, 34, 37
12, 13, 15, 19, 21, 23, 24, 25, 27, 28, 36
9,11, 17, 19, 20, 23, 28, 29

Continued on next page
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Table S.14 (continued)

Parent Copy Factors
D, 18, 20, 23, 24, 25, 26, 30, 31, 32

93831 D, 8,14, 15, 16, 19, 20, 23, 24, 26, 29, 35, 36
D, 8,10, 15, 17, 18, 25, 27, 29, 30, 32, 35, 37, 38
D; 9,10, 12, 15, 16, 20, 22, 29, 31, 33, 36, 38
Dy 8,9,23, 27,28, 29, 31, 33, 36

939-32 D, 8,9, 11, 14, 17, 18, 20, 23, 25, 27, 28, 29, 32, 34, 38, 39
D, 11, 15, 18, 19, 20, 21, 22, 26, 33, 34, 37
Ds; 9,10, 15, 17, 18, 19, 22, 24, 26, 27, 29, 34
D, 8,10, 16, 18, 19, 24, 28, 29, 33, 34, 35

940-33 D, 13,15, 16, 17, 22, 27, 28, 29, 30, 31, 34, 35, 39
D, 9,12, 15, 19, 20, 26, 27, 28, 30, 31, 33, 38, 39
Dy 8,10, 11, 12, 15, 17, 20, 24, 25, 28, 32, 36, 40
D, 11, 14, 15, 16, 21, 29, 30, 32, 40

Table S.15: Factors in which to switch the signs in 128-run parent designs to construct

768-run designs.

Parent Copy Factors

92013 D, 8,10, 13, 16, 19
Dy 9,11, 16, 18
Dy 9,15
D, 15,20

921-14 D, 8,910, 17,19, 20
D, 8,9, 20
Dy 11, 14, 18
D, 11, 14,18

922-15 D, 11,21, 22
D, 9,11, 15, 16, 19, 21
Dy 10, 11, 16, 21, 22

Continued on next page
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Table S.15 (continued)

Parent

Copy

Factors

223—16

224—17

225—18

226—19

227—20

228—21

Dy

9,17, 19

8, 13, 14, 16, 20, 21
8,9, 14, 15, 16

13, 15, 17, 19, 22
8, 11, 13, 23

9,12, 17, 21, 23
13, 14, 15, 21
9,11, 12, 15, 19, 21
8, 10, 14, 15, 20

10, 11, 12, 14, 15, 16, 22
11, 12, 13, 17, 19, 23, 24
10, 11, 13, 15, 18, 23
8, 10, 12, 21, 23, 25

9,10, 11, 12, 15, 18, 22, 24, 26
8, 16, 17, 18, 21, 22

8, 14, 19, 21, 22, 23, 26

9, 10, 12, 14, 15, 20

10, 22, 23

8, 10, 11, 15, 16, 23, 25

8, 10, 11, 16, 19, 25, 26, 27
8, 13, 23, 24, 26
8,9, 11, 18, 24

12, 18, 21

8,9, 16, 17, 18, 22, 23, 27, 28
8,9, 13, 14, 16, 19, 20

12, 15, 16, 17, 21, 23, 27, 28
10, 15, 16, 18, 24, 25, 27
8,12, 14, 18

Continued on next page
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Table S.15 (continued)

Parent

Copy

Factors

229—22

230—23

231—24

232—25

233—26

234—27

D,
Dy
Dy
D,
D5

D,
D,
Dy
D,
Ds

9,10, 11, 12, 13, 18, 19, 22, 26, 28, 29
8, 13, 14, 19, 20, 25

11, 14, 18, 19, 21, 22, 25

9,12, 17, 19, 20, 21, 25, 27

12, 16, 19, 21, 26

17, 18, 19, 21, 24, 25, 27, 28, 30
8,9, 13, 15, 24, 25, 26, 29

8, 10, 11, 15, 20, 22, 23, 26, 28
9,13, 14, 19, 24, 27

9, 14, 30

12, 14, 16, 17, 19, 20, 21, 22, 23, 26, 27, 29
9, 10, 14, 15, 17, 18, 21, 22, 26, 28, 30, 31
13, 14, 19, 20, 22, 24, 26, 28

9, 10, 13, 18, 19, 21, 26

8,9, 10, 21, 29

8, 10, 12, 13, 14, 15, 16, 17, 21, 22, 24, 26, 28, 29, 30
12, 14, 15, 17, 18, 19, 22, 24, 26, 29

8, 15, 17, 19, 22, 23, 25, 29, 30, 31, 32

10, 11, 17, 20, 23, 27, 32

9, 18, 21, 28, 32

11, 13, 16, 17, 19, 20, 21, 26, 27, 30
8,9, 13, 14, 16, 20, 26, 28, 29, 32

8, 10, 15, 18, 20, 21, 24, 25, 27, 28, 32
9,12, 13, 20, 21, 23, 27, 32

9, 10, 11, 15, 17, 19, 27

11, 14, 16, 19, 22, 26, 27, 30, 31, 32, 33, 34
16, 19, 20, 21, 22, 25, 26, 29, 32

13, 16, 18, 20, 23, 24, 25, 31, 32, 34

9, 11, 13, 20, 21, 25, 26, 34

13, 16, 22, 23, 24, 25, 30, 33

Continued on next page
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Table S.15 (continued)

Parent

Copy

Factors

235—28

236—29

237—30

238—31

239732

240733

8, 14, 21, 22, 25, 26, 32, 34, 35

9, 16, 17, 21, 22, 23, 24, 27, 29, 30, 31
8,9, 11, 12, 14, 19, 24, 26, 27, 29, 34
8,9, 22, 24, 26, 30, 34

9,13, 17, 20, 24, 34, 35

8, 14, 15, 16, 18, 20, 24, 25, 26, 27, 29, 34, 35, 36

9,10, 11, 12, 13, 14, 16, 19, 20, 23, 25, 26, 27, 28, 29, 30, 35
9,13, 14, 15, 17, 22, 24, 25, 29, 30, 32, 34, 36

10, 13, 20, 21, 24, 26, 28, 31, 32, 33, 34

10, 11, 12, 13, 17, 20, 23, 24, 27, 33

10, 11, 13, 15, 16, 18, 20, 22, 23, 29, 33, 34, 35
10, 11, 13, 17, 18, 22, 23, 24, 25, 27, 33, 34, 36, 37
8,9, 12, 13, 15, 17, 18, 22, 23, 24, 26, 27, 30, 31, 33, 36
8,12, 13, 16, 17, 18, 19, 32, 35, 36

13, 18, 20, 25, 27, 28, 29, 30

8,9, 11, 12, 15, 16, 17, 18, 20, 22, 26, 27, 29, 30, 32, 35, 38
8, 11, 13, 14, 21, 23, 24, 25, 27, 30, 36

9, 10, 11, 13, 14, 16, 30, 34, 37

10, 11, 12, 17, 21, 22, 23, 32, 35, 38

10, 12, 23, 24, 28, 30, 36, 37

9, 14, 18, 20, 22, 23, 24, 27, 29, 30, 33, 35, 36, 38

8,10, 11, 13, 14, 15, 18, 21, 22, 25, 27, 29, 30, 36, 38, 39
12, 13, 14, 15, 16, 20, 21, 25, 28, 30, 31, 37, 39

9, 10, 15, 19, 20, 21, 23, 24, 26, 27, 29, 35, 36, 37, 38, 39
9,19, 22, 24, 29, 30, 32, 37, 38, 39

11, 12, 15, 18, 22, 24, 25, 26, 27, 33, 34, 37, 39, 40
8, 14, 17, 19, 20, 23, 25, 26, 29, 30, 31, 34, 35, 37, 40
11, 13, 15, 17, 18, 20, 25, 26, 30, 38, 39, 40

11, 14, 15, 16, 17, 21, 23, 24, 27, 30, 34, 35, 38

Continued on next page

33



Table S.15 (continued)

Parent Copy Factors

D5 11,15, 18, 19, 21, 22, 24, 31, 32, 33, 34, 35, 36, 37, 38

Table S.16: Factors in which to switch the signs in 128-run parent designs to construct

896-run designs.

Parent Copy Factors

920-13 Dy 11,12, 14, 18
Dy 11,19
Dy 12,13, 16
D, 14,18
Ds 15

921-14 D, 11, 14, 15, 21
D, 12,18, 21
Dy 8,11, 13, 20
D, 8, 13,18
Ds 8,9

922-15 Dy, 11, 14, 15, 18, 19, 22
D, 8,15, 17, 18, 21, 22
Ds; 10, 14, 21
D, 9,15,20
Ds 16, 19

923-16 Dy 8,11, 12, 14, 16, 18, 19, 22, 23
D, 11, 14, 19, 20, 21
Dy 10,17, 19, 23
D, 13,1722, 23
Ds 10,17, 19, 23

924-17 D, 15,17, 18, 20, 23, 24
D, 8,9, 10,12, 21
Dy 8,13, 14, 16, 21
D, 8, 11,12, 20, 23

Continued on next page
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Table S.16 (continued)

Parent Copy Factors

Ds 9,11, 16, 20

92518 D, 8,9,13,15, 16, 20, 24
D, 8,9,12, 13, 15, 17, 19, 23
D; 10, 11, 12, 15, 19
D, 12, 15,17, 18, 21, 23, 24
Ds 9,13, 15, 18, 20

926-19 D, 8,10, 12, 13, 14, 15, 19, 23
Dy 8, 14, 17, 18, 20, 22, 23, 24
Dy 11,12, 14, 21, 23, 25
D, 11,13, 14, 19, 20, 22
Ds 9,16, 19, 23
Ds 11,16

927-20 Dy 8,9, 10, 12, 18, 19, 20, 24
D, 8,16, 18, 20, 21, 22, 24, 26
Dy 9,11, 14, 16, 21, 22, 25, 26, 27
D, 12,13, 17, 18, 20, 21, 24, 25, 26
Ds 13,14, 16, 17, 18, 19, 26
De 14, 16, 22

92821 D, 8,10, 11, 12, 13, 14, 19, 20, 28
D, 9,10, 12, 16, 18, 23, 24, 26
Dy 8,12, 13, 16, 18, 20, 27
D, 10, 11, 14, 18, 21, 24, 27, 28
Ds 9,13, 15, 17, 18, 24, 26
Ds 18,22, 27, 28

929-22 D, 8,9,12, 14, 16, 17, 19, 21, 22, 28, 29
D, 9,11, 16, 18, 23, 27, 28, 29
Dy 12, 14, 15, 18, 20, 22, 23, 24, 25, 28
D, 12,13, 19, 25, 28, 29
Ds 8,9, 10,12, 15, 16, 19, 22, 23, 28
D¢ 10, 12, 19, 23, 26, 27

Continued on next page
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Table S.16 (continued)

Parent Copy Factors

930-23 D, 13,16, 17, 18, 21, 22, 23, 24, 26, 29, 30
D, 15,17, 20, 21, 22, 26, 27, 29, 30
Dy 8,9, 13, 14, 20, 26, 27
D, 9,11, 14, 18, 19, 27, 28, 30
Ds 10, 13, 14, 20, 21, 24, 26, 30
De 9,12, 16, 17, 20, 23

931-24 D, 8,10, 12, 14, 15, 16, 17, 18, 19, 23,
25, 27, 28, 29, 31
D, 8,10, 12, 13, 16, 17, 18, 28, 29, 30
Dy 9,10, 11, 19, 20, 21, 22, 23, 24, 27, 29
D, 14,19, 21, 23, 24, 28, 30, 31
Ds 8,9, 16, 20, 27, 30
Ds 13,17, 19, 24, 26, 29

932-25 Dy 8,10, 11, 17, 18, 19, 24, 30, 31
D, 9,10, 12, 14, 16, 19, 20, 21, 24, 27, 30, 32
Ds; 12, 16, 20, 24, 28, 31, 32
D, 8,9, 11,12, 15, 26, 27, 32
Ds 10, 12, 15, 19, 23, 30, 31, 32
D¢ 13,15, 23, 24, 25, 28, 29, 31

933-26 Dy 9,13, 15, 16, 22, 23, 25, 27, 29, 30, 31, 32, 33
Dy 10,12, 13, 14, 17, 19, 22, 23, 27, 32, 33
Dy 9,11, 12, 14, 15, 16, 17, 22, 23, 25, 26, 33
D, 8,9, 16,17, 20, 21, 27, 28, 31
Ds 18, 20, 24, 26, 27, 31, 32
D¢ 14,16, 17, 21, 24, 29, 31, 32

93427 Dy 8,10, 12, 13, 15, 16, 17, 18, 20, 25,
26, 27, 28, 30, 31, 33
D, 15,17, 19, 23, 24, 27, 29
D; 10, 13, 14, 16, 17, 20, 21, 24, 25, 27, 28, 31, 33, 34
D, 10,12, 16, 17, 18, 20, 24, 25, 29

Continued on next page
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Table S.16 (continued)

Parent Copy Factors

Ds 11, 13,17, 25, 29, 31, 33
De 15,17, 18, 20, 21, 22, 24, 25, 31, 33, 34

935-28 Dy 9,10, 12, 17, 20, 24, 27, 28, 29, 32, 34, 35
D, 8,9, 14, 15, 16, 17, 19, 21, 24, 28, 31, 33, 34, 35
Ds 9,12, 13, 16, 19, 23, 27, 33
Dy 10, 11, 15, 17, 19, 20, 28, 34, 35
Ds 8,13, 26, 28, 30, 31, 35
Ds 9,10, 13, 14, 15, 18, 23, 25, 26, 27, 30, 33

93629 Dy 8,9, 10, 13, 14, 16, 17, 18, 23, 24, 26,
27, 29, 31, 32, 33, 34, 35, 36
D, 10, 12, 16, 20, 24, 26, 28, 32, 35
Ds; 8,10, 12, 19, 20, 24, 26, 29, 31, 32, 33, 36
D, 8,11,13, 15, 16, 17, 21, 25, 26, 28, 33, 35
Ds 10, 11, 17, 18, 21, 26, 28, 32, 33, 36
D¢ 8,9,12, 14, 16, 21, 22, 25, 28, 32, 33

93730 D, 8, 11,12, 13, 14, 16, 17, 21, 24,
26, 32, 33, 35, 37
D, 8,10, 12, 14, 18, 19, 20, 24, 26, 29, 30
Ds 9,10, 14, 15, 20, 24, 28, 29, 30, 33, 34
D, 10,12, 14, 15, 17, 22, 26, 27, 30, 31, 34, 37
Ds 12, 15, 18, 19, 21, 22, 24, 29, 33, 34
D¢ 12, 14, 27, 35, 37

93831 Dy 8,9, 11, 14, 19, 21, 27, 29, 35, 36
D, 9,12, 15, 17, 23, 24, 25, 27, 35, 36
Ds; 8,10, 11, 13, 16, 17, 20, 25, 31, 33, 34, 36
Dy 9,17, 18, 21, 22, 32, 33, 34, 35, 37
Ds 11, 14, 15, 16, 25, 34, 35, 36
D 8,12, 17, 18, 24, 25, 28, 29, 30, 31, 33, 34, 35

93932 D, 11,13, 14, 17, 18, 20, 22, 23, 24, 32, 35
Dy, 13,14, 27, 30, 31, 32, 33, 34, 35, 37, 38, 39

Continued on next page
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Table S.16 (continued)

Parent Copy Factors

Ds 11, 20, 24, 26, 27, 28, 30, 33, 37, 38

D, 10, 13, 16, 20, 25, 26, 28, 29, 30, 31, 36, 39
Ds 10, 14, 15, 19, 21, 24, 26, 27, 28, 34, 36
D¢ 8,13, 14, 16, 19, 20, 21, 23, 32, 34, 35, 39

940-33 Dy, 13,18, 19, 20, 21, 23, 24, 29, 30, 31,

32, 33, 34, 36, 39

D, 9,10, 13, 14, 17, 18, 20, 21, 22, 23, 25, 26, 27, 29
30, 31, 32, 33, 34, 36

D 9,10, 11, 12, 18, 21, 23, 26, 29, 30, 31, 35

D, 9,10, 13,17, 19, 24, 25, 27, 30, 31, 34, 35, 37

Ds 8,9, 10, 12, 13, 16, 25, 27, 31, 33

Ds 8,9, 10, 12, 13, 20, 21, 23, 26, 33, 34, 35, 38
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